## Isolation and characterization of cDNAs encoding the heavy chain of human inter- $\alpha$ -trypsin inhibitor (I $\alpha$ TI): Unambiguous evidence for multipolypeptide chain structure of I $\alpha$ TI

 $(\alpha_1$ -microglobulin/calcium-binding domain/thiol-proteinase inhibitor)

J. P. Salier<sup>\*†</sup>, M. Diarra-Mehrpour<sup>\*</sup>, R. Sesboue<sup>\*</sup>, J. Bourguignon<sup>\*</sup>, R. Benarous<sup>‡</sup>, I. Ohkubo<sup>§</sup>, S. Kurachi<sup>§</sup>, K. Kurachi<sup>§</sup>, and J. P. Martin<sup>\*</sup>

\*Institut National de la Santé et de la Recherche Médicale U-295, U.E.R. de Medecine-Pharmacie, BP 97,F-76800 Saint-Etienne-du-Rouvray, France; <sup>‡</sup>Institut National de la Santé et de la Recherche Médicale, CHU Cochin-Port-Royal, F-75014 Paris, France; <sup>§</sup>Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109; and <sup>§</sup>Howard Hughes Medical Center, University of Michigan, Ann Arbor, MI 48109

Communicated by James V. Neel, August 5, 1987

ABSTRACT Human inter- $\alpha$ -trypsin inhibitor (I $\alpha$ TI) is a plasma glycoprotein of  $M_r$  180,000, which has been described as a single polypeptide chain. Recently, however, we proposed that I $\alpha$ TI might be composed of a heavy (H) chain ( $M_r$  = 95,000) and a light (L) chain ( $M_r = 40,000$ ) synthesized by two separate mRNAs. In the present study we have characterized cDNAs for the H chain of I $\alpha$ TI. These cDNAs collectively covered two sequences (977 and 1450 base pairs in length) with single open reading frames. The deduced amino acid sequences were highly homologous to each other and well matched with partial amino acid sequences obtained from purified serum IaTI. RNA blot analyses of liver RNAs with H- or L-chain cDNAs as probes clearly identified two distinct mRNAs of 3.3 and 1.3 kilobases, which corresponded to H or L chain, respectively. Poly(A)<sup>+</sup> RNAs hybrid-selected with H-chain cDNAs coded for polypeptide chains of  $M_r$  90,000–95,000. These results unambiguously establish that IaTI is made of multipolypeptides, possibly including one H and two L chains. The H chain contains potential calcium-binding sites and also regions homologous to the proposed reactive site for thiolproteinase inhibitors. These data indicate that  $I\alpha TI$  is a complex, multifunctional protein. mRNAs for both the H and L chains were found only in liver.

Inter- $\alpha$ -trypsin inhibitor (I $\alpha$ TI) is a serine protease inhibitor of  $M_r$  180,000 present in human plasma. Polypeptides of lower  $M_r$  that immunologically cross-react with I $\alpha$ TI also have inhibitory activity and are present in normal plasma, urine, and bronchial mucus. These are called I $\alpha$ TI derivatives (1). Since I $\alpha$ TI shows a  $M_r$  of 180,000 on NaDodSO<sub>4</sub>/PAGE, even in the presence of reducing agents, it has long been thought to be a single polypeptide chain. Recently, however, we have reported data to suggest that I $\alpha$ TI is synthesized by two separate mRNAs that code for the heavy (H) chain and the light (L) chain, respectively (2). The L chain gives rise to the I $\alpha$ TI derivatives (2). More recently, cDNAs for the L chain were isolated, and the L chain was found to contain amino acid sequences for two proteins:  $\alpha_1$ -microglobulin  $(\alpha_1 m)$ , an acute phase reactant, and a  $M_r$  30,000 derivative of human IaTI (HI-30) (3, 4). HI-30 contains two homologous domains with an inhibitory site for elastase as well as an inhibitory site for trypsin and chymotrypsin (5, 6). The amino acid sequence of the H chain has not been determined, and no biological function has been reported for it.

In this paper, we report the isolation and nucleotide sequencing of partial cDNAs for the H chain.<sup>||</sup> The H chain contains potential calcium-binding sites as well as sequences highly homologous to those at the reactive site of thiol-proteinase inhibitors. These data clearly indicate that  $I\alpha TI$  is a multifunctional protein comprised of multipolypeptide chains that are synthesized in liver by two distinct mRNA species.

## **MATERIALS AND METHODS**

**Reagents.** Various rabbit anti-human  $I\alpha TI$  antisera were prepared as described (7). These included anti-I $\alpha$ TI antiserum containing both anti-H and anti-L chain antibodies, anti-L chain antiserum and anti-H chain antiserum (2). Biotinylated antirabbit IgG antibodies and avidin: biotinylated horseradish peroxidase complex were from Vector Laboratories (Burlingame, CA). Various baboon tissues were kindly provided to K. Kurachi by the Regional Primate Center (University of Washington, Seattle). T4 DNA polymerase and its Klenow fragment, dNTP, and ddNTP were from Boehringer Mannheim. Restriction enzymes and M13mp18 and M13mp19 phage DNA were from Bethesda Research Laboratories. Sma I-cut, dephosphorylated M13mp8 DNA, M13 sequencing primer, deoxyadenosine 5'-[ $\alpha$ -<sup>35</sup>S]thiotriphosphate (400 Ci/mmol; 1 Ci = 37 GBq), and [<sup>32</sup>P]dCTP (3000 Ci/mmol) were from Amersham. GeneScreenPlus nylon membranes were from New England Nuclear. All other chemicals were of analytical grade.

Screening and Characterization of Human Liver cDNAs. About  $1.6 \times 10^5$  recombinant phage plaques of a normal human liver cDNA library constructed in  $\lambda$ gt11 (provided by R. A. Lazzarini, National Institutes of Health) were screened with an anti-I $\alpha$ TI antiserum by a modification of the Young and Davis procedure (8). Positive phage clones were plaquepurified, and liquid phage stocks were prepared according to standard protocols (9). Then positive clones were immunoscreened for the expression of either the L or the H chain of I $\alpha$ TI. These clones were also screened with L-chain cDNA, designated pHuLITI1 (3), as a probe. Radiolabeled cDNA probes were prepared by nick-translation with [<sup>32</sup>P]dCTP.

