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ABSTRACT

Motivation: MicroRNAs (miRNAs) are small non-coding RNAs
that cause mRNA degradation and translational inhibition. They
are important regulators of development and cellular homeostasis
through their control of diverse processes. Recently, great efforts
have been made to elucidate their regulatory mechanism, but the
functions of most miRNAs and their precise regulatory mechanisms
remain elusive. With more and more matched expression profiles
of miRNAs and mRNAs having been made available, it is of great
interest to utilize both expression profiles to discover the functional
regulatory networks of miRNAs and their target mMRNAs for potential
biological processes that they may participate in.

Results: We present a probabilistic graphical model to discover
functional miRNA regulatory modules at potential biological levels
by integrating heterogeneous datasets, including expression profiles
of miRNAs and mRNAs, with or without the prior target binding
information. We applied this model to a mouse mammary dataset.
It effectively captured several biological process specific modules
involving miRNAs and their target mRNAs. Furthermore, without
using prior target binding information, the identified miRNAs and
mRNAs in each module show a large proportion of overlap with
predicted miRNA target relationships, suggesting that expression
profiles are crucial for both target identification and discovery of
regulatory modules.

Contact: bing.liu@Qunisa.edu.au; jiuyong.li@unisa.edu.au
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

MicroRNAs (miRNAs) are non-protein-coding RNAs that are
expressed from longer transcripts encoded in animals, plants, viruses
and single-celled eukaryotes (Zhao and Srivastava, 2007). They
cause mRNA degradation, translational inhibition or a combination
of the two by completely or partially complementary base binding
to their target mRNAs (He and Hannon, 2004).

*To whom correspondence should be addressed.

miRNAs are pivotal regulators of development and cellular
homeostasis through their control of diverse processes, including
cell differentiation, proliferation, growth, mobility, and apoptosis
(Du and Zamore, 2007). Consequently, dysregulation of miRNA
functions may lead to diseases. Recent studies have reported
differentially expressed miRNAs in diverse cancer types such as
breast cancer (lorio et al., 2005), lung cancer (Yanaihara, 2006),
prostate cancer (Porkka ez al., 2007), colon cancer (Akao et al., 2007)
and ovarian cancer (Yang et al., 2008). Therefore, the understanding
of miRNA is critical in understanding basic biological processes,
elucidating the development and inhibition of pathogenesis of many
diseases, and facilitating biotechnology projects.

Many computational approaches have been proposed to elucidate
miRNA functions in recent years. We classify these works into
three categories: (i) miRNA target prediction (Bentwich et al., 2005;
Griffiths-Jones et al., 2008; Hatzigeorgiou., 2007; Krek et al., 2005),
that is, to identify which mRNAs are targeted by which miRNAs;
(i1) discovering miRNA regulatory modules (MRMs), that is, to
identify a group of co-expressed miRNAs and mRNAs, either at
sequence level (Yoon and De Micheli, 2005) or by integrating
sequence and expression profiles of miRNAs and mRNAs (Huang
et al., 2007; Joung et al., 2007; Peng et al., 2009; Tran et al., 2008);
(iii) prediction of functional miRNA regulatory modules (FMRMs),
which are regulatory networks of miRNAs and their target miRNAs
for specific biological processes (Joung and Fei, 2009; Liu et al.,
2009a, b).

The identification of FMRMs is critical in understanding
the biological pathways and the development and inhibition of
pathogenesis of many diseases. It also has a great potential for
the development of gene therapeutic treatments and miRNA-based
drugs (Croce, 2009).

For FMRM discovery, Liu et al. (2009a) proposed a method
based on association rule mining. It associates the reverse expression
patterns of miRNAs and mRNAs with biological conditions. A novel
method is further proposed (Liu er al, 2009b) using Bayesian
Network structure learning. This method was designed to explore
all the possible miRNA regulatory patterns for biological conditions
under the comparative experiment designs. These two methods
are supervised methods where biological conditions are directly
applied to the search for the FMRMs. An unsupervised method
was proposed by Joung and Fei (2009) for FMRM discovery.
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It is an innovative application of the author-topic model (Steyvers
et al., 2004) in bioinformatics that makes use of the expression
profiles of mRNAs and the putative miRNA target information,
without considering the expression profiles of miRNAs. Therefore,
the regulatory relationships of miRNAs and mRNAs are determined
largely based on the miRNA target information which is predicted
at the sequence level. Thus, it encounters difficulties in answering
the question of how miRNAs regulate their target mRNAs in the
identified modules.

