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Abstract:
thermal exposure are of great interest to the food industry. High pressure (HP) and pulsed electric field (PEF) processing
are commercially applied to produce high quality fruit and vegetable products in the United States, Europe, and Japan.
Both microbial and plant cell membranes are significantly altered following exposure to heat, HP, or PEE Our research
group sought to quantify the degree of damage to plant cell membranes that occurs as a result of exposure to heat, HP,

Advanced food processing methods that accomplish inactivation of microorganisms but minimize adverse

or PEE, using the same analytical methods. In order to evaluate whether new advanced processing methods are superior
to traditional thermal processing methods, it is necessary to compare them. In this review, we describe the existing state
of knowledge related to effects of heat, HP, and PEF on both microbial and plant cells. The importance and relevance
of compartmentalization in plant cells as it relates to fruit and vegetable quality is described and various methods for
quantification of plant cell membrane integrity are discussed. These include electrolyte leakage, cell viability, and proton

nuclear magnetic resonance (‘H-NMR).
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Introduction

Fruits and vegetables are important components of the hu-
man diet and consumers today are demanding more minimally
processed products that retain the organoleptic characteristics
of fresh produce (Garcia and Barrett 2002). Consumers per-
ceive fresh produce as healthier, fresher, higher quality and safer
than pre-packaged produce, and higher quality but less safe than
frozen or canned fruits and vegetables (UFPA 2008). There is
an increased awareness of quality attributes including color, tex-
ture, flavor, and nutrient content (De Belie and others 2000;
Waldron and others 2003) and products that provide convenience
are free from additives and preservatives yet retain the attributes
of the fresh-like product are in high demand (Rastogi and others
2007).

Modification of existing food processing techniques and/or
the adoption of novel technologies that allow for production of
higher quality products that are microbiologically secure (Barbosa-
Ciénovas and others 2005) are strategies undertaken to meet these
consumer demands. Clear statements about benefits associated
with a particular food or novel food processing technique (for
example, impact of the technology on taste, convenience, nutri-
tional value, magnitude of the risk the technology reduces, and
effect of the technology on the environment) reduces concerns
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toward the food or technology and improve both its acceptance
and the likelihood of consumption (Bruhn 2007).

Knowledge of cell structure changes that occur as a result of
high pressure (HP), electric field, and thermal processing will
allow for improvement of shelf life and quality of minimally pro-
cessed vegetables in order to maintain “fresh-like characteristics.”
Quantification of the degree of cellular disruption will allow for
the comparison and optimization of preservation processes. Re-
ports on attempts to implement physiological and biochemical
principles in the industrial processing of fruit and vegetables are
not common in the literature, but recent investigations have laid
the foundation for this new area of research and technological
innovation (Gomez Galindo and others 2007).

Plant Cell Integrity and Relevance to Food Quality

Fruits and vegetables represent types of plant tissues that, al-
though they vary greatly in their biological function, are all com-
posed of millions of cells with specialized functions and have a
basic eukaryotic organization. They contain a nucleus, cytoplasm,
and subcellular organelles and are enclosed in a membrane that
defines their boundaries, the plasmalemma, and a cellulosic cell
wall. Figure 1 and 2 are cryogenic scanning electron micrographs
illustrating onion epidermal cells from surface (Figure 1A) and
cross-sectional (Figure 1B) views. Figure 2 illustrates the physical
separation of adjacent cells and individual “packaging” within the
cell wall and plasmalemma. Mature living plant cells contain a
large water filled vacuole that can occupy 80 to 90% of the total
volume of the cell and is surrounded by another membrane, the
tonoplast (Taiz and Zeiger 20006).

