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ABSTRACT

Double-stranded RNAs that are complementary to
non-coding transcripts at gene promoters can
activate or inhibit gene expression in mammalian
cells. Understanding the mechanism for modulating
gene expression by promoter-targeted antigene
RNAs (agRNAs) will require identification of the
proteins involved in recognition. Previous reports
have implicated argonaute (AGO) proteins, but iden-
tifications have differed with involvement of AGO1,
AGO2, or both AGO1 and AGO2 being reported by
different studies. The roles of AGO3 and AGO4 have
not been investigated. Here, we examine the role of
AGO 1-4 in gene silencing and activation of the pro-
gesterone receptor (PR) gene. Expression of AGO2
is necessary for efficient gene silencing or activa-
tion and AGO2 is recruited to the non-coding tran-
script that overlaps the promoter during both gene
silencing and activation. Expression of AGO1, AGO3
and AGO4 are not necessary for gene silencing or
activation nor are AGO1, AGO3, or AGO4 recruited
to the target non-coding transcript during gene
activation. These data indicate that AGO2 is the
primary AGO variant involved in modulating expres-
sion of PR by agRNAs.

INTRODUCTION

RNA interference (RNAI) involves silencing gene expres-
sion through recognition of mRNA by small duplex
RNAs (1). Some recent reports have suggested that
RNAs complementary to gene promoters can inhibit
(2-9) or activate (10-14) gene expression in mammalian

cells. In contrast to duplex RNAs that recognize mRNA
and act post-transcriptionally, RNAs that target gene pro-
moters modulate gene transcription. We describe RNAs
that target gene promoters as antigene RNAs (agRNAs)
to distinguish them from traditional siRNAs that target
and cleave mRNA.

There is no evidence that promoter-targeted RNAs
directly interact with chromosomal DNA. Instead, they
have been reported to bind to non-coding RNA tran-
scripts that overlap gene promoters (8,9,14-17). Three
studies have proposed that small duplex RNAs associate
with non-coding RNAs that are transcribed in the sense
orientation (i.e. the same direction as mRNA) (8,9,15).
Our laboratory identified an antisense transcript as the
molecular target for agRNAs that modulate expression
of the PR gene (16). This PR antisense transcript initiates
within the coding region of the gene and spans ~70 000
bases upstream from the transcription start site.

Our approach for further understanding how agRNAs
bind to non-coding transcripts and alter transcription
from gene promoters involves examining the potential
role of RNA-binding proteins that facilitate RNA/RNA
interactions. We reasoned that studying the function of
the argonaute (AGO) family of proteins provided a
logical starting point since members of this family are
critical components in the RNAIi pathway.

There are four AGO proteins (AGO1-4) in humans.
AGO?2 is the ‘catalytic engine’ of RNAI, responsible for
recognition of mRNA and subsequent cleavage of the
transcript (18-21). AGO2 has also been suggested to be
involved in miRNA biogenesis (22). Using a minimal
in vitro system AGO1 and AGO2 have been shown to
possess the ability to dissociate miRNA duplexes, while
AGO3 and AGO4 do not (23). In another report, reintro-
duction of any AGO variant into embryonic stem (ES)
cells deficient for expression of all four AGO variants
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rescues miRNA silencing defects and reduces apoptosis,
suggesting that AGO3 and AGO4 can assist RNAi (24).
Functional redundancy of AGO has also been inferred
from mRNA or miRNA pull-down experiments showing
detection of similar bound transcripts regardless of which
AGO variant is being isolated (20,25). Finally, all four
human AGO proteins exhibit similar preferences for
binding to duplex RNA with mismatches at different pos-
itions, although only AGO?2 efficiently unwound fully
complementary duplexes (26). Taken together, these data
demonstrate a role for AGO2 in these RNA-mediated
processes, but also suggest that AGOl, AGO3 and
AGO4 proteins may be involved in these mechanisms.

For AGO proteins to alter promoter activity, they must
be located within the cell nucleus. Although AGO proteins
primarily reside in the cytoplasm, studies have indicated
that they are also found in the nucleus (27-31). In
Caenorhabditis elegans an AGO protein NRDE-3 was
found to be required for nuclear siRNA import (27). In
mammalian cells, nuclear activity of AGO was first
inferred from the observation of potent gene silencing of
small nuclear RNA 7SK (28). A highly specific anti-AGO?2
antibody was subsequently used to identify AGO2 in
nuclear lysate (29) and fluorescence correlation and
cross-correlation spectroscopy also revealed nuclear
AGO2 (30). Most recently, importin-8 has been reported
to be involved in the translocation of AGO2 from cyto-
plasm to nucleus (31).

There have been multiple reports on the role of AGO
proteins in the mechanism of promoter-targeted RNAs.
One laboratory has implicated AGO2 in RNA-mediated
gene activation (10). Our laboratory reported that either
AGOI1 or AGO2 might be necessary for gene silencing
(32), while other reports determined AGOI, along with
other non-AGO proteins, as critical using multiple experi-
mental approaches (9,17,33-36). However, few reports
investigated a role for AGO3 or AGO4 in either gene
silencing or activation (10). Here we investigate involve-
ment of human AGOI1-4 in agRNA-mediated gene
silencing or activation of PR expression. Using multiple
experimental strategies we find that AGO?2 protein is the
best candidate for mediating both gene silencing and
activation (Table 1).