**Hybrid Selection of RNAs and** *in Vitro* **Translation.** *In vitro* translation of hybrid-selected  $poly(A)^+$  RNAs of human liver and immunoprecipitation of the translation products were performed as described (2, 3).

Nucleotide Sequencing. cDNA inserts were subcloned into M13mp18 or M13mp19. Alternatively, the entire DNA of a recombinant  $\lambda gt11$  clone was sonicated, and fragments of

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations:  $\alpha_1 m$ ,  $\alpha_1$ -microglobulin; I $\alpha$ TI, inter- $\alpha$ -trypsin inhibitor; HI-30, a  $M_r$  30,000 derivative of human I $\alpha$ TI; H, heavy; L, light. <sup>†</sup>To whom requests should be addressed.

The sequences of the two domains reported in this paper are being deposited in the EMBL/GenBank data base (Bolt, Beranek, and Newman Laboratories, Cambridge, MA, and Eur. Mol. Biol. Lab., Heidelberg) (accession nos. J03012 and J03013).

500-900 base pairs in length were ligated to M13mp8 at the Sma I site according to a standard "shotgun" technique (10). DNA sequencing was performed by the dideoxy chain termination method with deoxyadenosine 5'- $[\alpha^{-35}S]$ thiotriphosphate and analyzed by polyacrylamide gel electrophoresis using a buffer gradient gel (11).

RNA Blot Analysis. RNA blot analysis of human liver  $poly(A)^+$  RNAs with an I $\alpha$ TI L-chain cDNA probe has been described (3). Total RNAs were also prepared from various tissues of an adult male baboon by the guanidinium isothiocyanate procedure followed by centrifugation through a 5.7 M CsCl cushion (12). RNA preparations were electrophoresed in 1.5% agarose gels containing 6.7% formaldehyde in 20 mM phosphate buffer (pH 7.0). The agarose gels were then blotted onto a GeneScreenPlus membrane. Prehybridization, hybridization with radiolabeled cDNA probe(s), and washing were carried out as recommended for GeneScreenPlus by the manufacturer.

Amino Acid Sequences of  $I\alpha TI$  and Its Peptides. Highly purified serum I $\alpha$ TI (13) was subjected to amino acid sequencing to determine its N-terminal end(s) at the protein sequencing facility of the University of Michigan. Recoveries for the first seven residues varied between 19% and 47%. In K. Hochstrasser's laboratory (Munich, F.R.G.), a set of IaTI peptides was also obtained by digestion of reduced and carboxymethylated IaTI with trypsin or Staphylococcus aureus V8 proteinase. Amino acid sequences were determined manually or by Edman degradation in a solid-phase sequencer. A library of peptide sequences for  $I\alpha TI$  was kindly provided to us by K. Hochstrasser.

## RESULTS

Human cDNAs for I $\alpha$ TI. In the initial screening of a normal human liver cDNA library for I $\alpha$ TI cDNA, 27 positive phage clones were identified with anti-IaTI antiserum and were plaque purified. Ten positive clones were detected with the anti-L chain antiserum, and 7 positive clones were identified with anti-H chain antiserum. None of these clones were detected with both anti-L chain and anti-H chain antisera. The radiolabeled L-chain cDNA probe (pHuLITI1) also hybridized to all clones that were detected with the anti-L chain antiserum (results not shown). Among the clones detected with the anti-H chain antiserum, several (designated  $\lambda$ HuHITI-9, -19, -33) were analyzed in further detail.

Nucleotide Sequence of cDNAs. Sequencing strategies for clones 9, 19, and 33 are shown in Fig. 1. The nucleotide





FIG. 1. Strategy for nucleotide sequencing of cDNAs  $\lambda$ Hu-HITI-19 (Upper) and λHuHITI-9 and -33 (Lower). The arrows indicate the direction and extent of sequences determined for each cDNA fragment. The sequence with an asterisk at its 5' end was primed with a specific, synthetic oligonucleotide. Most M13 subclones of clone  $\lambda$ Hu-HITI-9 were obtained by a shot-

gun technique.

sequence of clone 19 and the combined sequence of clones 9 and 33 are 977 and 1450 bases long, respectively, and contain a single open reading frame (Fig. 2). The amino acid sequences derived from the nucleotide sequences are in excellent agreement with the amino acid sequences obtained from various peptides derived from I $\alpha$ TI. So far the latter have confirmed about 60% of the amino acid sequence derived from the cDNAs (Fig. 2). No homology has been found between the amino acid sequences of the L(4) and H chains. A computer search of a protein data bank with the GenePro program (Riverside Scientific, Seattle) did not provide any evidence of significant homology to any other reported proteins.

Two highly homologous domains (domains 1 and 2) were found in the partial amino acid sequences of the H chain (Fig. 2). Their relative positions in the H chain are not known at the present time. The sequence Val-Val-Ala-Gly-Lys in domain 2 of the H chain (amino acids 145-149) was found to be highly homologous to the reactive site of human  $\alpha$ -2-thiol-proteinase inhibitor (14). A similar sequence is also found in domain 1. A preliminary experiment to determine thiol-proteinase inhibitor activity of IaTI showed that IaTI apparently does not inhibit papain, whereas human calpain I was weakly inhibited by I $\alpha$ TI. As shown in Fig. 3, sequences that are highly homologous to a well-defined calcium-binding site sequence (15) were also found in both domains of the H chain.

Analysis of Poly(A)<sup>+</sup> RNAs Hybrid Selected with cDNAs of  $\lambda$ HuHITI-9 or -19. Immunoprecipitation of the *in vitro* translation products of human liver  $poly(A)^+$  RNAs with anti-IaTI antiserum have yielded two different polypeptide chains with  $M_r$  values of 90,000-95,000 and 40,000, which correspond to the H and L chains of I $\alpha$ TI, respectively (2). In the present study, hybrid-selection experiments also showed that the DNA of clone 19 or 9 specifically retained mRNA fractions that encoded polypeptide chains of  $M_r$ 90,000-95,000. These polypeptides were immunoprecipitated by an anti-I $\alpha$ TI antiserum, whereas no L chain was concurrently detected (results not shown).

