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Abstract

The magnetic resonance contrast of a neuroimaging data set has strong impact on the utility of the
data in image analysis tasks, such as registration and segmentation. Lengthy acquisition times
often prevent routine acquisition of multiple MR contrast images, and opportunities for detailed
analysis using these data would seem to be irrevocably lost. This paper describes an example
based approach which uses patch matching from a multiple contrast atlas with the intended goal of
generating an alternate MR contrast image, thus effectively simulating alternative pulse sequences
from one another. In this paper, we deal specifically with Fluid Attenuated Inversion Recovery
(FLAIR) sequence generation from T1 and T2 pulse sequences. The applicability of this synthetic
FLAIR for estimating white matter lesions segmentation is demonstrated.
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1. INTRODUCTION

A principal goal of the collaboration between the neuroscience and medical imaging
communities is the accurate segmentation of brain structures, with a view towards offering
insight about the normal and abnormal features of a brain. Several methods [1,2] have been
proposed to find cortical and sub-cortical structures. These methods are intrinsically
dependent on the modality and the contrast between tissues. In this paper, we propose a
method to alter the modality of a magnetic resonance (MR) image, thereby changing
intrinsic contrast.

Image contrast is the cornerstone of many tissue classification algorithms. Recent research
has demonstrated that knowledge of all modalities [3] or imaging parameters [4] can
improve the segmentation quality, but this is not an optimal solution for many studies.
Often, not all MR modalities of an image are acquired for reasons such as cost and time
constraints, thus losing an opportunity for detailed multi-modal analysis. In the case of
medical imaging of the brain, there is a huge variability in the structures and tissues under
observation and the choice of acquisition protocol and underlying image contrast can affect
the viability of data. More specifically, it is well established that white matter lesions
(WML) are most prominent in Fluid Attenuated Inversion Recovery (FLAIR) images, while
conventional T1, T2, and PD weighted sequences provide relatively poor contrast for WML
[5]. Fig. 1(c) shows the contrast of lesions in a FLAIR image compared to its T1 (Fig. 1(a))
and T2 (Fig. 1(b)). Most recent lesion segmentation algorithms try to use the lesion
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information from FLAIR [6,7], although some use T1, T2, and PD to detect lesions [8]. In
this paper, we show how to synthesize images that have FLAIR-like contrast for enhanced
lesion detection.

Our approach is based upon the technique known as image hallucination. Image
hallucination [9] is typically used to generate a high-resolution image from multiple low-
resolution acquisitions; in contrast, we use multiple modalities to generate an alternate
modality. The image hallucination approach can be grouped into two major categories,
Bayesian [10] and example-based [11]. Bayesian approaches are often formulated as a
constrained optimization problem where the imaging process is known and the high
resolution image is the maximum likelihood estimator of a cost function given one or more
low resolution images. Example-based hallucination techniques rely on training data from a
codebook or atlas [12] consisting of one or more high resolution images. These methods are
learning based, where the training data at high resolution informs the algorithm how to
extract fine details from the low resolution data.

In this paper, we build upon concepts borrowed from image hallucination to generate
synthetic FLAIR images from a set of T1 and T2 acquisitions. We first describe our example
based image hallucination technique, then we validate the usefulness of synthetic FLAIRs
by comparing the lesions computed from both the synthetic FLAIR and a true FLAIR by
using a WML segmentation tool [7]. We also show that the lesion segmentations obtained
with synthetic FLAIRS are consistent with segmentations produced using real FLAIR
images.

2. METHODS
2.1. FLAIR Synthesis

Given two registered images with T1 and T2-weighted MR contrasts, fr; and fr,, we want to
generate the corresponding FLAIR image, fg . The images are related by a function W,
which depends on underlying T1, T2 relaxation times, and other intrinsic acquistion based
parameters such as pulse repetition time and flip angle. This can be expressed as

[ =W(f:,, frn,other parameters)+, (1)

where n is noise. If W and the underlying parameters are known then fg_ can be directly
estimated [4]. However, for most studies these quantities are not precisely known, and the
complexity of the acquisition process is difficult to precisely model; thus W is rarely known.
For this reason, our strategy is to estimate fr; from f1 and f1 using an atlas.