MATERIALS AND METHODS
Double-stranded RNAs

RNAs were synthesized by Integrated DNA Technologies.
The siRNAs for AGO1, AGO2, AGO3 and AGO4 were
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provided by Dharmacon, Inc. The sequences are listed in
Supplementary Table S1. Multiple siRNAs were tested for
their ability to specifically decrease AGO gene expression.
We were able to identify a single efficient siRNA duplex
for AGO1, AGO3 and AGO4. For AGO?2 the Smartpool
siRNAs gave us the best knockdown efficiency. Three
negative control RNAs were used: MM (a mismatched
RNA duplex based on PR-9 sequence), SCRI
(a scrambled RNA duplex based on PR-9 sequence) and
siGL2 (a luciferase based siRNA).

Plasmids and antibodies

The pIRESneo FLAG/HA AGO plasmids was purified
according to manufacturer’s instructions (Addgene
Plasmid 10820, 10822, 10823, 10824) (20). An empty
vector plasmid pUC was used as a control plasmid. The
following antibodies were used in this study: monoclonal
anti-HA antibody 16B12 (MMS-101P, Covance, for IP
and western Dblotting (WB); monoclonal anti-PR
antibody 6A1 (3172, Cell Signaling, for WB); monoclonal
anti-AGO2 4GS8 (011-22033, Wako, for IP and WB);
monoclonal anti-AGO1 (4B§, for WB and IP),
anti-AGO2 (11A9, for IP), anti-AGO3 (5A3, for IP) and
anti-AGO4 (6C10, for IP) (gifts from Dr G. Meister) (31);
monoclonal anti-AGO3 (3H8-AS5 or 4B1-F6, gift from Dr
M.C. Soimi, for WB) (37), monoclonal anti-B-tubulin
(T5201, Sigma, for WB), monoclonal anti-GAPDH
(ab9484, Abcam, for WB), monoclonal anti-Dicer
[ab14601, chromatin immunoprecipitation (ChIP) grade,
for IP], monoclonal anti-lamin A/C (ab8984, Abcam, for
WB), rabbit polyclonal anti-TRBP (HIV TAR-binding
protein) (gift from Dr Q. Liu, for IP) (38), normal
rabbit IgG (2729, Cell Signaling, for IP), normal mouse
IgG (12-371, Millipore, for IP), monoclonal anti-RNA
polymerase II (05-623, Millipore, for IP) and anti-f-
actin (Sigma).

Cell culture and transfection

T47D and MCF7 cells (American Type Culture
Collection) were maintained in RPMI-1640 media supple-
mented with 10% (v/v) FBS, 0.5% (w/v) non-essential
amino acids, 0.4 units/ml bovine insulin (all reagents
from Sigma). Cells were cultured at 37°C and 5% (v/v)
CO,. Cells were plated in six-well plates (Costar) 2 days
before transfection without antibiotics so that the cells are
30-50% confluent by the time of transfection.
Oligofectamine RNAIMAX (Invitrogen) was used as
lipid for all RNA duplex transfection. For single transient
transfection experiments (unless otherwise noted) 25 nM

Table 1. Summary of data on participation of AGO variants in modulation of PR gene expression by agRNAs

Located in Silencing reverses Silencing reverses RIP shows binding RIP shows binding HA-Tag RIP shows
nucleus? agRNA-mediated agRNA-mediated to antisense transcript to antisense transcript binding to antisense
silencing activation during gene silencing during gene activation transcript during
gene activation
AGOl Yes No No Yes No No
AGO2 Yes Yes Yes Yes Yes Yes
AGO3 Yes No No No No No
AGO4 Yes No No No No No
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duplex RNA (1.2 pl lipid) in OPTI-MEM (Invitrogen) was
used in a final volume of 250 pl. Media was added to the
duplex-lipid mixture for a final volume of 1.25ml, then
added on cells. Media was changed 24 h later, and cells
were harvested after 72h of transfection for mRNA
analysis and 96 h for protein analysis. For double transi-
ent transfection experiments, the first transfection was per-
formed as described earlier. The second transfection
utilizing a reverse transfecting method was carried out
72h after the first one. The cells were first detached
using trypsin and then transferred to another plate, to
which appropriate RNA  duplex/lipid/OPTI-MEM
mixture were added (final concentration 25 nM for each
RNA duplex). Media was changed 2 days later and the
cells were harvested 72 h after the second transfection for
mRNA analysis and 96 h for protein analysis.

