
[11:15 23/11/2010 Bioinformatics-btq596.tex] Page: 3135 3135–3137

BIOINFORMATICS APPLICATIONS NOTE Vol. 26 no. 24 2010, pages 3135–3137
doi:10.1093/bioinformatics/btq596

Systems biology

GLay: community structure analysis of biological networks
Gang Su1,6,∗, Allan Kuchinsky2, John H. Morris3, David J. States4 and Fan Meng5,6

1Bioinformatics Program, University of Michigan, Ann Arbor, MI, 2Agilent Technologies, Santa Clara, CA,
3Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 4School of
Health Information Sciences, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science
Center at Houston, TX, 5Psychiatry Department and Molecular Behavioral Neuroscience Institute and 6National
Center for Integrative Biomedical Informatics, University of Michigan, Ann Arbor, MI, USA
Associate Editor: Trey Ideker

ABSTRACT

Summary: GLay provides Cytoscape users an assorted collection of
versatile community structure algorithms and graph layout functions
for network clustering and structured visualization. High performance
is achieved by dynamically linking highly optimized C functions to the
Cytoscape JAVA program, which makes GLay especially suitable for
decomposition, display and exploratory analysis of large biological
networks.
Availability: http://brainarray.mbni.med.umich.edu/glay/
Contact: sugang@umich.edu

Received on March 30, 2010; revised on October 11, 2010; accepted
on October 15, 2010

1 INTRODUCTION
With the rapid development in experimental and computational
technology, the scale and dimension of accumulated molecular
interaction data have increased dramatically. Many online
repositories, such as Michigan molecular interaction (MiMI; Tarcea
et al., 2009), have made extensive gene-wise interaction data readily
available. The challenge is then how to systematically explore and
visualize such large and complex datasets for biological inferences.
One solution is to decompose such an interaction network into
communities of densely interacting nodes and imply functional
modules. A variety of community detection algorithms have been
developed to tackle similar challenges in social networks and
they have been successfully extended to the biological context
(Schwarz et al., 2008; Viana et al., 2009). Recently, Ruan et al.
(2010) proposed an interesting generic method combing association
networks with community structure detection algorithms to infer
network modules from microarray data.

Cytoscape is a well-established open source software foundation
for analysis and visualization of biological networks. Currently
there are several plugins developed for clustering and functional
module detection, such as MCode (Bader and Hogue, 2003), NeMo
(Rivera et al., 2010) and ClusterMaker (http://www.cgl.ucsf.edu/
cytoscape/cluster/clusterMaker.html). However, some algorithms in
ClusterMaker, such as kmeans or hierarchical, require the network
to have numerical attributes to compute a distance matrix for
clustering. MCode and NeMo are engineered to identify small and
highly intra-connected clusters in a network, without clustering
all the nodes. For example, when executed on a MiMI human

∗To whom correspondence should be addressed.

interactome network of 11 884 nodes and 88 134 edges using the
default parameters, MCODE produced 105 clusters, in which 52
clusters contain less than five nodes. Therefore, it may not be suitable
for global subdividing large networks for exploratory analysis. In
addition, some of these plugins were not tailored for large networks.
For example, NeMo failed when executing on the same MiMI
network on a 2.67 GHz Intel Core i7 machine. So far, no plugin offers
a comprehensive collection of highly efficient community detection
algorithms, which could profoundly improve cluster analysis if
added to Cytoscape.

The increasing size and complexity of networks also bring
significant challenges to visualization. Generating a layout on such
a network not only consumes considerable time and computational
resources, but also rarely produces any informative outcome. A
typical case is a massive hairball as a result of applying force-
based layout to a large network (>500 nodes) with many edges
(Merico et al., 2009). Visual separation of clusters in a network can
be improved by overlaying community structure on a graphic layout
addressing specific topology.

We therefore developed this Cytoscape GLay plugin to make
commonly used community structure detection algorithms available.
GLay also provides layout algorithms optimized for large networks.
GLay not only supplements existing clustering functions, but also
provides structured and informative visualization for more efficient
exploration and analysis of large biological networks.