In recent years, more and more sample matched expression data
having been profiled for multiple classes of conditions or tissues with
both miRNAs and mRNAs, providing the opportunity to investigate
potential FMRMs systematically for various biological processes
by integrating the available data. In addition, some researchers have
suggested that algorithms that do not consider known targets may
avoid biases (Bartel, 2009; Lewis et al., 2003, 2005). Hence, it is
of great interest to discover FMRMs with expression profiles of
miRNAs and mRNAs without using target binding information.
Therefore, in this article, we propose a FMRM discovery method
that integrates heterogeneous datasets, including expression profiles
of both miRNAs and mRNAs, with or without using the prior target
binding information.

Our method is inspired by the Correspondence Latent Dirichlet
Allocation (Corr-LDA) (Blei and Jordan, 2003), a probabilistic
graphical model that has been successfully applied to automatic
image annotation with caption words. Given observations of
image and caption words, Corr-LDA captures the correspondence
between them by modeling topics described by both images and
caption words with latent variables. In our question, FMRMs are
dependent groups of miRNAs and mRNAs linked to latent functions.
Our aim is to capture the correspondence between miRNAs and
mRNAs, assuming that they participate in the same latent functions.
Therefore, we apply the idea of annotating images with caption
words to FMRM discovery by mapping topics to functional modules,
images to miRNAs and words to mRNAs, respectively.

In this work, we firstly modify the Corr-LDA and derive
the solution to discover FMRMs. Then, we apply our method
to mouse model expression datasets for human breast cancer
research. The result shows that our model is able to capture several
biologically meaningful modules. Furthermore, without using the
prior target binding information, the identified miRNAs and mRNAs
in each FMRMs show a large proportion of overlap with predicted
miRNA target relationships, suggesting that targets and FMRMs
can be predicted from expression profiles alone, and providing an
independent verification of the underlying strategy.

2 METHODS

We begin with the assumption that functional modules governing miRNA
and mRNA expression, which are associated with a variety of biological
functions, are reflected by the data from microarray experiments. We model
functional modules with latent random variables which act as a bridge
between miRNAs and mRNAs. By inferring the latent variables, we can
identify FMRMs.

2.1 Modeling FMRM discovery

More specifically, we model FMRMs with a probabilistic generative process.
Given the K latent functions presented in the samples, our method considers
miRNAs and mRNAs as observations generated from a probabilistic process
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Fig. 1. Generative model of FMRM discovery. Given expression data of
miRNAs and mRNAs of D samples, each sample d is a mixture of random
miRNAs and mRNAs. Each miRNA r; , and mRNA g, ,, are generated from
one of the K latent functional modules, selected by z, .

over these K functions. Thus, each sample is a random mixture of miRNAs
and mRNAs associated with K functional modules. By inferring the
probability distributions of the latent variables, we are able to obtain the
probabilities of how samples, miRNAs and mRNAs are related to functional
modules.

We depict the model in Figure 1 with a plate notation. In this notation,
nodes stand for random variables (observed variables are shaded and latent
ones are unshaded); edges denote conditional dependency between random
variables; and plates denote replications of a substructure with the number
of repetitions given in the bottom corner (either right or left side).

In Figure 1, the D samples were profiled with a set of miRNAs V and
a set of mRNAs 7. Random variable r;, and g4, denote the indexes
of a miRNA and mRNA expressed in the d-th sample, respectively, with
de{l,---,D}, ne{l,---,Ny}, and me{l,---,My}. N; and M, are the total
numbers of times the miRNAs and mRNAs which are expressed in the
d-th sample. Random variable z; , stands for the latent functional module
associating with the n-th miRNA in the d-th sample. We assume that z,4 ,,
r4.n and g4, all have multinomial distributions with parameters 64, ¢, and
g, respectively. Each parameter has a Dirichlet prior with hyperparameters
a, B and y, correspondingly.

Without considering the putative target constraints, the generative
procedure for each sample d can be illustrated by the following hierarchical
sampling process: to generate the d-th sample, (i) a latent module z,4, is
drawn from its multinomial distribution 8 ;; (ii) then, a miRNA ry ,, is drawn
from its multinomial distribution ¢, given the selected module z, ,; (iii) for
each mRNA g,,,,, one of the miRNAs, indexed by yg ., is selected from
Ry ={rq,} and a corresponding mRNA g, ,, is drawn from its multinomial
distribution wy, conditional upon the same module that generates the selected
miRNA 74 ,.