The plasmid transient transfection in MCF7 and T47D
cells was carried out using Oligofectamine 2000
(Invitrogen) as the lipid according to the manufacturer’s
instruction in a six-well plate fashion (Costar). The trans-
fected quantities of each AGO plasmid in Supplementary
Figure S13 were 0.5pg for AGO1, AGO2 and AGO3
plasmids, and 1.0 g for AGO4 plasmid. The plasmid/
lipid ratio was kept at 1:2 (ug/ul). For anti-HA RIP ex-
periments in Figure 7, a double transfection assay was
carried out on 150 cm? large dishes. During the first trans-
fection, 4 ug of AGO1 or AGO3 plasmids, or 12 pg of
AGO2 plasmid, or 8§pug of AGO4 plasmids were added
on 90% confluent MCF7 cells. After 2 days the trans-
fected cells were split (1:3) and PR-11 (25 nM final) were
added at the same time. The cells were harvested 72 h later
(after the second transfection) for mRNA analysis or
RNA immunoprecipitation assay, and 96h for protein
analysis.

Western blotting

Western blots were performed on protein lysates (30 or
40 ng per sample). Primary antibodies included monoclo-
nal anti-PR, anti-HA, anti-AGO1 and anti-AGO2,
anti-AGO3 and anti-AGO4. Anti-f-actin was used as an
internal control and for quantitation. Protein was
visualized using secondary anti-mouse, anti-rabbit or
anti-rat (Jackson Immunolabs) and Supersignal develop-
ing solution (Pierce).

RNA analysis

Expression of AGO1-4, PR and antisense PR transcript
was evaluated by real-time quantitative PCR. Total RNA
from treated T47D or MCF7 cells was extracted using
Trizol (Invitrogen). Samples of 2pug were treated with
DNase 1 (6355, Worthington) first, followed by reverse
transcription  using random  primers  (Applied
Biosystems) with the High Capacity cDNA Archive kit
(Applied Biosystems). Products were detected using
TagMan Gene Expression Assays (EIF2C1, EIF2C2,
EIF2C3, EIF2C4 and PGR, Applied Biosystems) with
50ng of complementary DNA. Data were normalized
relative to measured levels of GAPDH (Applied
Biosystems). Error is expressed as standard deviation
from the mean (SD).

RNA immunoprecipitation and ChIP

ChIP assays were performed essentially as described (16).
The following antibodies were used for immunopreci-
pitations: normal mouse IgG and monoclonal anti-RNA
polymerase II. Four micrograms of each of the appropri-
ate antibody were used for each ChIP. Primers used for
ChIP are described in Supplementary Table S2.

For RNA immunoprecipitation (RIP), MCF7 or T47D
cells were grown in 150 cm” dishes and transfected with
either duplex RNAs or plasmids. Cells (~40 x 10°) were
harvested in 72 h and nuclear fraction was isolated (28). A
nuclear lysis buffer [150mM KCI, 20mM Tris—HCI 7.4,
3mM MgCl,, 0.5% NP-40, 1 x Roche protease inhibitors
cocktail, RNAseein (50 U/ml final)] was added to the
nuclei (Note: no formaldehyde cross-linking is used in
this protocol). The mixture was left on ice for 10 min.
After vigorous vortexing and pipetting, nuclei were
freeze-thawed three times in liquid nitrogen and a 22°C
water bath. Insoluble material was removed by centrifu-
gation at maximum speed for 15min at 4°C. Nuclear
extracts were quickly frozen in liquid nitrogen and
stored at —80°C. An amount of 60ul Protein A/G
agarose Plus was washed with phosphate-buffered saline
(1 x PBS, pH 7.4) and incubated with 0.5ml anti-AGO1-
4B8, anti-AGO2-11A9, anti-AGO3-5A3 or
anti-AGO4-6C10 at 4°C with gentle agitation overnight.
After washes with 1 x PBS twice, beads were incubated
with the above nuclear cell lysate for 3h at 4°C. For
purified antibodies, the beads, antibody and nuclear cell
lysate were mixed and under constant rotation for a total
of 3h. The beads were extensively washed with nuclear
lysis buffer once, IP wash buffer twice [300 mM NaCl,
3mM MgCl,, 0.1% NP-40 and 20mM Tris—-HCl (pH
7.4) and finally 1 x PBS once (31)]. The beads were then
eluted with elution buffer (1% SDS, 0.1 M NaHCO; and
RNase inhibitor). Following proteinase K treatment,
RNA extraction and precipitation, samples were treated
with recombinant DNase I, followed by reverse transcrip-
tion. Corresponding c¢cDNA was amplified using
primers complementary to antisense PR transcripts
(Supplementary Table S2).

RESULTS AND DISCUSSION
Experimental design

We chose to investigate the role of AGO proteins in
agRNA-mediated modulation of progesterone receptor
(PR) gene expression. PR has two major isoforms, PR-B
and PR-A. The isoforms are expressed from different pro-
moters, with the PR-B transcription start site upstream
from the start site of PR-A within the gene (Figure 1A).
Expression of PR-B and PR-A is linked and we have
found that levels of the two isoforms vary proportionally
regardless of whether silencing is performed using
agRNAs, siRNAs complementary to PR mRNA or
single-stranded locked nucleic acids (LNAs) or peptide
nucleic acids (PNAs) (39-42).