2 IMPLEMENTATION
The core of GLay was developed as a Cytoscape plugin with high-
performance community analysis and graph layout functions ported
from igraph C library (Csardi and Nepusz, 2006). The bridging is
built via Java native access (JNA, https://jna.dev.java.net) interface.
The functions ported from igraph C library are currently only
compiled under Windows 32/64 bit platform but will be extended
to other platforms in the near future.

Before performing any community analysis, GLay automatically
transforms the input network into a simplified model, with
edge directionality, duplication and self-looping removed. Such a
network standardization step will make the resultant community
structures from different community structure detection algorithms
comparable as well as improving performance. Upon completion of
an analysis, the user may browse the resultant community structure
with the built-in GLay navigator panel.

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://brainarray.mbni.med.umich.edu/glay/
http://www.cgl.ucsf.edu/
https://jna.dev.java.net
http://creativecommons.org/licenses/


[11:15 23/11/2010 Bioinformatics-btq596.tex] Page: 3136 3135–3137

G.Su et al.

Table 1. GLay community algorithms

Connected components Find connected clusters from a
network

Edge betweenness (Newman and
Girvan, 2004)

Optimization of modularity score
utilizing edge betweenness score

Fast-greedy (Original, HE, HN,
HEN) (Clauset et al., 2004;
Wakita and Tsurumi, 2007)

Greedy optimization of modularity
score, with different corrections
on edge density and cluster size

Label propagation (Raghavan
et al., 2007)

Determine community membership
by iterative neighbor votes

Leading eigenvector (Newman,
2006)

Find communities using eigenvector
of matrices

Spin glass (Global, Single)
(Reichardt and Bornholdt,
2006)

Using spin glass model and
simulated annealing. The single
mode allows finding communities
only surrounding selected nodes

Walk trap (Pons and Latapy,
2005)

Determine community membership
via short random walks

Table 1 summarizes the incorporated community detection
algorithms. Because of the distinct heuristics of algorithms, running
speed and the resultant community structures vary. Some algorithms,
such as the leading eigenvector algorithm, works well on a small
network of a few hundred nodes but may not be scalable for large
networks. Others are optimized for large datasets but may be less
accurate. For example, the fast greedy algorithm may produce
communities with skewed community size distribution because
of the greedy optimization of the modularity score (Wakita and
Tsurumi, 2007). Users may test different algorithms and evaluate
performance by various benchmarks such as modularity, number of
communities and community size distribution.

Table 2 lists GLay layout algorithms. These algorithms are able
to efficiently layout very large networks or generate hierarchical
trees. A key advantage of GLay layout is that it allows the layout
calculations of various algorithms to initiate from the current
network layout state. This adds significant flexibility since it
enables the user to progressively improve the layout by either fine-
tuning parameters or using different layout algorithms together.
For example, for a very large network, the user may specify
a small number of iterations to obtain a draft layout, and then
gradually refine the layout by adding more iterations or tuning the
parameters. Once done, the user may superimpose the community
structure on the layout to investigate network topology. For more
information, please refer to the plugin homepage and igraph library
documentation (Csardi and Nepusz, 2006).

3 RESULTS AND CONCLUSION
We have tested GLay on datasets of various size and structure.
GLay demonstrated substantial performance gain in both network
decomposition and layout over existing Cytoscape solutions. For
example, using GLay to subdivide the MiMI human Interactome—
which contains 11 884 nodes and 88 134 edges—takes 0.7 s using
the label propagation algorithm and 20 s using the fast greedy
algorithm on the same 2.67 GHz Intel Core i7 machine. MCODE
takes 198 s to find clusters. Generating layout on this network
using the Fruchterman Reingold grid algorithm takes about 20 s,

Table 2. GLay layout algorithms

Fruchterman Reingold (original,
grid) (Fruchterman and
Reingold, 1991)