RNA Blot Analysis of Human Liver Poly(A)<sup>+</sup> RNAs. The radiolabeled cDNA insert of  $\lambda$ HuHITI-9 or -19 was used as a hybridization probe to analyze liver  $poly(A)^+$  RNAs. With either probe, a single population of mRNAs of about 3.3 kilobases (kb) was found (Fig. 4), whereas a probe containing the 3' half of the L-chain cDNA detected mRNA species of 1.3 kb, which is in good agreement with previous data (3). The latter result was also obtained with a probe derived from the

|            |            |            | с          | ATC<br>11e | ATG<br>Met | TTG<br>Leu | ACA<br>Thr | GAT<br>Asp | GGC<br>Gly | GAT<br>Asp | CCC<br>Pro | ACA<br>Thr | GAG<br>Glu | GGG<br>Gly | 34<br>11   |   |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---|
| GTG        | ACG        | GAC        | CGT        | TCC        | CAA        | ATC        | CTC        | AAG        | AAC        | GTC        | CGC        | AAC        | GCC        | ATC        | 79         |   |
| Val        | Thr        | Asp        | Arg        | Ser        | Gln        | Ile        | Leu        | Lys        | Asn        | Val        | Arg        | Asn        | Ala        | Ile        | 26         |   |
| CGG        | GGC        | AGG        | TTC        | CCG        | CTC        | TAC        | AAC        | CTG        | GGT        | TTC        | GGC        | CAC        | AAT        | GTG        | 124        |   |
| Arg        | Gly        | Arg        | Phe        | Pro        | Leu        | Tyr        | Asn        | Leu        | Gly        | Phe        | Gly        | His        | Asn        | Val        | 41         |   |
| GAC        | TTT        | AAC        | TTT        | CTG        | GAG        | GTC        | ATG        | TCC        | ATG        | GAG        | AAC        | AAC        | GGA        | CGG        | 169        | _ |
| Asp        | Phe        | Asn        | Phe        | Leu        | Glu        | Val        | Met        | Ser        | Met        | Glu        | Asn        | Asn        | Gly        | Arg        | 56         |   |
| GCC        | CAG        | AGA        | ATC        | TAC        | GAG        | GAC        | CAT        | GAT        | GCC        | ACC        | CAG        | CAG        | CTG        | CAG        | 214        |   |
| Ala        | Gln        | Arg        | Ile        | Tyr        | Glu        | Asp        | His        | Asp        | Ala        | Thr        | Gln        | Gln        | Leu        | Gln        | 71         |   |
| GGT        | TTC        | TAC        | AGC        | CAG        | GTA        | GCC        | AAA        | CCC        | CTG        | CTG        | GTG        | GAT        | GTG        | GAT        | 259        | , |
| Gly        | Phe        | Tyr        | <u>Ser</u> | Gln        | Val        | Ala        | Lys        | Pro        | Leu        | Leu        | Val        | Asp        | Val        | Asp        | 86         |   |
| TTG        | CAG        | TAC        | CCC        | CAG        | GAT        | GCT        | GTC        | TTG        | GCC        | CTG        | ACC        | CAG        | AAC        | CAC        | 304        |   |
| Leu        | Gln        | Tyr        | Pro        | Gln        | Asp        | Ala        | Val        | Leu        | Ala        | Leu        | Thr        | Gln        | Asn        | His        | 101        |   |
| CAT        | AAA        | CAG        | TAC        | TAC        | GAA        | GGC        | TCA        | GAG        | ATT        | GTG        | GTG        | GCC        | GGG        | CGC        | 349        |   |
| His        | Lys        | Gln        | Tyr        | Tyr        | Glu        | Gly        | Ser        | Glu        | Ile        | Val        | Val        | Ala        | G1y        | Arg        | 116        |   |
| ATT        | GCT        | GAC        | AAC        | AAA        | CAG        | AGC        | AGC        | TTC        | AAG        | GCT        | GAT        | GTG        | CAG        | GCC        | 394        |   |
| Ile        | Ala        | Asp        | Asn        | Lys        | Gln        | Ser        | Ser        | Phe        | Lys        | Ala        | Asp        | Val        | Gln        | Ala        | 131        |   |
| CAT        | GGG        | GAG        | GGA        | CAA        | GAA        | TTC        | AGT        | ATA        | ACC        | TGC        | CTA        | GTG        | GAT        | GAG        | 439        |   |
| His        | Gly        | Glu        | Gly        | Gln        | Glu        | Phe        | Ser        | Ile        | Thr        | Cys        | Leu        | Val        | Asp        | Glu        | 146        |   |
| GAG        | GAG        | ATG        | AAG        | AAA        | CTG        | CTC        | CGA        | GAG        | CGT        | GGC        | CAC        | ATG        | CTG        | GAG        | 484        |   |
| Glu        | Glu        | Met        | Lys        | Lys        | Leu        | Leu        | Arg        | Glu        | Arg        | Gly        | His        | Met        | Leu        | Glu        | 161        |   |
| AAC        | CAC        | GTC        | GAG        | CGC        | CTC        | TGG        | GCC        | TAC        | CTC        | ACC        | ATC        | CAG        | GAG        | CTG        | 529        |   |
| Asn        | His        | Val        | Glu        | Arg        | Leu        | Trp        | Ala        | Tyr        | Leu        | Thr        | Ile        | Gln        | Glu        | Leu        | 176        |   |
| CTG        | GCC        | AAG        | CGG        | ATG        | AAG        | GTG        | GAC        | AGG        | GAG        | GAG        | AGG        | GCC        | AAC        | CTG        | 574        |   |
| Leu        | Ala        | Lys        | Arg        | Met        | Lys        | Val        | Asp        | Arg        | Glu        | Glu        | Arg        | Ala        | Asn        | Leu        | 191        |   |
| TCA        | TCC        | CAG        | GCC        | CTG        | CAG        | ATG        | TCG        | CTG        | GAC        | TAT        | GGG        | TTT        | GTG        | ACC        | 619        |   |
| Ser        | Ser        | Gln        | Ala        | Leu        | Gln        | Met        | Ser        | Leu        | Asp        | Tyr        | Gly        | Phe        | Val        | Thr        | 206        |   |
| CCA        | CTG        | ACC        | TCC        | ATG        | AGC        | ATC        | AGG        | GGC        | ATG        | GCG        | GAC        | CAG        | GAC        | GGC        | 664        |   |
| Pro        | Leu        | Thr        | Ser        | Met        | Ser        | Ile        | Arq        | Gly        | Met        | Ala        | Asp        | Gln        | Asp        | Gly        | 221        |   |
| CTG        | AAG        | CCC        | ACC        | ATC        | GAC        | AAG        | CCC        | TCA        | GAG        | GAT        | TCT        | CCG        | CCT        | TTG        | 709        |   |
| Leu        | Lys        | Pro        | Thr        | Ile        | Asp        | Lys        | Pro        | Ser        | Glu        | Asp        | Ser        | Pro        | Pro        | Leu        | 236        |   |
| GAG        | ATG        | CTG        | GGA        | CCC        | AGA        | AGG        | ACG        | TTC        | GTG        | CTG        | TCA        | GCC        | TTG        | CAG        | 754        |   |
| Glu        | Met        | Leu        | Gly        | Pro        | Arg        | Arg        | Thr        | Phe        | Val        | Leu        | Ser        | Ala        | Leu        | Gln        | 251        |   |
| CCT        | TCT        | CCT        | ACT        | CAT        | TCC        | AGC        | TCC        | AAT        | ACC        | CAG        | CGG        | CTG        | CCA        | GAC        | 799        |   |
| Pro        | Ser        | Pro        | Thr        | His        | Ser        | Ser        | Ser        | Asn        | Thr        | Gln        | Arg        | Leu        | Pro        | Asp        | 266        |   |
| CGA        | GTG        | ACC        | GGC        | GTG        | GAC        | ACA        | GAC        | CCT        | CAC        | TTC        | ATC        | ATC        | CAC        | GTG        | 844        |   |
| Arg        | Val        | Thr        | Gly        | Val        | Asp        | Thr        | Asp        | Pro        | His        | Phe        | Ile        | Ile        | His        | Val        | 281        |   |
| CCC<br>Pro | CAG<br>Gln | AAA<br>Lys | GAG<br>Glu | GAC<br>Asp | ACC<br>Thr | CTG<br>Leu | TGC<br>Cys | TTC<br>Phe | AAC<br>Asn | ATC<br>Ile | AAT<br>Asn | GAG<br>Glu | GAG<br>Glu | CCT<br>Pro | 889<br>296 |   |
| GGT        | GTT        | ATC        | CTG        | AGC        | CTG        | GTA        | CAG        | GAC        | CCC        | AAC        | ACA        | GGC        | TTC        | TCA        | 934        |   |
| Gly        | Val        | Ile        | Leu        | Ser        | Leu        | Val        | Gln        | Asp        | Pro        | Asn        | Thr        | Gly        | Phe        | Ser        | 311        |   |
| GTG<br>Val | AAT<br>Asn | GGA<br>Gly | CAG<br>Gln | CTC<br>Leu | ATT<br>Ile | GGC<br>Gly | AAC<br>Asn | AAG<br>Lys | GCC<br>Ala | AGG<br>Arg | AGC<br>Ser | CCT<br>Pro | GGG<br>Gly | с          | 977<br>325 |   |