PR is a productive model for studying agRNA-
mediated regulation of cellular gene expression for
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Figure 1. Scheme showing PR gene promoter structure and the effect of promoter targeted agRNAs on the recruitment of RNAP2 to the tran-
scription start site. (A) The regions targeted by representative agRNA duplexes. Relative to PR-B transcription starting site (TSS), PR-26, PR-11 and
PR-9 target —26 to —7, —11 to +8 and —9 to +10 regions, respectively. (B) The non-coding 5-antisense transcript AT2 starts within the coding
region of PR in both T47D and MCF7 cells. ChIP assay evaluates the recruitment of RNAP2 in (C) T47D cells treated by agRNA PR-9; (D) MCF7
cells treated by agRNA PR-11. MM: negative control RNA duplex. Mouse IgG was used as a negative control antibody. The experiments were
repeated at least three times. ***P < 0.005 as compared to cells treated with a mismatched RNA (MM). P-values were calculated using the two
tailed unpaired Student’s z-test with equal variances. All error bars represent standard deviation.

several reasons: (i) The PR transcription start site has
been well defined (43,44); (ii) cell lines are available that
express PR at different levels; (iii) we have previously
characterized the involvement of antisense transcripts in
the mechanism of agRNAs at the PR locus (16); and
(iv) PR provides a model for both agRNA-mediated acti-
vation and inhibition. agRNAs inhibit gene expression in
T47D cells (where PR expression is high) and activate gene
expression in MCF7 cells (where PR expression is low).

The target antisense transcript originates downstream
from the PR transcription start site (at +536 in T47D
cells and +738 in MCF7 cells), and extends 70 000 bases
upstream beyond the PR promoter (Figure 1B). Evidence
of involvement of the antisense transcript includes: (i) de-
tection of the antisense transcript by 5'- and 3'-RACE and
failure to detect a sense transcript overlapping the
promoter; (i) when biotin labeled agRNA duplexes are
added binding is observed with biotin-labeled strands
complementary to the antisense (but not the sense) tran-
script; and (iii) reduced expression of the antisense tran-
script upon addition of a complementary oligonucleotide
reverses agRNA-mediated gene modulation (16). We had
also used RNA immunoprecipitation (RIP) to show that
AGO protein was recruited to the antisense transcript,
although these experiments used a non-selective
anti-AGO antibody and did not distinguish between
AGO 1-4 (16).

For gene silencing we used PR-9, a duplex RNA that
targets the —9 to +10 region surrounding the PR-B

transcription start site. For gene activation we used
PR-11, a duplex that targets the region —11 to +8,
relative to the +1 start site. Using ChIP we observed
that introduction of PR-9 into cells leads to decreased re-
cruitment of RNA polymerase 2 (RNAP2) at the PR
promoter, while addition of PR-11 leads to increased
RNAP2 (Figure 1C and D) (16). Unless otherwise noted
all experiments in this study were performed in duplicate
or triplicate independent determinations and results are
reported as averages (for qPCR) or by showing represen-
tative primary data (for western analysis).

Inhibition of AGO expression

All four AGO proteins are expressed in both T47D and
MCEF7 cells, although AGO1 and AGO?2 are expressed
at higher levels than AGO3 or AGO4 (Figure 2A and B).
We tested at least five duplex siRNAs designed to suppress
each AGO expression, including several used previously
in the literature (20) and identified siRNAs that potently
and specifically inhibited expression of each AGO variant
in T47D (Figure 2C-F) or MCF7 cells (Supplementary
Figure S1, S2 and S3). We chose to perform transfections
using 25 nM anti-AGO duplex RNA because, while
silencing of AGO was not optimally potent, that concen-
tration had minimal effects on cell growth rates.

Silencing AGO proteins can have unexpected conse-
quences because RNAIi pathways affect the expression of
many genes inside cells. Observed effects might be direct,
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Figure 2. AGO expression and silencing. qPCR analysis of relative expression levels of AGO1-4 in human breast cancer cell lines, (A) T47D and
(B) MCF7. Effect of silencing (C) AGOL, (D) AGO2, (E) AGO3 and (F) AGO4 on expression of other AGO variants (using 25 nM siRNA). All
data were normalized to GAPDH. Error bars represent standard deviations, calculated from four independent experiments. ***P < 0.005, **P < 0.01,
*P <0.05 as compared to cells treated with a mismatched RNA (MM). P-values were calculated using the two tailed unpaired Student’s 7-test with

equal variances.

indirect, or a mixture of both. We examined whether
silencing AGO protein expression would affect PR expres-
sion or alter levels of the PR antisense transcript that
acts as a direct target for agRNAs. In T47D cells, inhib-
ition of AGOI1-4 expression had relatively modest effects
on levels of PR mRNA (<1.5-fold), the PR antisense tran-
script, (<1.5-fold) (Figure 3A) or PR protein (<1.5-fold)
(Figure 3C; Supplementary Figure S4A). Inhibition of
dicer, an enzyme involved in processing miRNAs also
yielded only modest changes for PR expression in T47D
cells (Figure 3A, C and Supplementary Figure S4B and
S5). Given that AGO and dicer proteins affect the expres-
sion of many cellular proteins, the small changes in PR
expression are not surprising.