Efficient force-based algorithms,
with the grid version optimized
for large networks

graphopt (GraphOPT
http://www.schmuhl.org/graphopt/)

Force-based algorithm with
optimization

Kamada kawai Force-based spring layout
Large graph layout (Adai et al.,

2004)
Large graph layout algorithms for

connected graphs
Multidimensional scaling (MDS)

(Brandes and Pich, 2007)
Layout based on multidimensional

scaling based on shortest distances
reingold tilford (hierarchical,

circular) (Reingold and
Tilford, 1981)

Tree-like layout for connected
networks, can be hierarchical or
circular from any node as root

Fig. 1. Fast-greedy community structure superimposed on Frutcherman
Reingold grid layout from the largest component of Cytoscape human BIND
dataset, consists of 17 961 nodes and 30 156 edges. Note that nodes belong
to the same community tend to aggregate spatially, which resulted in clusters
with good visual separation. The red circle indicates a group of highly
interacting immunoglobulins.

whereas the Cytoscape built-in force directed and spring embedded
algorithms both reported error during execution both with default
setup and 1.5 G heap space. This demonstrates that Java-C hybrid
model has dramatic performance advantage handling large networks
in Cytoscape.

GLay also enables easy navigation of clustering results. Figure 1
shows a screenshot of overlaying fast greedy community structure on
Fruchterman Reingold grid layout on the Cytoscape built-in BIND
human dataset. Users may navigate and explore communities of
genes with the GLay browser. For example, clicking the cluster
entry in the browser table will select all nodes within a cluster. The
user will then be able to create a new subnetwork or nested network
from the selected nodes, extract gene lists from attribute browser or
incorporate other experimental data for various research interests.

In addition, GLay can provide qualitative different results from
existing solutions. Figure 2 shows a side-by-side comparison
of MCODE at default parameters and GLay using fast greedy
algorithm. It can be seen that by using the default parameters,
MCODE produces much smaller clusters than GLay, leaving
majority of the nodes unclustered. Therefore, GLay outperforms

3136

http://www.schmuhl.org/graphopt/


[11:15 23/11/2010 Bioinformatics-btq596.tex] Page: 3137 3135–3137

GLay

Fig. 2. Comparison between clusters produced by MCODE with default
parameters (left) and GLay using fast-greedy algorithm (right) on Cytoscape
bundled galFiltered (Ideker et al., 2001) dataset. The node color is determined
by the corresponding cluster membership. Left: MCODE clusters. The un-
clustered genes are hidden. Right: GLay fast-greedy clusters. (A) A MCODE
cluster, in which four out of five genes are associated with MAPK pathway.
The corresponding cluster in GLay contains 25 genes, including more genes
in MAPK pathway, cell cycle and ion binding. (B) A GLay cluster not
identifiable by MCODE. This cluster consists of six genes, with four are
related to RNA process.

MCODE in terms of structural partitioning of the original network.
In addition, overall GLay has higher sensitivity than MCODE at the
trade-off of specificity, which made it more suitable for functional
interpretation. For example, in Figure 2, one cluster in MCODE
contains five genes, with four genes function in MAPK pathway. The
equivalent GLay cluster contains 25 genes. Submitting these genes
to DAVID (Dennis et al., 2003) reveals one enriched functional
cluster for the MCODE cluster and nine enriched functional cluster
for the GLay cluster. As some of the genes such as cdc28 and
ste12 are involved in multiple regulation processes, the GLay cluster
recovered more biological-relevant information than the equivalent
MCODE cluster.

In summary, GLay capitalizes on the power of highly optimized
C code from several social network analysis and network layout
algorithms to improve scalability of Cytoscape for large networks.
We hope GLay can help to address the increasing needs for analysis
and visualization of large-scale networks. We are committed to add
cross-platform support for Linux and Mac environments as well as
to integrate novel network analysis and layout functions in GLay.