‘When the constraint of the putative target relationship between miRNAs
and mRNA:s is preferred, for each mRNA, one of the miRNAs from the set
of hosting miRNAs of that mRNAs is selected, and a corresponding mRNA
is drawn from the multinomial distribution of mRNAs, conditional upon the
same module that generates the selected miRNA.

From the above generative process, the parameter @ ={6,} associates
samples with modules, ®={¢,} assigns the probability of miRNAs
expressed in module Z={zy,}, and @={wi} indicates the probability
of mRNAs expressed in Z corresponding to the miRNAs. Therefore, by
estimating ©, ® and $2, we can identify FMRM:s (details in Sections 2.3-2.5).

Under this model, miRNAs can associate with any modules, but mRNAs
may only associate with the modules that produce the miRNAs. In effect,
this model captures the hierarchical notion that miRNAs are generated under
specific FMRMs, and mRNAs are regulated by the miRNAs.

2.2 Data conversion

In order to apply the above model to the expression profiles of miRNAs and
mRNAs, we convert the expression values to the counts of miRNAs and
mRNAs present in the samples.
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Given a microarray experiment profiled D’ samples, similar to Joung and
Fei (2009), we considered that miRNAs and mRNAs have events of their
expression in every sample that are likely to be associated with functional
modules. Therefore, each miRNA or mRNA can be represented as a vector
of variables, {sT,s; ,~--,s2§71,s5}. It corresponds to the expression events
of a miRNA or mRNA in all samples, where duplex {s;' 152 d} indicates an
over- and underexpressed miRNA or mRNA of sample d,d € {1,---,D'}, thus,
D=2D'. To get the integer counts (024—1.i,024,;) for the duplex expression
status, we convert the expression value of a miRNA or mRNA of sample d
" e

e-leqil|,0, if eq;>medy

02d—1,i,02d,i = 0, |—£- |€d,iH  if eq; <medy

where ¢ ; is the expression value of a miRNA or mRNA in the d-th sample,

¢ is a scaling constant and med,; denotes the median of all miRNAs or
mRNAs in the d-th sample.

Then, the counts of miRNAs and mRNAs are replaced by the indexes
from the set of miRNAs, Vand the set of mRNAs, 7. The indexes, therefore,
are the random variables 4 , and g4, used in the model (Fig. 1).

(1

2.3 Estimating model parameters

Because the exact inference for the parameters of our model is intractable,
we used the collapsed Gibbs sampling method (Liu, 1994) to estimate
parameters.

This method iteratively generates samples that converge to draws from
a target distribution of random variables Z through integrating out the
parameters @, ® and € for each sampling. For the d-th sample and the
n-th miRNA, the sampling is expressed as a conditional probability:
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where z4, is the current module assignment of the n-th miRNA of the d-
th sample. Z_(4 ) is the current module assignment of all miRNAs in all
samples excluding that of the n-th miRNA of d-th sample. nf]‘f(d‘”) is the
number of times that the k-th FMRM has been observed with miRNAs across
samples excluding that of the n-th miRNA of the d-th sample. n,”(_f(d_m is
the number of times that miRNA v is assigned to the k-th FMRM excluding
that of the n-th miRNA of d-th sample. m,’(ﬁ(d’n) is the number of times that
mRNA ¢ is assigned to the k-th FMRM excluding the current assignment.
After sufficient sampling, the distribution of z4 , converges to the target
distribution of Z and then we estimate the parameters ®, ® and €2 based on
the values of the module assignments produced from the sampling:
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Unlike the preceding sampling procedure, here nilk),n,((v) and m,(:) are

calculated from the assignment results for all data without excluding the
current module. Using Equations (2) and (3), the Gibbs sampling procedure
can be designed. The algorithm includes three stages: initialization, sampling
and reading out of parameters. It is provided in Supplementary Algorithm 1.

2.4 Assigning biological conditions to modules

The parameters inferred from this model provide insights into the datasets
at several levels. ® clusters samples into modules that should relate to the
biological conditions of the experiments.