In MCF7 cells inhibition of AGO2 or AGO3 expression
caused a 2-fold increase in PR mRNA expression
(Figure 3B) and, for inhibition of AGO2, similar increases
in levels of PR protein (Figure 3D; Supplementary
Figure S4). Inhibition of dicer expression also led to in-
creases in PR mRNA and protein expression (Figure 3B
and D; Supplementary Figure S4). Inhibition of AGOI1 or

AGO4 expression did not affect PR expression. The acti-
vation of PR expression upon silencing AGO2, AGO3, or
dicer indicates that PR expression may be affected by en-
dogenous AGO-mediated pathways. The mechanism of
this modulation may be through direct miRNA inter-
actions at the PR locus or may be indirect involving
other genes.

Effect of AGO expression on agRNA-mediated silencing

To test whether expression of AGO proteins was necessary
for potent silencing by agRNAs we used a two step trans-
fection method. In the first transfection (transfection
on Day 0), expression of AGO1-4 was reduced using
siRNAs (Figure 2; Supplementary Figure S6). In the
second transfection silencing agRNA, PR-9 was added
(Day 3). The effect of reduced AGO expression on the
activity of PR-9 was evaluated by quantitative PCR
(Day 6) (Figure 4A-D) or western analysis (Day 7)
(Figure 4E-H).
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Figure 3. Effect of inhibiting AGO1-4 or dicer on expression of PR mRNA, PR antisense transcript (as-PR), and PR protein. (A) qPCR analysis of
PR and as-PR after silencing expression of AGO1-4 or dicer by siRNA in T47D cells. (B) qRT-PCR analysis of PR and as-PR after a repression of
AGO1-4 or dicer by siRNA in MCF7 cells. (C) Western analysis of PR protein after inhibiting expression of AGO1-4 or dicer in T47D cells.
(D) Western analysis of PR protein following inhibition of AGOI—4 or dicer in MCF7 cells. PR-9 and PR-11: positive controls. MM: negative
control. The final concentration for all used RNAs was 25nM. qPCR data was normalized relative to GAPDH. Error bars represent standard
deviations, calculated from four independent experiments. ***P < 0.005, **P <0.01, *P < 0.05 as compared to cells treated with a mismatched RNA
(MM). P-values were calculated using the two tailed unpaired Student’s 7-test with equal variances.

Inhibition of AGO2 expression partially reversed gene
silencing by agRNA PR-9. In the presence of wild-type
levels of AGO2, addition of PR-9 led to a 75% decrease
of PR mRNA expression, while under conditions of
reduced AGO2 expression PR-9 was a less efficient
silencing agent, reducing expression by only 45%
(Figure 4B). We also observed a similar reversal of
agRNA-mediated inhibition of PR protein expression
(Figure 4F). Inhibition of AGO1, AGO3, or AGO4 ex-
pression had little effect on gene silencing by agRNA PR-9
as measured by RNA levels (Figure 4A, C and D) or
protein levels (Figure 4E, G and H). These data suggest
that AGO2 is the best candidate for involvement in
agRNA-meditated silencing of PR gene expression. A
similar reversal of gene silencing was observed when
knockdown of AGO2 was followed by addition of
PR-26 (an agRNA targeting —26 to —7) that was also
known to silence gene expression (Supplementary
Figures S7 and S8) (6).

We had previously reported that both AGO1 and
AGO2 proteins were necessary for agRNA-mediated
silencing of PR (32). The siRNA used in the previous
study for inhibiting expression of AGO1 was at least as
potent as the siRNA used in this study. However, while

comparing various anti-AGO siRNAs we found that the
previously-used anti-AGO siRNA caused a 4-fold increase
in expression of AGO4, suggesting that the previous
siRNA was prone to off-target effects and was likely to
be less reliable. It is also possible that the previously used
siRNA and transfection conditions yielded more potent
silencing of AGO proteins. Such potent silencing may
have revealed a role of AGOI1, but the potential for
greater off-target effects render this conclusion uncertain
and we have adopted the more conservative interpretation
of our data.

Effect of AGO expression on agRNA-mediated
gene activation

We used the double transfection strategy to study the
effect of inhibiting expression of AGO1—4 on activation
of PR expression by agRNA PR-11 (Figure 5A-H;
Supplementary Figure S9). Studying the role of AGO2
was complicated by the fact that silencing AGO2 alone
increased PR mRNA and protein expression by ~2- to
3-fold (Figure 3). Addition of PR-11 to MCF7 cells
yielded a ~6-fold activation of gene expression at the
level of RNA (Figure 5B). When AGO2 expression was
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Figure 4. Effect of reduced expression of AGO1, AGO2, AGO3, or AGO4 (siRNAs, 25 nM) on silencing by PR-9 (25 nM) in T47D cells. qPCR
analysis of PR after a double transfection assay with (A) siAGOI1, (B) siAGO2, (C) siAGO3, (D) siAGO4 being added first and PR9 added second
(in 72h). Western analysis of PR protein levels after a double transfection assay with (E) siAGO1, (F) siAGO2, (G) siAGO3, (H) siAGO4 being
added first and PR-9 added second (in 72h). Transfection combinations: MM/PR-9 represents that the first transfection is MM, a control RNA
duplex and the second is PR-9, etc. All data were normalized to GAPDH. Error bars represent standard deviations, calculated from three inde-
pendent experiments. ***P <(.005 as compared to cells treated with a mismatched RNA (MM). P-values were calculated using the two tailed

unpaired Student’s #-test with equal variances.