ACKNOWLEDGEMENTS
We thank the igraph developers Gabor Csardi and Tamas Nepusz,
and the JNA community for enormous help during the development.
We also thank Jing Gao for providing Interactome data from MiMI
and user testing. We appreciate the Google Summer of Code which

provided great opportunity for the initial phase of this project, Samad
Lotia from Agilent Technologies for helping with building the plugin
on Linux platform, and Josh Bucker for proofreading the manuscript.

Funding: This work is supported by National Center for Integrated
Biomedical Informatics through National Institutes of Health (grant
1U54DA021519-01A1 to the University of Michigan), also partly
supported by a NIH NCRR grant P41-RR01081 to the University of
California, San Francisco.

Conflict of Interest: none declared.

REFERENCES
Adai,A.T. et al. (2004) LGL: creating a map of protein function with an algorithm for

visualizing very large biological networks. J. Mol. Biol., 340, 179–190.
Bader,G.D. and Hogue,C.W. (2003) An automated method for finding molecular

complexes in large protein interaction networks, BMC Bioinformatics, 4, 2.
Brandes,U. and Pich,C. (2007) Eigensolver methods for progressive multidimensional

scaling of large data. Graph Draw.g, 4372, 42–53.
Clauset,A. et al. (2004) Finding community structure in very large networks. Phys. Rev.

E, 70, 066111.
Csardi,G. and Nepusz,T. (2006) The igraph software package for complex

network research. InterJournal, 1695. Available at http://cran.r-
project.org/web/packages/igraph/citation.html.

Dennis,G. Jr et al. (2003) DAVID: Database for Annotation, Visualization, and
Integrated Discovery. Genome Biol., 4, P3.

Fruchterman,T.M.J. and Reingold,E.M. (1991) Graph drawing by force-directed
placement. Softw. Pract. Exp., 21, 1129–1164.

Ideker,T. et al. (2001) Integrated genomic and proteomic analyses of a systematically
perturbed metabolic network. Science, 292, 929–934.

Merico,D. et al. (2009) How to visually interpret biological data using networks. Nat.
Biotechnol., 27, 921–924.

Newman,M.E.J. (2006) Finding community structure in networks using the eigenvectors
of matrices. Phys. Rev. E, 74, 036104.

Newman,M.E.J. and Girvan,M. (2004) Finding and evaluating community structure in
networks. Phys Rev E, 69, 026113.

Pons,P. and Latapy,M. (2005) Computing communities in large networks using random
walks. Lect. Notes Comput. Sci., 3733, 284–293.

Raghavan,U.N. et al. (2007) Near linear time algorithm to detect community structures
in large-scale networks. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys., 76, 036106.

Reichardt,J. and Bornholdt,S. (2006) Statistical mechanics of community detection.
Phys. Rev. E, 74, 016110.

Reingold,E.M. and Tilford,J.S. (1981) Tidier drawings of trees. IEEE T Softw. Eng., 7,
223–228.

Rivera,C.G. et al. (2010) NeMo: network module identification in Cytoscape. BMC
Bioinformatics, 11 (Suppl. 1), S61.

Ruan,J. et al. (2010) A general co-expression network-based approach to gene
expression analysis: comparison and applications. BMC Syst. Biol., 4, 8.

Schwarz,A.J. et al. (2008) Community structure and modularity in networks of
correlated brain activity. Magn. Reson. Imag., 26, 914–920.

Tarcea,V.G. et al. (2009) Michigan molecular interactions r2: from interacting proteins
to pathways. Nucleic Acids Res., 37, D642–D646.

Viana,M.P. et al. (2009) Modularity and robustness of bone networks. Mol. Biosyst., 5,
255–261.

Wakita,K. and Tsurumi,T. (2007) Finding community structure in a mega-scale
social networking service. In Proceedings of IADIS International Conference on
WWW/Internet 2007, Banff, Alberta, Canada, pp. 153–162.

3137

http://cran.rproject.org/web/packages/igraph/citation.html