FIG. 2. Nucleotide and amino acid sequences of H-chain cDNAs. (*Left*) $\lambda$ Hu-HITI-19 (domain 1). (*Right*)  $\lambda$ HuHITI-9 and -33 (domain 2). Underlining indicates the amino acid sequences that match with those obtained from I $\alpha$ TI polypeptides (K. Hochstrasser, personal communication). Boxed areas indicate sequences that are highly homologous. •, Potential reactive sites as thiol-proteinase inhibitors;  $\blacktriangle$ , Ca<sup>2+</sup>-binding sites; •, potential sites for asparagine-linked carbohydrates.

5' half of L-chain cDNA, which contains the sequence for  $\alpha_1 m$  (see below).

**Tissue Distribution of Expression for I** $\alpha$ **TI Genes.** In RNA blot analyses, three cDNA probes were used. One is the insert from  $\lambda$ HuHITI-9, which detected the H chain. The other two probes of 591 and 501 base pairs were prepared from cDNA for L chain by Ava I digestion and correspond to the regions containing  $\alpha_1$ m and HI-30 domains, respectively (J.B., M.D.-M., R.S., J.P.M., and J.P.S., unpublished data). Of 13 different tissues obtained from a baboon, only liver was

| GT          | GGA        | GGC        | ACA | AAC | ATC | AAC | GAA        | GCA        | CTC        | CTA        | CGG        | GCA        | ATC        | TTC        | 44          |
|-------------|------------|------------|-----|-----|-----|-----|------------|------------|------------|------------|------------|------------|------------|------------|-------------|
|             | Gly        | Gly        | Thr | Asn | Ile | Asn | Glu        | Ala        | Leu        | Leu        | Arg        | Ala        | Ile        | Phe        | 14          |
| ATT         | TTG        | AAT        | GAA | GCC | AAT | AAC | TTG        | GGA        | CTG        | TTA        | GAC        | CCC        | AAC        | TCC        | 89          |
| Ile         | Leu        | Asn        | Glu | Ala | Asn | Asn | Leu        | Gly        | Leu        | Leu        | Asp        | Pro        | Asn        | Ser        | 29          |
| GTC         | TCG        | CTG        | ATC | ATT | TTG | GTT | TCT        | GAT        | GGA        | GAT        | CCA        | ACA        | GTG        | GGC        | 134         |
| Val         | Ser        | Leu        | Ile | Ile | Leu | Val | Ser        | Asp        | Gly        | Asp        | Pro        | Thr        | Val        | Gly        | 44          |
| GAA         | CTA        | AAA        | CTG | TCA | AAA | ATT | CAG        | AAA        | AAC        | GTT        | AAG        | GAG        | AAC        | ATC        | 179         |
| Glu         | Leu        | Lys        | Leu | Ser | Lys | Ile | Gln        | Lys        | Asn        | Val        | Lys        | Glu        | Asn        | Ile        | 59          |
| C <b>AA</b> | GAC        | AAT        | ATC | TCC | TTG | TTC | AGT        | TTG        | GGC        | ATG        | GGA        | TTT        | GAT        | GTG        | 224         |
| Gln         | Asp        | Asn        | Ile | Ser | Leu | Phe | Ser        | Leu        | Gly        | Met        | Gly        | Phe        | Asp        | Val        | 74          |
| GAC         | TAT        | GAT        | TTT | TTG | AAG | AGA | CTG        | TCC        | AAT        | GAA        | AAC        | CAT        | GGA        | ATT        | 269         |
| Asp         | Tyr        | Asp        | Phe | Leu | Lys | Arg | Leu        | Ser        | Asn        | Glu        | Asn        | His        | Gly        | Ile        | 89          |
| GCA         | CAA        | AGG        | ATT | TAT | GGA | AAC | CAG        | GAC        | ACG        | TCT        | TCC        | CAG        | CTT        | AAG        | 314         |
| Ala         | Gln        | Arg        | Ile | Tyr | Gly | Asn | Gln        | Asp        | Thr        | Ser        | Ser        | Gln        | Leu        | Lys        | 104         |
| AAA         | TTC        | TAC        | AAC | CAG | GTC | TCC | ACT        | CCA        | TTG        | CTC        | CGG        | AAT        | GTT        | CAG        | 359         |
| Lys         | Phe        | Tyr        | Asn | Gln | Val | Ser | Thr        | Pro        | Leu        | Leu        | Arg        | Asn        | Val        | Gln        | 119         |
| TTC         | AAC        | TAT        | CCC | CAT | ACA | TCA | GTC        | ACG        | GAC        | GTC        | ACT        | CAA        | AAC        | AAT        | 404         |
| Phe         | Asn        | Tyr        | Pro | His | Thr | Ser | Val        | Thr        | Asp        | Val        | Thr        | Gln        | Asn        | Asn        | 134         |
| TTC         | CAT        | AAC        | TAC | TTT | GGA | GGC | TCA        | GAG        | ATT        | GTG        | GTG        | GCA        | GGA        | AAA        | 449         |
| Phe         | His        | Asn        | Tyr | Phe | Gly | Gly | Ser        | Glu        | Ile        | Val        | Val        | Ala        | Gly        | Lys        | 149         |
| TTT         | GAC        | CCT        | GCT | AAA | TTG | GAT | CAA        | ATA        | GAG        | AGC        | GTT        | ATC        | ACG        | GCG        | 494         |
| Phe         | Asp        | Pro        | Ala | Lys | Leu | Asp | Gln        | Ile        | Glu        | Ser        | Val        | Ile        | Thr        | Ala        | 164         |
| ACT         | TCG        | GCT        | AAC | ACG | CAG | TTA | GTC        | TTG        | GAG        | ACC        | CTG        | GCC        | CAG        | ATG        | 539         |
| Thr         | Ser        | Ala        | Asn | Thr | Gln | Leu | Val        | Leu        | Glu        | Thr        | Leu        | Ala        | Gln        | Met        | 179         |
| GAC         | GAC        | TTG        | CAG | GAT | TTT | CTA | TCG        | AAA        | GAC        | AAG        | CAT        | GCA        | GAT        | CCC        | 584         |
| Asp         | Asp        | Leu        | Gln | Asp | Phe | Leu | Ser        | Lys        | Asp        | Lys        | His        | Ala        | Asp        | Pro        | 194         |
| GAT         | TTC        | ACC        | AGG | AAA | CTG | TGG | GCC        | TAT        | CTA        | ACC        | ATC        | AAC        | CAA        | CTG        | 629         |