repressed the addition of PR-11 only produced a 2.5-fold
increase in PR expression (relative to cells treated with
siIAGO2/MM). Inhibiting expression of AGOI, AGO3
and AGO4 did not reverse gene activation by PR-11
(Figure 5A, C-E, G and H; Supplementary Figure S9).
These data suggest that AGO2 is the best candidate
for involvement in RNA-mediated gene activation by
PR-11.

Nuclear localization of AGO protein and the
PR antisense transcript

Our proposed mechanism of action for agRNAs requires
that the AGO/agRNA complex bind the antisense tran-
script in the nucleus. To determine whether AGO proteins
and the antisense transcript were available to form nuclear
interactions, we obtained nuclear and whole cell extracts
and compared their localization.
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Figure 5. Effect of inhibiting AGO1, AGO2, AGO3 or AGO4 gene expression on activation of PR expression by PR-11 (25 nM) in MCF7 cells.
qPCR analysis of PR after a double transfection assay with (A) siAGOI, (B) siAGO2, (C) siAGO3, (D) siAGO4 being added first (Day 0) and PR-11
added second (after 72 h). Western analysis of PR after a double transfection assay with (E) siAGO1, (F) siAGO2, (G) siAGO3, (H) siAGO4 being
added first (Day 0) and PR-11 added second (after 72h). Transfection combinations: MM/PR-11 represents that the first transfection is MM, a
control RNA duplex and the second is PR-11, etc. All data were normalized to GAPDH for q-PCR. Error bars represent standard deviations,
calculated from three independent experiments. ***P < (0.005 as compared to cells treated with a mismatched RNA (MM). P-values were calculated

using the two tailed unpaired Student’s r-test with equal variances.

We detected all four AGO variants in the nucleus of
T47D (Figure 6A). In the nucleus of MCF7, AGOI,
AGO2 and AGO4 are casily seen, but AGO3 is barely
detectable (Supplementary Figure S10). Cytoplasmic
markers B-tubulin or GAPDH were detected only in the
whole-cell fraction, not in the nuclear fraction, suggesting
that the nuclear fraction was not contaminated with cyto-
plasmic proteins. Conversely, the nuclear envelope marker
lamin A/C is enriched in the nuclear fraction, suggesting
that nuclear isolation was efficient.

We also examined the nuclear extract for the presence
of the antisense transcript that is presumed to be the
target for agRNAs PR-9 and PR-11. We observed
that the antisense transcript was predominantly
localized in the nucleus (Figure 6B). GAPDH mRNA
and PR mRNA were distributed between cytoplasm and
nucleus. SN7SK, known to exclusively localize in
the nucleus (28), was used as an internal control. PR
pre-mRNA was localized exclusively to the nuclear
fraction. These data indicated that the PR antisense
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Figure 6. Association of AGO1-4 with the PR antisense transcript upon addition of PR-9 or PR-11 determined by RIP. (A) Western analysis of
AGOI1, AGO2, AGO3 and AGO4 proteins in whole cell and nuclear fractions from T47D cells. 40 pg of protein was loaded in each lane. WC: whole
cell fraction; Nuc: nuclear fraction. (B) The nuclear distribution of PR mRNA, GAPDH mRNA and PR pre-mRNA in MCF7 cells. Data is
represented as percent ratio of amplified transcript in nuclear to whole cell extracts. SN 7SK was used as a nuclear internal control. (C) RIP
examining association of AGOI1, AGO2, AGO3 and AGO4 with the PR antisense transcript in T47D cells treated with PR-9. (D) RIP examining
association of AGO1, AGO2, AGO3 and AGO4 with the PR antisense transcript in MCF7 cells treated with PR-11. MM: negative control RNA
duplex. IgG: negative control antibody. Input: nuclear extract prior to treatment with antibody. Input NR: input sample with no reverse transcript-
ase treated. The above data is the representative data set from three independent experiments.

transcript is present with the four AGO proteins in the
nucleus.