We conceive a statistic model to identify the connection between
biological conditions and modules. Let C be the number of biological
conditions of the D samples in the dataset, and ¢; be the number of samples

belonging to condition i, where Zf:] ¢; =D. For each module, assume there
are x samples among the n highest probability samples that belong to same
condition i. The random variable x follows a hypergeometric distribution
with parameters D, ¢; and n, denoted as

p(x)~hypergeometric(x; D, ¢, n) “4)

‘We assign the biological condition i to module k when x is at a statistically
significant level, for example, P <0.05.

2.5 Identifying miRNAs and mRNAs for modules
The parameters ® and € indicate the probabilities of each miRNA and mRNA
participating in a FMRM. For a K-FMRMs, @ is a K x P probability matrix
where the element ¢y , indicates the likelihood that miRNA v belongs to the
k-th FMRM. Similarly, € is a K x Q probability matrix where the element
w; indicates the belief of mRNA ¢ participating in the k-th FMRM, and Q
is the number of mRNAs under investigation.

For each FMRM, we consider the top ranked miRNAs and mRNAs with
the highest probabilities to be the participants of the FMRM.

2.6 Reconstructing miRNA-mRNA target relationships
We query a miRNA target database to reconstruct the target relationship of
the miRNAs and mRNAs in each module. Hypothesis tests are conducted
on the identified miRNAs and mRNAs to evaluate whether they are likely
to have been identified by chance or not.

2.7 Function and pathway analysis of FMRMSs

Function and pathway analysis of the identified FMRMs is conducted by
reviewing literature and querying the Ingenuity Pathway Analysis (IPA,
www.ingenuity.com) database of functional biological pathways to identify
the significantly enriched functions and pathways.

3 RESULTS

In this section, we present the results and analysis of applying our
model to a mouse mammary dataset (Zhu et al., 2010).

The dataset were profiled with 46 samples derived from nine
classes of mouse models, representing one normal type and two
breast cancer subtypes: basal and luminal. The expression data
were screened with 1336 probes of miRNAs (corresponding to 334
unique miRNAs) and 22 626 probes of mRNAs. For each type of the
conditions, 3—7 samples were profiled with miRNAs and mRNAs
(details in Supplementary Material).

In order to compare with the target prediction, the expression
datasets of miRNAs and mRNAs were further filtered with
MicroCosm Targets V5.0 (Griffiths-Jones et al., 2008), and only
those in MicroCosm were maintained for analysis. Consequently,
1112 probes of miRNAs and 19 223 probes of mRNAs were used in
our experiment.

3.1 Implementation

Given the above expression data of miRNAs and mRNAs, the
input data for our model include a 1112 x46 matrix of miRNA
expression values and a 19223 x 46 matrix of mRNA expression
values. In the following discussion, we do not consider the putative
target information to avoid the bias probably incurred by the prior
prediction (Bartel, 2009).

In the experiment, the constant ¢ for converting the expression
values was 30. After the data conversion, the number of samples
D is 92. We set the number of FMRMs, K, to 20. This value
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Fig. 2. Assigning biological conditions to FMRMs. The y-axis on the right
side of the figure denotes sample names, mouse model types and breast
cancer subtypes in three columns. Using the parameter ®, the likelihood
that a particular sample is associated with a specific module, the top 5%
samples associated with each module are displayed using the grey scale.
These samples are considered to map modules to biological conditions.
Samples may occur more than once in the y-axis because some samples are
significantly associated with more than one module. Some modules, such as
module-11, have only rather low probability of association with samples, and
thus have nearly white shading even for their top five samples. Significant
mapping of FMRMs to conditions is highlighted.

is determined by the number of sample types. Our datasets were
profiled with nine classes of mouse models. miRNAs and mRNAs
could be over- or underexpressed in the samples so the number of
sample types is 18. In addition, two extra types were added to allow
the redundancy as our model could discover subtypes of classes. We
set the hyperparameters «, B and y to 10. The number of iterations of
Gibbs sampling is 2500. These value settings are based on empirical
experiments.