| Asp         | Phe        | Thr        | Arg | Lys | Leu | Trp | Ala        | Tyr        | Leu        | Thr        | Ile        | Asn        | Gln        | Leu        | 209         |
| CTA         | GCT        | GAA        | CGA | AGC | CTG | GCT | CCT        | ACA        | GCT        | GCC        | GCC        | AAG        | AGA        | AGA        | 674         |
| Leu         | Ala        | Glu        | Arg | Ser | Leu | Ala | Pro        | Thr        | Ala        | Ala        | Ala        | Lys        | Arq        | Arg        | 224         |
| ATT         | ACA        | AGA        | TCG | ATC | CTG | CAG | ATG        | TCT        | CTA        | GAC        | CAC        | CAC        | ATT        | GTG        | 719         |
| Ile         | Thr        | Arg        | Ser | Ile | Leu | Gln | Met        | Ser        | Leu        | Asp        | His        | His        | Ile        | Val        | 239         |
| ACT         | CCG        | CTG        | ACC | TCG | CTG | GTG | ATC        | GAG        | AAC        | GAG        | GCT        | GGG        | GAT        | GAG        | 764         |
| Thr         | Pro        | Leu        | Thr | Ser | Leu | Val | Ile        | Glu        | Asn        | Glu        | Ala        | Gly        | Asp        | Glu        | 254         |
| CGC         | ATG        | CTG        | GCG | GAT | GCC | CCA | CCG        | CAG        | GAT        | CCC        | TCC        | TGC        | TGC        | TCA        | 809         |
| Arg         | Met        | Leu        | Ala | Asp | Ala | Pro | Pro        | Gln        | Asp        | Pro        | Ser        | Cys        | Cys        | Ser        | 269         |
| GGG         | GCC        | CTG        | TAT | TAC | GGC | AGC | AAA        | GTG        | GTT        | CCA        | GAT        | TCC        | ACC        | CCG        | 854         |
| Gly         | Ala        | Leu        | Tyr | Tyr | Gly | Ser | Lys        | Val        | Val        | Pro        | Asp        | Ser        | Thr        | Pro        | 284         |
| TCT         | TGG        | GCC        | AAT | CCT | TCA | GCA | ACG        | CCC        | GTG        | ATC        | TCC        | ATG        | CTG        | GCA        | 899         |
| Ser         | Trp        | Ala        | Asn | Pro | Ser | Ala | Thr        | Pro        | Val        | Ile        | Ser        | Met        | Leu        | Ala        | 299         |
| CAA         | GGA        | TCT        | CAG | GTG | CTA | GAG | TCC        | ACG        | CCA        | CCC        | CCA        | CAT        | GTG        | ATG        | 944         |
| Gln         | Gly        | Ser        | Gln | Val | Leu | Glu | Ser        | Thr        | Pro        | Pro        | Pro        | His        | Val        | Met        | 314         |
| AGA         | GTT        | GAA        | AAT | GAC | CCA | CAT | TCC        | ATC        | ATT        | TAT        | CTA        | CCA        | AAA        | AGC        | 989         |
| Arg         | Val        | Glu        | Asn | Asp | Pro | His | Ser        | Ile        | Ile        | Tyr        | Leu        | Pro        | Lys        | Ser        | 329         |
| CAA         | AAG        | AAC        | ATT | TGT | TTC | AAT | ATT        | GAC        | TCA        | GAA        | ССТ        | GGA        | AAA        | ATC        | 1034        |
| CTC         | GAC        | CTG        | GCT | TCT | GAC | CCA | GAA        | TCA        | GGA        | ATT        | GTA        | GTC        | AAC        | GGT        | 1079        |
| CAG         | CTT        | GTT        | GGT | GCC | AAG | AAG | ccc        | AAC        | AAT        | GGA        | AAA        | CTA        | AGC        | ACC        | 1124        |
| Gln         | Leu        | Val        | Gly | Ala | Lys | Lys | Pro        | Asn        | Asn        | Gly        | Lys        | Leu        | Ser        | Thr        | 374         |
| TAT         | TTT        | GGA        | AAA |     | GGA | TTT | TAT        | TTC        | CAA        | Agt        | GAA        | GAC        | ATA        | AAA        | 1169        |
| Tyr         | Phe        | Gly        | Lys | Leu | Gly | Phe | Tyr        | Phe        | Gln        | Ser        | Glu        | Asp        | Ile        | Lys        | 389         |
| Ile         | Glu        | Ile        | Ser | Thr | Glu | Thr | Ile        | Thr        | Leu        | Ser        | His        | Gly        | Ser        | Ser        | 404         |
| Thr         | Phe        | Ser        | Leu | Ser | Trp | Ser | GAC<br>Asp | ACG<br>Thr | GCT<br>Ala | CAA<br>Gln | GTC<br>Val | ACG<br>Thr | AAT<br>Asn | CAG<br>Gln | 1259<br>419 |
| AGG         | GTG        | CAG        | ATC | TCA | GTG | AAG | AAA        | GAA        | AAA        | GTG        | GTA        | ACT        | ATC        | ACC        | 1304        |
| Arg         | Val        | Gln        | Ile | Ser | Val | Lys | Lys        | Glu        | Lys        | Val        | Val        | Thr        | Ile        | Thr        | 434         |
| CTG         | GAT        | AAA        | GAG | ATG | TCC | TTT | TCT        | GTT        | TTA        | CTT        | CAT        | CGT        | GTT        | TGG        | 1349        |
| Leu         | Asp        | Lys        | Glu | Met | Ser | Phe | Ser        | Val        | Leu        | Leu        | His        | Arg        | Val        | Trp        | 449         |
| AAG         | AAG        | CAT        | CCC | GTC | AAT | GTT | GAC        | TTT        | CTG        | GGA        | ATC        | TAC        | ATA        | CCC        | 1394        |
| Lys         | Lys        | His        | Pro | Val | Asn | Val | Asp        | Phe        | Leu        | Gly        | Ile        | Tyr        | Ile        | Pro        | 464         |
| CCT         | ACA        | AAC        | AAG | TTC | TCA | CCT | AAA        | GCC        | CAC        | GGA        | CTA        | ATA        | GGC        | CAG        | 1439        |
| Pro         | Thr        | Asn        | Lys | Phe | Ser | Pro | Lys        | Ala        | His        | Gly        | Leu        | Ile        | Gly        | Gln        | 479         |
| TTC<br>Phe  | ATG<br>Met | CAG<br>Gln | GA  |     |     |     |            |            |            |            |            |            |            |            | 1450<br>482 |