Recruitment of AGO proteins to non-coding RNA
during gene silencing

To further evaluate involvement of AGO proteins in
agRNA-mediated gene silencing we used nuclear RNA
immunoprecipitation (RIP) (16) to examine recruitment
of AGO protein to the non-coding transcript at the PR
promoter. T47D cells were transfected with agRNA PR-9
and nuclear extract was obtained. RIP using anti-AGOl1
(4B8) or two different anti-AGO2 (4G8 and 11A9)
antibodies revealed an association between AGO1 or
AGO?2 and the antisense transcript after transfection of
PR-9 (Figure 6C). Sequencing confirmed that the RIP
PCR product was derived from amplification of the
antisense transcript (Supplementary Figure SI11). No
RIP product was observed after transfection with
mismatch-containing duplex RNA. No association
with antisense transcript was apparent after testing
with anti-AGO3 or anti-AGO4 antibodies. Similar to
PR-9, addition of inhibitory agRNA PR-26 to cells also
revealed association with AGOl and AGO2
(Supplementary Figure S12).

These data are consistent with the results from our
AGO knockdown experiments (Figure 4) indicating that
AGO?2 is responsible for agRNA-mediated gene silencing

of PR-9 but also suggest that AGO1 can bind the anti-
sense transcript. Binding of AGOI1 protein may not induce
silencing activity either because association of AGO1 may
be insufficient or AGO1 may not form interactions neces-
sary for gene silencing.

While AGO2 is a known critical component of RISC
involved in siRNA/miRNA mediated gene regulation
pathway, dicer and TRBP have also been reported as es-
sential RISC members (38,45,46). We used RIP to
examine if Dicer or TRBP were associated with the anti-
sense transcript in PR-9 treated cells. No association with
antisense transcript was apparent after testing with
anti-Dicer or anti-TRBP antibodies (Supplementary
Figure S12).

Recruitment of AGO proteins to non-coding RNA
during gene activation

We also used RIP to examine involvement of AGO
proteins in agRNA-mediated gene activation. RIP using
two different anti-AGO2 antibodies (4G8 or 11A9)
revealed association with the PR antisense transcript
upon transfection with PR-11 but not a mismatch-
containing RNA duplex (Figure 6D). Sequencing con-
firmed that the RIP PCR product was derived from
amplification of the antisense transcript (Supplementary
Figure S11). No association with antisense transcript
was apparent after testing with anti-AGOI1, anti-AGO3
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Figure 7. RIP examining the association of Flag/HA tagged AGO proteins with the PR antisense transcript. MCF7 cells were transfected with
Flag/HA-Ago plasmid first and then PR-11 in 48h (final 25nM). (A) Flag/HA-AGOI1, (B) Flag/HA-AGO2, (C) Flag/HA-AGO3 and (D)
Flag/HA-AGO4, were examined. The transfection protocol is described in the ‘Materials and Methods’ section. P-Al: Flag/HA-AGO!1 plasmid,
etc. MM: negative control RNA duplex. IgG: negative control antibody. Input: nuclear extract prior to treatment with antibody. Input NR: input
sample with no reverse transcriptase treated. The above data is the representative data set from three independent experiments.

or anti-AGO4 antibodies. We also examined the associ-
ation of dicer or TRBP with the antisense transcript in
PR-11 treated cells and we failed to detect any signal in
both cases (Supplementary Figure S12).

To further investigate the association of AGO proteins
with the non-coding antisense transcript during gene acti-
vation we introduced vectors encoding HA epitope-tagged
variants of AGOI1-4 (20) into MCF7 cells (Figure 7)
(Supplementary  Figure S13). We observed that
HA-tagged AGO?2 associated with the antisense transcript
after addition of PR-11. No association with antisense
transcript was detected in the presence of HA-tagged
AGOI1, AGO3, or AGO4. Expression levels of the
FLAG-HA tagged AGO variants were much lower in
transfected T47D cells than in MCF7 cells, preventing
similar experiments examining recruitment of AGO
variants by silencing agRNA PR-9.

AGO?2 is known to act to promote cleavage of mRNA
during RNAi. For transcriptional activation, Morris
reported that duplex RNAs act by relieving the suppres-
sive effect of antisense RNAs by a mechanism that may
involve cutting the antisense transcript (14). Using
5-RACE we readily detected cleavage of PR mRNA by
a duplex complementary to PR mRNA. By contrast, we
did not detect any RACE products after addition of PR-9,
PR-26, or PR-11 when analyses were done in parallel
(Supplementary Figure S14). We also note that our RIP
protocol employs primers on either side of agRINA target
site and can only detect intact antisense transcript.
Therefore, while cleavage of non-coding transcripts may
be involved in regulating expression of other genes, we
do not observe evidence that cleavage is involved in
agRNA-mediated modulation of PR expression.

AGO proteins and agRNAs

The majority of studies with small duplex RNAs to
modulate gene expression have used duplexes that are
complementary to mRNA. However, there has also been
significant work on RNAs that target sequences outside of

mRNA and some of these studies have characterized the
role of AGO proteins during transcriptional silencing in
plants, yeast, worms and flies (47-59). To date, relatively
few papers have appeared describing the action of
promoter-targeted agRNAs in human cells (2-12,14). A
better understanding of agRNAs in human cells is
needed because gene promoters might also be targets for
miRNAs (60-62). It is also possible that agRNAs might
have therapeutic applications (7), especially for activating
expression of beneficial genes, such as p21 (12). This topic
has been recently reviewed (17).