3.2 Associating FMRMs with biological conditions

The parameter ® obtained with our method is a 92 x 20 probability
matrix. Referring to Section 2.4, the element 67 ;. of @ is the belief of
sample d belonging to module k. We extracted the top 5% (5) ranked
samples with highest probabilities in each module, and assigned

Table 1. Assigning biological conditions to FMRMs

FMRM# ¢ x  Mouse model class ~ Tumor subtype  P-value
3 10 3 C3TAg Basal 0.0081
4 8 3 MMTV-Wnt Luminal 0.004
5 10 3  Hras Luminal 0.0081
6 14 3 ps3 Basal 0.0222

11 10 3 C3TAg Basal 0.0081

13 14 3 ps3 Basal 0.0222

19 10 3  BRCA_p53 Basal 0.0081

According to Equation (4), biological conditions are assigned to FMRMs based on a
hypergeometric distribution. The significant results are given in this table. The size of
population is 92, the number of each draw is 5% of the population, i.e. 5. ¢; is the number
of samples belonging to each condition, which include both over- and underexpressed
status. x denotes the observed number of samples with the assigned biological condition
in each draw. FMRM# is the module number corresponding to the number in Figure 2.

biological conditions to each module according to these samples as
discussed in Section 2.4. Figure 2 illustrates this mapping procedure.
The five highest probability samples extracted from each module
are arranged on the y-axis. Their associations with other modules
are also shown in the map.

In order to assign biological conditions to modules at the
statistically significant level, we conceived a statistical model to
map modules to biological conditions by using the mouse model
classes instead of tumor types directly (Table 1). From Table 1,
seven modules have been mapped to specific mouse model classes
at a significant level (P <0.05). These mouse models can be further
mapped to two human breast tumor subtypes (Blenkiron et al., 2007;
Desai et al., 2002; Herschkowitz et al., 2007), suggesting that the
identified modules are associated with those biological conditions.
Other modules are clustered by samples with mixed biological
conditions, suggesting that they may participate in several cellular
processes.

Furthermore, the top 5% (56) ranked probes of miRNA and
the top 0.1% (192) ranked probes of mRNA with the highest
probabilities in each module were also extracted from the inferred
parameters ¢ and 2. They are assigned to the same biological
conditions according to the modules they belong to, respectively.
The detailed information of each FMRM is given in Supplementary
Material, including the miRNAs, predicated target mRNAs and the
associated biological condition for each FMRM.

3.3 Target reconstruction

To reconstruct the target relationships between miRNAs and
mRNASs, we use MicroCosm to link miRNAs and mRNAs identified
in each FMRM. The numbers of linked miRNAs and mRNAs are
given in Table 2.

To investigate whether the miRNAs and mRNAs in each module
were identified by chance, we randomly selected a group of miRNAs
and a group of mRNAs from MicroCosm with the same numbers as
those in the identified modules, and queried how many pairs that can
be linked by MicroCosm. The distribution of the number of matched
pairs was estimated by a simulation which was executed 10000
times. Illustrated with Supplementary Figure S1, the estimated
distribution shows that the numbers of target relationships of the
randomly chosen miRNAs and mRNAs are significantly different
from those of the identified miRNAs and mRNAs in each module
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Table 2. Numbers of miRNA-mRNA pairs identified in FMRMs

FMRM#  Subtype = miRNA# mRNA# target pair#  P-value
3 Basal 33 190 273 1.70E-07
4 Luminal 18 190 147 3.23E-08
5 Luminal 16 191 144 2.98E-07
6 Basal 16 189 146 1.48E-06

11 Basal 17 190 122 1.13E-11

13 Basal 18 186 136 1.29E-10

19 Basal 18 188 133 2.71E-12

The miRNAs and mRNAs identified in each module are linked by MicroCosm.
Compared with the number of pairs linked by MicroCosm given the same number
of randomly chosen miRNAs and mRNAs, the miRNAs and mRNAs identified in each
module are not identified by chance.

(P <0.05). It indicates that the miRNAs and mRNAs in each module
are not identified by chance. The linked miRNAs and mRNAs of
each FMRM are given in Supplementary Material.

3.4 Functional validation of miRNAs

To further validate that the identified miRNAs are relevant to
cancers, we investigated the implications of miRNAs for cancers
through literature review. We built a benchmark based on the current
knowledge (details in Supplementary Material), and compared it
with the miRNAs identified in the modules.

From the literature, 42 miRNAs have been validated to have
implications for cancers. We identified a significant number of
miRNAs covered by the benchmark shown in Table 3. The
comparison shows that the miRNAs identified by our method
are largely consistent with the current knowledge of miRNAs for
cancers.