We define an atlas as a set of co-registered images /= {911, 9712, 9rL, h_} acquired from a
“model” subject g, where gt1, g2 and gr_are T1, T2, and FLAIR images and h_is a hard
segmentation of the lesions. Assume that both f and g are composed of patches fr1(i), fro(i),
and g71(), 9720), grL(), centered at voxels i € Q, j € Qg, where Qf and Qg are the image
domains of f and g respectively. In our experiments, we have used a regular partitioning of
the image domains by 3 x 3 x 2 non-overlapping patches.

We can then generate a synthetic FLAIR image fg_ from the collection of patches g, (i), i €
Qy, as

Fa)=F g (D), @
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where & is a non-local means (NLM) operator [12,13] and

J=arg1(lzﬂn D DI () = 8oy DIP+w (DI s (1) = 8o DIF+AZ (G, (s Fiy (D 812 (s fro (D).
JELL, 3)

Here, A is a smoothing weight, ® is a smoothing function on the atlas gt1 and g72, and wyq
and wr» are spatially varying weighting functions, explained later. ® makes sure that the
patches g11(j) and gr2(j) are chosen such that the boundaries between two neighboring
patches in the reconstructed fr; remain smooth [12]. We use the following smoothness
function:

B (@1 (D Fir 0 82 S @)= ) > 1fy ) = g, DIP+Ifio K) = g1 (DIP).

kEAV,’]GIV_,‘ (4)

Nj and N;j are the neighborhoods of i and j in their respective image domains. Eq. 2 is solved
using a search on all the patch pairs {gr1(j), 912(1)}, ] € Qg The algorithm is visually
explained in Fig. 2. Instead of just taking any patch that minimizes Eqgn. 2, a weighted
average of the “best matching patches™ on Qg are used. They are defined to be those patches
for which the errors from Eqn. 3 are the lowest 1% obtained from all the patches. Define Q
as the set of all “best matching patches™, with Q C Qg, for the patch pair {fr1(i), fr2(i)}
obtained from Eqn. 2. The non-local means filtered patch is obtained from;

;{1(7):@(8“(1),] € Q):Z“.NLM (k, D)gr (k)

keQ

where,

Wy D=gpy O 1y (h—i—rwk)\z
267 285

Wy (K, i):ze(

and B, and B, are empirically chosen smoothing parameters for NLM and Z is a normalizing
constant such that 3, e o WnLm(k, i) = 1. Thus, the algorithm can be described as:

«  For the it patch pair {fr1(i), fr2(i)} in f, search in Qg for the best matching patches
{or10). 972()); j € Qg} from g to solve Eqn. 2.

«  Construct the it patch in fr_ as a non-local weighted average of g, (j)’s, j € Q C
Q.
9

2.2. Choice of atlas and weighting functions wt1 and wty

Our atlas consists of a set of registered T1, T2, and FLAIR images of a subject with WML
and the segmentation of WML in the atlas is known beforehand in hy_. The search of optimal
patches in the atlas space Qg depends on the choice of weighting functions wry and wr».
Given that the lesions in T1 and T2 have similar intensity as cerebrospinal fluid (CSF), we
impose a spatial prior onto the search space of Q4. We use the fact that lesions mostly occur
near ventricles or inside WM. This motivates the use of the hard segmentation of fr; as the
spatial prior. We use the Topology Preserving Anatomy Driven Segmentation (TOADS)
method [2] to find a coarse hard segmentation. TOADS is an atlas based topology
preserving approach and by increasing the atlas weighting of the algorithm, lesions are
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classified as white matter (WM). To distinguish between true CSF and lesions, we impose
the following conditions on the search space,

1 VjeQ, ,N; € WM
wa(D=wp(D=1 1 Vje(Q\h} ,Ni¢ WM
o Vjeh, ,N; ¢ WM

3. RESULTS

3.1. Validation on Lesion Free Data

Our first validation experiment is to generate a synthetic FLAIR from a subject for which we
have a true FLAIR which we use for comparison. This subject is known to be lesion free.
Fig. 3 shows the subject without lesions and the atlas used to generate the synthetic FLAIR.
To evaluate their differences, we use the universal image quality index (UQI) [14] and the
visual information fidelity (VIF) [15] as similarity metrics between the two images. The
UQI and VIF are two metrics that replicate the behavior of human visual system models and
both are considered consistent with subjective quality measurements. Fig. 3(g) shows the
VIF and the UQI between Fig. 3(f) and Fig. 3(h) for each of the slices.