A more complete picture of the mechanism of action
of agRNAs will require an inventory of proteins at
the promoters of target genes and how that inventory
changes upon agRNA recruitment. For such studies
to be successful, it is essential to base them on knowledge
of involvement of a core protein. AGO is an ideal
protein to build studies of mechanism around because
of its central role in mediating recognition by small
RNAs not only in the cell cytoplasm (63—65), but also
in the nucleus of mammalian cells (20,28,30). When con-
sidering such studies it is essential to recall that the
nucleic acid target of agRNAs are relatively lowly
expressed non-coding transcripts associated  with
promoter DNA. The abundance of target sites is low
and creating inventories of associated proteins is likely
to face challenges more similar to those associated with
studying transcription factors than the challenges encoun-
tered during the study of proteins that interact with
mRNA.

Studies have suggested that the four AGO proteins
have both unique and overlapping functions in human
cells (23,25,26). These are not simple experiments.
Experiments that investigate the role of AGO by
decreasing AGO expression run the risk of off-target
effects caused by global disruption of AGO-mediated ex-
pression pathways. Therefore, we have used an approach
that couples silencing of AGO variants with direct exam-
ination of recruitment of AGO proteins using RIP.
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For agRNA-mediated gene silencing, our data point to
a primary role for AGO2 (Table 1). Our ChIP results also
show recruitment of AGO1 during agRNA-mediated gene
silencing (32). Involvement of AGO1, therefore, remains
possible and we note that other laboratories previously
observed involvement of AGOI in silencing of CCRS5
(33). Thus, while our data support a primary role for
AGO?2 in transcriptional silencing at the PR promoter, it
is possible that AGO1 might also be involved or might
even be the primary AGO variant involved in silencing
other genes. In previous studies showing involvement of
AGOI (9,15), association with a non-coding sense tran-
script in the promoter region was observed. However,
another recent report described that AGO2, not AGOI,
is required for promoter-directed siRNA silencing of
c-Myc and the direct target of this siRNA is the
non-coding sense transcript in the promoter region (8).

We also identify AGO2 as the primary candidate for
involvement in RNA-mediated activation (Table 1).
Silencing AGO2 reduces the expected level of gene activa-
tion. RIP data using native anti-AGO and epitope tagged
antibodies both supported that AGO2 was the most likely
candidate for agRNA-mediated recruitment to the anti-
sense transcript (Figures 6 and 7). Involvement of
AGO?2 in agRNA-mediated gene activation is consistent
with previous findings by Li et al. (10), who evaluated the
effect of silencing AGO2 on gene expression. Morris et al.
have also reported that AGO2 is involved in small RNA
mediated gene activation (14).

AGO?2 is known to cleave target mRNA sequences.
However, we do not observe cleavage of the targeted
non-coding antisense transcript after addition of
activating or inhibitory agRNAs. Our RIP protocol
would not have detected any transcript if it had been
cleaved, and the fact that it does detect product upon
addition of anti-AGO2 antibody demonstrates that
AGO2 can bind to the non-coding transcript without
cleavage. One potential explanation is that, in the
context of nuclear recognition, AGO2 forms interactions
with nucleic acids or proteins that inhibit cleavage of the
non-coding transcript. Our data suggests that investiga-
tors should keep an open mind about the capabilities of
AGO?2 during interactions with target nucleic acids inside
cells.

AGO3 and AGO4 have received much less attention
than AGO1 and AGO2 even though they are expressed
at significant levels relative to their better studied counter-
parts and have been shown to interact with a similar
spectrum of RNA transcripts (20,25,37). The involvement
of AGO3 and AGO4 in the action of agRNAs had not
been investigated previously. We find no evidence to
support involvement of AGO3 or AGO4 in agRNA-
mediated modulation of PR expression. Thus, of the
four AGO variants, AGO3 and AGO4 are the least
likely candidates for involvement in the mechanism of
agRNA action.

Our proposed mechanism for agRNA action at the PR
promoter involves recognition of an antisense transcript
(16). We now localize this transcript within the nucleus.
We also find that AGO proteins reside in the nuclear
fraction and the presence of the PR antisense transcript

in the nucleus is consistent with its participation in tran-
scriptional silencing and recognition by nuclear AGO2
protein.

Non-coding transcripts overlap the promoters of many
genes and may play a substantial role in regulating gene
expression (66—73). At this early stage of studying recog-
nition of non-coding RNAs, we recognize that other AGO
variants may be involved in recognition at other gene loci
in different cell lines. There may be a multiplicity of mech-
anisms for small RNA:non-coding transcript interactions
and their regulation of expression. For example, recogni-
tion of an antisense transcript has recently been shown to
affect gene splicing, a process that clearly will differ in
significant ways for regulation of gene transcription (74).
In addition, we have recently observed that agRNAs com-
plementary to a sense transcript expressed beyond the 3’
terminus of PR mRNA is also a target for agRNAs that
modulate PR expression (75).
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