It is worth noting that several miRNAs, such as the lez-7 family
and miR-21, are identified in multiple modules, suggesting they
could be involved in multiple biological processes. The frequent
occurrence of these particular miRNAs is consistent with their
known strong association with multiple cancer types, including
breast cancers. The identification of multiple modules containing
different but overlapping sets of miRNAs is likely to be the
consequence of activation of distinct subsets of common gene
interaction networks in specific cancer subtypes. For example,
Blenkiron et al. (2007) identified 31 miRNAs differentially
expressed between basal and luminal tumors. Among them, let-7a,
b and f are underexpressed in basal tumors but overexpressed in
luminal tumors. These miRNAs were identified in module 3, 4, 5
and 6 using our method and show patterns that are consistent with
their reported involvement in these tumors.

3.5 Functional validation of miRNA target genes

It is expected that the miRNA target genes are also relevant to the
specific biological processes. To validate that the identified mRNAs
are relevant to basal and luminal tumors, firstly we compared the
identified mRNAs with a work conducted by Adelaide et al. (2007).
Their results suggest the existence of potential oncogenes and tumor
suppressor genes differentially associated with the basal and luminal
subtype. As their results are largely consistent with many previous
researches (Bergamaschi ez al., 2006; Chin et al., 2006; Neve et al.,
2006), we validate our analysis based on their results.

Table 3. Validation of identified miRNAs in the FMRMs

FMRM# Supported miRNAs Coverage P-value

3 let-7a, let-7Db, let-7c,
let-7d, let-7e, let-7f,
miR-221,miR-29a
4 let-7a, let-7b, let-7c,let-7d,
let-7e, let-7f, let-7g, let-7i,
miR-21,miR-221
5 let-7b, let-7c, let-7d,
let-7i, miR-200b, miR-200c,
miR-29a, miR-29b, miR-30c
6 let-7a, let-7b, let-7c,
let-7d, let-7i, miR-103,
miR-21, miR-221
15 let-7a, let-7c,let-7f,
let-7g, miR-141, miR-19b,
miR-21, miR-200a,miR-200b
19 let-7a, let-7b, let-7c,
let-7d, let-7e, let-7F,
miR-143, miR-145,
miR-21, miR-29a, miR-29b

8/33(22.24%) 0.02641

10/18(55.56%) 6.68E-06
9/17(52.94%) 3.56E-05
8/16(50.00%) 1.76E-04
9/17(52.94%) 3.56E-05

11/18(61.11%) 5.45E-07

The comparison shows that significant numbers of miRNAs identified in the FMRMs
are relevant to cancers. From the literature, 42 miRNAs have been validated as
either oncogenes or tumor suppressors (details in Supplementary Material). Among
the 334 miRNAs under investigation, a significant number of miRNAs in identified
modules are supported by the current knowledge. The coverage is the percentage of
the number of miRNAs in each module supported by literature. P-value is calculated
by a hypergeometric probability density function at each of the numbers of miRNAs
supported by the literature, using the corresponding size of the total miRNAs under
investigation (334), numbers of miRNAs in each module and numbers of miRNAs
identified from the literature (42). The modules with significant supports are given in
this table.

In our results, 18 genes have been identified by Adelaide et al.
(2007) as in Supplementary Table S1. Among these genes, Ccdc77
identified in module-3 also is targeted by miR-29a and miR-221,
Hspal4 identified in module-4 is targeted by miR-21, and Cox4il
identified in module-19 is targeted by let-7c and let-7e. It further
confirms that let-7e, miR-21, miR-29a and miR-221 may have
important regulatory functions towards basal and luminal tumors.
In addition, Rbm4b identified in module-3 is targeted by miR-697
and miR-700, Rbx1 identified in module-5 is targeted by miR-709,
Gsptl identified in module-11 is targeted by miR-669c and miR-710
and Cox4il identified in module-19 is targeted by miR-709. It
suggests that miR-669c, miR-697, miR-709 and miR-710 may also
play important roles in regulating basal and luminal tumors. It
is worth noting that many previously reported results were not
recovered in the current study because the investigated data were
profiled with mouse model while the results of Adelaide ez al. (2007)
were produced on breast cancer samples of humans.