3.2. Lesion Data

We applied our algorithm to real data with lesions to show that the lesion segmentation
provides FLAIR-like results when using the combination of synthetic FLAIR and T1 as
input channels in comparison to input channels of T1 and T2. All of the lesion
segmentations were generated using a validated multi-channel lesion segmentation tool [7].
Fig. 4(c) shows the results of using the combinations of T1 and true FLAIR, which we use
as the reference standard. Fig. 4(f) shows the lesion segmentation from T1 and T2 as input
channel. Finally Fig. 4(i) shows the lesion segmentation from T1 and synthetic FLAIR as
input channels. For Fig. 4(f) and (i), we computed the Dice coefficient [16] with the
reference Fig. 4(c). For the data set shown in Fig. 4, the Dice coefficient of lesion
segmentation between the T1 and T2 compared to the reference was 0.49, while the T1 and
synthetic FLAIR compared to the reference was 0.75. We repeated this experiment on an
additional 14 subjects with the results shown in Table 1. Because of their challenging nature,
Dice scores of 0.6-0.7 for lesion segmentation are considered quite successful [17].

4. DISCUSSION AND CONCLUSION

We have proposed an atlas based image synthesis technique to synthesize an alternate
modality of an MR image. We focused this paper on the application to enhancing lesion
detection in the absence of an appropriate lesion distinguishing modality, namely FLAIR,
though we believe there is broader applicability of this type of image hallucination from a
rich atlas set. We expect that increasing the training set to include multiple number of atlases
would further improve results significantly.
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Fig. 1.
(a) a T1 weighted spoiled gradient recalled (SPGR) image, (b) the T2 and (c) FLAIR
acquisitions of the same subject.
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Fig. 2.

From the subject we take the ith patch pair {fr1(i), fr2(i)} and identify the best possible
matching pairs {gt1(), 912(); ] € Q}. The corresponding FLAIR patches {gr (); ] € Q} are
recombined using a non-local means approach to generate the synthetic FLAIR patch fg (i).
The merging of all such patches generate the synthetic FLAIR fg, .
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Fig. 3.

Synthetic FLAIR generation from real data for a subject with no lesions. (a) T1 atlas (g71),
(b) T2 atlas (g72), (c) FLAIR atlas (ggy), (d) subject T1 (fr1), (e) subject T2 (f12), (f) subject
true FLAIR (fg), (h) Synthetic FLAIR (fz ) generated from the subjects T1 and T2. (g)
shows the Universal Image Quality Index (UQI) and the Visual Information Fidelity (VIF)
between the true and synthetic FLAIRSs for each slice of the image volume. The maximum
possible score for each measure is 1.
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(8) (h) (i)

Fig. 4.

(a) Subject T1, (b) true FLAIR, (c) segmented lesions using T1 + true FLAIR, (d) T1, (e)
T2, (f) segmented lesions using T1 + T2, (g) Segmentation of T1 which is the spatial prior,
(h) Synthetic FLAIR, (i) segmented lesions using the T1 + synthetic FLAIR. The Dice
coefficient between (c) and (f) is 0.49, while it is 0.75 between (c) and (i).
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Table 1

The table shows the results of comparing the best available lesion segmentation reference (using T1 + true
FLAIR data) compared to T1 + T2 and T1 + synthetic FLAIR on 14 subjects. Our synthetic FLAIR almost
doubles the accuracy in estimating the lesions.

Dice Mean | Std. Dev.

T1+T2 0.338 0.140

T1 + Synthetic FLAIR | 0.653 0.095
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