found to express H or L chain (Fig. 5). Low level expression was also found in liver of a human fetus at the 18th week of gestation but was not detected in two human hepatoma cell lines, an umbilical cord endothelium cell line, or a Blymphoblastoid cell line.

## DISCUSSION

In the present study, we have isolated and sequenced cDNA clones coding for I $\alpha$ TI. Amino acid sequences derived from cDNA clones  $\lambda$ HuHITI-9, -19, and -33, which were among

|                                               | ,N-terminal region                   | Calcium binding loop C-terminal region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|-----------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                               | 1 2 3 4 5 6 7 8 9 10 11 X 3          | 2 Y 4 Z 6 -Y 8 -X 10 11 -Z<br>4 5 6 7 8 9 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                                               | ?h <sup>+</sup> _hh <sup>+</sup> h D | $\begin{array}{c} + \begin{array}{c} D \\ N \end{array} \begin{array}{c} G \end{array} \begin{array}{c} D \\ O \end{array} \begin{array}{c} G \end{array} \begin{array}{c} h \\ n \end{array} \begin{array}{c} n \end{array} \begin{array}{c} ni \\ - \end{array} \begin{array}{c} h \\ - \end{array} \begin{array}{c} h \\ - \end{array} \begin{array}{c} h \\ + \end{array} \begin{array}{c} h \\ + \end{array} \begin{array}{c} h \\ n \end{array} \begin{array}{c} ni \\ + \end{array} \begin{array}{c} ni \\ ni \end{array} \begin{array}{c} h \\ ni \end{array}$ |  |  |  |  |  |  |  |  |
| Human calmodulin (region I)                   | IAEFKEAFSLFD                         | KDGDGT ITTKELGTVMRSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Human Factor XIIIa                            | ATHIGKLIV T K Q                      | IGGDGMMDITDTYKFQEGQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| Human kininogen heavy chain                   | QESQSEEID                            | CNDKDL FKAV DAALKKYNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Intestinal Ca <sup>++</sup> - binding protein | PEELKGIFEKYA                         | KEGLPO LSKEELKLLLOTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| ITI H domain 1                                | IML                                  | TDGDPTEGVTDRSQILKNV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| ITI H domain 2                                | LDPNSVSLIILV                         | SDGDPT VGELK LSKIQKNV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |

FIG. 3. Comparison of the potential  $Ca^{2+}$ -binding site sequences in domains 1 and 2 of the H chain with those found in other proteins. X, Y, Z, -Y, -X, and -Z refer to the vertices of the  $Ca^{2+}$  coordinating octahedron. Hydrophobic (h), negative (-), positive (+), nonionic (ni), and weakly conserved (?) residues are indicated. The one-letter code for amino acids is used. The model of  $Ca^{2+}$ -binding site is obtained from ref. 15. The amino acid sequences of the first four proteins are from refs. 16–19, respectively. Homologies between proteins or with the model are boxed.

those detected with an anti-H chain antiserum, unambiguously matched the partial amino acid sequences obtained from various peptides of I $\alpha$ TI. In RNA blot analyses, a mRNA band of 3.3 kb was detected when the cDNA insert of  $\lambda$ Hu-HITI-9 or -19 was used as a probe. The size of this mRNA is in good agreement with the translation product ( $M_r$ 90,000–95,000) identified with an anti-I $\alpha$ TI antiserum in a cell-free translation assay employing mRNAs isolated in a hybrid-select experiment using an H-chain cDNA obtained from either  $\lambda$ HuHITI-9 or -19.

In a previous paper (2), we proposed that  $I\alpha TI$  may be composed of H- and L-polypeptide chains, which are synthesized by separate mRNAs in liver, based on the data obtained by immunoprecipitation of translation products by anti-IaTI antisera. Isolation and characterization of cDNAs for the H chain in the present study, in addition to the data reported for L-chain cDNA (3, 4), provide unambiguous evidence that  $I\alpha TI$  is composed of H and L chains, which are synthesized separately in liver tissue. This is also in good agreement with the reported observation that  $\alpha_1 m$ , which is contained in the L chain, is an acute phase protein (20), whereas the H chain is not (1). Amino acid sequence analysis of highly purified serum I $\alpha$ TI in the present study gave two major N-terminal sequences. One sequence was Ser-Leu-Pro-Gly-Glu, which may correspond to the N-terminus of the H chain. The other sequence was Ala-Val-Leu-Pro-Gln-Glu, which corresponds to the N-terminal sequence of HI-30 (6). This clearly indicates that L chain of isolated IaTI has been



FIG. 4. RNA blot analysis of poly(A)<sup>+</sup> RNAs from human liver. Each lane was loaded with 5  $\mu$ g of mRNA. Anode is at the bottom. Lanes: 1, hybridization with H-chain-specific probe (cDNAs  $\lambda$ HuHITI-9 or -19); 2, hybridization with L-chain-specific probe (pHuLITI1; ref. 3); 3, size markers (in kb) (*Hind*III-restricted  $\lambda$ DNA that was end-labeled by the Klenow filling-in reaction).

cleaved between  $\alpha_1 m$  and HI-30 by an unidentified protease, which results in the loss of  $\alpha_1 m$  moieties from I $\alpha$ TI. This is further supported by the fact that I $\alpha$ TI isolated from serum





is not immunoprecipitated by an anti- $\alpha_1$ m antiserum (J.P.S., unpublished data). Serum I $\alpha$ TI of  $M_r$  180,000, therefore, may be composed of one H chain  $(M_r 95,000$  without carbohydrates) covalently linked to two HI-30 moieties of the L-chain. HI-30 has an apparent  $M_r$  of 44,000 in NaDodSO<sub>4</sub>/ PAGE due to its very high carbohydrate content (21). The bonds linking the H chain and HI-30 are not susceptible to reducing agents, indicating that a bond(s) other than a disulfide bond(s), such as the isopeptide bond(s) found in fibrin or fibronectin (22) or the Lys-Lys bond(s) found in collagen (23), may be involved. The nature of the bonds still remains to be determined.

The H chain of I $\alpha$ TI clearly contains homologous domains as shown in Fig. 2. The relative positions of domains 1 and 2 in the H chain are not yet known. The possibility that the H chain is heterogeneous and each H chain may contain either of these domains cannot be excluded. In domains 1 and 2, we found two similar sequences, which are homologous to the sequence for a well-defined calcium-binding site. In this sequence, an aspartic acid and two asparagine/aspartic acid residues provide chelating ligands for calcium. Position 6 (mostly glycine) permits folding of the polypeptide chain to form a proper orientation of ligands to chelate the metal ion (15). Replacement of aspartic acid in position X with other amino acids has been reported (see Fig. 3). A glycine in position 6 is not an absolute requirement (24) and the presence of proline at this position in domains 1 and 2 of the H chain may satisfy a fairly drastic change in the direction of the polypeptide chain required at this point. A circular dichroism experiment with purified I $\alpha$ TI did not show any significant signal for conformational change upon binding of  $Ca^{2+}$  or  $Mg^{2+}$  (data not shown). This may be due to too small a change, if any, in protein conformation. The function of  $Ca^{2+}$  ion bound to I $\alpha$ TI remains to be elucidated. Zinc, on the other hand, induced a significant conformational change at 220–230 nm upon its binding to I $\alpha$ TI (not shown), in agreement with the fact that  $I\alpha TI$  binds to a zinc affinity column (13). In domains 1 and 2 of the H chain, a sequence homologous to the reactive site of the thiol-proteinase inhibitor was also observed. In our preliminary experiments,  $I\alpha TI$ did not show any significant inhibitory activity toward papain. However, calpain I was weakly inhibited by  $I\alpha TI$ . A potential inhibitory activity of the H chain of  $I\alpha TI$  may be sterically hindered, as in the case of  $\alpha_1$ - and  $\alpha_2$ -thiolproteinase inhibitors (25). IaTI may inhibit other thiol protease(s), which have not yet been tested. In any event,  $I\alpha TI$ , whose physiological role(s) still remains to be determined, appears to be a unique multifunctional protease inhibitor. It can inhibit elastase, chymotrypsin, and trypsin (acrosin), and it may also be able to inhibit some types of thiol proteases. These functions may be modified by binding of metal ions such as calcium and/or zinc.