Furthermore, we have queried the mRNAs identified in each
module against the IPA Database. We specifically focused on
human species as we are interested in the networks of human
cancers. The networks participated by the mRNAs identified in
FMRMs are highly associated with cancers. Many genes are directly
related to cancers and genetic disorders. They are co-targeted by
a group of miRNAs identified from our method, suggesting the
identified miRNAs and their target mRNAs have implications for
cancers. For example, a network participated by the miRNAs and
mRNAs identified by our method are associated with cancer, cellular
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Fig. 3. A network with the function of cancer, cellular compromise, DNA
replication and repair. It is participated by a group of miRNAs and their
target mRNAs identified by our method, suggesting that these miRNAs and
their target mRNAs have the function of cancers.

Table 4. Cancer-associated genes of FMRMs

FMRM# mRNAs mRNA# P-value (adj.)

3 CALR, RBP4, VIM, NDUFV2, 12 4.89E-03 -
SDCBP, MCTS1, AP2S1, PRPFS, 2.54E-02
COL18A1, AK2, ARNT, RPS15

4 DNMT1, NF2, RRM2 3 2.13E-03 -

3.05E-02

5 CEBPB, DDX39, HSP90ABI1, 8 2.01E-03 -
MT2A, NUP62, SQLE, TCP1, TRIO 4.84E-02

11 DICERI, ENOI1, HSP90B1, 5 5.26E-03 -
RXRB, SPRY2 4.84E-02

13 IGF2R, LSM14B, NCOR2, SP110, 14 6.88E-03 -
STXS, TOR2A, ACHE, HDAC3, 4.56E-02

PARP1, POSTN, SMAD4, UBE2I,
RNF6, BAK1

Many genes identified in FMRMs are relevant to cancers. Genes identified in FMRMs
are directly assigned to diseases and disorders. The cancer-related genes of FMRMs
within their top five biofunctions are listed.

compromise, DNA replication and repair (Fig. 3). The networks
which are explicitly associated with cancers and within the top five
networks of each module are given in Supplementary Table S2. The
detailed networks are also given in Supplementary Figure S2-S6.
The identified genes of FMRMs, which are relevant to cancers, are
given in Table 4. The results indicate that our methods effectively
identified many cancer-related genes. Those genes are targeted by
a group of miRNAs, suggesting that those miRNAs also participate
in the networks of cancers.

4 CONCLUSION AND DISCUSSION

miRNAs have been regarded as one of the most important regulators.
Identifying their functions and regulatory mechanisms is critical in
understanding biological processes of organisms. Great efforts, in

both biological experiments and computational methods, have been
made to illustrate their functions. However, the precise regulatory
functions of most miRNAs remain elusive due to the complexity of
the regulatory mechanisms.

In this article, we have presented a model to discover functional
miRNA regulatory modules (FMRMs), which are groups of
miRNAs and mRNAs for specific biological conditions. This model
is inspired by the Corr-LDA, which has been used to extract the
correspondence patterns from heterogeneous data. We modified
Corr-LDA and derived the solution for FMRM discovery.

Our method models FMRMs with a generative process. It makes
use of the expression profiles of miRNAs and mRNAs, with or
without using the target relationships between miRNAs and mRNAs
based on the sequence binding information. It simultaneously
identifies groups of interactive miRNAs and mRNAs, which are
believed to participate in specific biological functions.

We have applied this method to a mouse model dataset for human
breast cancer research. The method has effectively identified several
modules related to breast cancer subtypes: basal and luminal. Since
the datasets used were profiled from mouse tissues, many genes
have been filtered out because we focus on human genes. Thus,
previously reported results were not fully recovered in this work.
However, a large proportion of miRNAs and mRNAs identified in
the modules have been reported to have associations with basal and
luminal subtypes. Many others have direct indications on cancers
and genetic disorders. Furthermore, many novel associations among
miRNAs, mRNAs and biological processes have been predicted
by our model. Several miRNAs and mRNAs are highly related to
cancers as reported by previous works, suggesting those modules
may have roles in the corresponding development processes.

Our model allows discovering the FMRMs with or without
using the target relationship between miRNAs and mRNAs. Some
researchers have suggested that algorithms that do not consider
known targets may avoid biases (Bartel, 2009; Lewis et al.,
2003, 2005). Bonnet et al. (2010) also showed that expression
profiles only can be used to infer miRNA regulatory networks. Our
method provides the flexibility of inferring FMRMs with or without
target relationships of miRNAs and mRNAs. We have demonstrated
this model without using the prior target prediction. The results
suggest that expression profiles of miRNAs and mRNAs are crucial
for both target identification and regulatory module discovery.
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