As shown in Fig. 5, the H and L chains are only synthesized in liver. The I $\alpha$ TI derivatives found in the bronchial airways and urinary tract (reviewed in ref. 1) are not synthesized by the lung or kidney tissues, although others have observed mRNA for  $\alpha_1$ m in rat kidney (26). mRNA for the L chain was also absent in an endothelial cell line, although HI-30 has been considered for a potential role as endothelial cell growth factor (27). This may suggest that a receptor for HI-30 molecule is present on the endothelial cell surface.

We are indebted to Dr. R. Benarous for helping with cDNA library screening, Drs. J. H. Heaton, R. Zeheb, T. Gelehrter, and D. Kurnit for providing us with RNAs from human cell lines and RNAs from a human fetus, and Drs. S. Higashiyama and R. Nakamura for performing circular dichroism studies. The secretarial assistance of Ms. E. Vong and Mrs. N. Salier was appreciated. This work was supported by Institut National de la Santé et de la Recherche Médicale, the University of Rouen, and the National Institutes of Health (Grant HL38644 to K.K.). Part of this work was done while J.P.S. was in the laboratory of K.K. at the University of Michigan.

- 1. Salier, J. P., Sesboue, R., Bourguignon, J., Diarra-Mehrpour, M. & Martin, J. P. (1987) in Proceedings of the Second International Symposium on Pulmonary Emphysema and Proteolysis, eds. Mittman, C. & Taylor, J. C. (Academic, New York), pp. 159-166.
- Bourguignon, J., Vercaigne, D., Sesboue, R., Martin, J. P. & 2. Salier, J. P. (1983) FEBS Lett. 162, 379-383.
- 3. Bourguignon, J., Diarra-Mehrpour, M., Sesboue, R., Frain, M., Sala-Trepat, J. M., Martin, J. P. & Salier, J. P. (1985) Biochem. Biophys. Res. Commun. 131, 1146-1153.
- Kaumeyer, J. F., Polazzi, J. O. & Kotick, M. P. (1986) Nucleic Acids Res. 14, 7839-7850.
- Wachter, E. & Hochstrasser, K. (1979) Hoppe-Seyler's Z. 5. Physiol. Chem. 360, 1305-1311.
- 6. Reisinger, P., Hochstrasser, K., Albrecht, G. J., Lempart, K. & Salier, J. P. (1985) Biol. Chem. Hoppe-Seyler 366, 479-483.
- Salier, J. P., Sesboue, R., Vercaigne, D., Bourguignon, J. & 7. Martin, J. P. (1983) Anal. Biochem. 133, 336-343.
- 8. Young, R. A. & Davis, R. W. (1985) in Genetic Engineering, eds. Setlow, J. & Hollaender, A. (Plenum, New York), Vol. 7, pp. 29-41.
- Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular 9 Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY).
- Deininger, P. L. (1983) Anal. Biochem. 129, 216-223. 10.
- 11. Biggin, M. D., Gibson, T. J. & Hong, G. F. (1983) Proc. Natl. Acad. Sci. USA 80, 3963-3965.
- 12. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. (1979) *Biochemistry* 18, 5294–5299. Salier, J. P., Martin, J. P., Lambin, P., McPhee, H. & Hoch-
- 13. strasser, K. (1980) Anal. Biochem. 109, 273-283.
- Ohkubo, I., Kurachi, K., Takasawa, T., Shiokawa, H. & 14. Sasaki, M. (1984) Biochemistry 23, 5691-5697.
- Gariepy, J. & Hodges, R. S. (1983) FEBS Lett. 160, 1-6. 15.
- Sasagawa, T., Ericsson, L. H., Walsh, K. A., Schreiber, W. E., Fischer, E. H. & Titani, K. (1982) Biochemistry 21, 16. 2565-2569.
- Takahashi, N., Takahashi, Y. & Putnam, F. W. (1986) Proc. 17. Natl. Acad. Sci. USA 83, 8019-8023.
- 18. Higashiyama, S., Ohkubo, I., Ishiguro, H. & Sasaki, M. (1987) Biochemistry, in press.
- Erickson-Viitanen, S., O'Neil, K. T. & De Grado, W. F. 19. (1987) in Protein Engineering, eds. Oxender, D. L. & Fox, C. F. (Liss, New York), pp. 201-211.
- 20. Mendez, E., Fernandez-Luna, J. L., Grubb, A. & Leyva-Cobian, F. (1986) Proc. Natl. Acad. Sci. USA 83, 1472-1475.
- 21. Hochstrasser, K., Schonberger, O. L., Rossmanith, I. & Wachter, E. (1981) Hoppe-Seyler's Z. Physiol. Chem. 362, 1357-1362.
- 22. Lorand, L., Credo, R. B. & Janus, T. J. (1981) Methods Enzymol. 80, 333-341.
- 23. Light, N. D. & Bailey, A. J. (1980) in Biology of Collagen, eds. Viidik, A. & Vuust, J. (Academic, New York), pp. 15-38.
- Takagi, T., Konishi, K. & Cox, J. A. (1986) Biochemistry 25, 24. 3585-3592
- Higashiyama, S., Ohkubo, I., Ishiguro, H., Kunimatsu, M., 25. Sawaki, K. & Sasaki, M. (1986) Biochemistry 25, 1669-1675.
- 26. Kastern, W., Bjorck, L. & Akerstrom, B. (1986) J. Biol. Chem. 261, 15070-15074.
- 27. McKeehan, W. L., Sakagami, Y., Hoshi, H. & McKeehan, K. A. (1986) J. Biol. Chem. 261, 5378-5383.