It is the presence of membrane-bound compartments or or-
ganelles within plant cells that allow biochemical reactions that are
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essential to life to be segregated (Figure 2). Biological membranes
are bilayers composed of phospholipids that contain proteins in-
serted within the lipid matrix (Taiz and Zeiger 2006). Many of
these proteins form channels through which the cells regulate
themselves with respect to the external medium. Studies show
that the extracellular membranes (plasmalemma) differ from in-
tracellular ones (tonoplast and organelle membranes) in function,
structure, and composition (Andersson and others 2003). Mem-
branes are fluid at physiological temperatures and can lose fluidity
under different conditions with a decrease in phospholipids mo-
tion. At a temperature specific to each type of lipid, the lipids
undergo phase transition from liquid crystalline to a gel phase.
In this gel phase, acyl chains are fully extended and phospholipid
head groups are tightly packed and dehydrated (Crowe and oth-
ers 1998). When gel phases and liquid phases coexist, the lipids
do not pack well and increased leakage occurs. A consequence
of membrane deterioration is the loss of semipermeability of the
membrane, which as a diffusion barrier in the intact plant tissue

(Murray and others 1989; Stanley 1991).

Texture

Texture is one of the main attributes that govern the accept-
ability of a food by a consumer (Mohsenin 1986). In plant tissues,
the state of the cell membranes can change from being partially to
totally permeable, and this can lead to significant changes in tissue
architecture (Rastogi and others 2000).

The presence of an intact plasmalemma, a semipermeable mem-
brane, allows for the maintenance of an osmotic difference be-
tween the inside and outside of the cell. At equilibrium water
potential, the osmotic difference is balanced by a positive hydro-
static pressure within the cells that is acting against the cell walls
and is referred to as turgor pressure (Taiz and Zeiger 2006). Cellu-
lar turgor is an important component of the rigidity and firmness
of plant materials (Ilker and Szczesniak 1990). Although the cell
has different mechanisms to regulate its turgor pressure, it has been
observed that it declines naturally during ripening (Shackel and
others 1991) and is affected during processing (Greve and others
1994). Texture measurements can be used as an indicator of the
integrity of the cell and the tissue (Rojas and others 2001; Llano
and others 2003; Gonzalez and others 2010b).

188K m

Color

Color is imparted to plant tissues by a number of water-soluble
and lipid-soluble pigments. Water-soluble pigments such as the
phenolics and anthocyanins are typically located either in the acidic
plant cell vacuole or in the cytoplasm. Lipid-soluble pigments, on
the other hand, in the intact plant tissue are found in subcellular
organelles such as the chloroplasts or chromoplasts, or associated
with lipid bodies or bilipid membranes. Loss of compartmental-
ization, due to normal senescence or processing-induced changes,
may result in interaction of enzymes and substrates that affect color.

Polyphenol oxidase, for example, is the primary enzyme in-
volved in enzymatic browning (Vimos-Vigyazé and Haard 1981)
and it is initially found in the plastids, while its phenolic substrates
are found in the vacuole. Barrett and others (1991) found that
polyphenol oxidase activity was found in the chloroplast in freshly
harvested Red Delicious apples, but during controlled atmosphere
storage, the enzyme was solubilized and found to predominate in
the soluble fraction of the plant cell. Fresh-cut products in par-
ticular suffer from loss of compartmentalization during cutting
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Figure 2—Cryogenic scanning electron micrograph of the interface between
3 different onion parenchyma cells, with various components labeled.

Figure 1-Cryogenic scanning electron micrograph of onion epidermal cells from the surface (A) and cross section (B) views.
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operations, which allow polyphenol oxidase and phenolics to in-
teract and result in browning of cut surfaces (Garcia and Barrett
2002).

Chlorophyll bleaching, or loss or green color, is another en-
zymatic reaction influenced by loss of compartmentalization.
Lipid-soluble chlorophyll and carotenoids such as lycopene and
B-carotene may be oxidized, resulting in a loss of color, as a result
of loss of compartmentalization.

Flavor

There are a number of plant tissues that have a distinct flavor
or aroma but are perceived only after loss of compartmentaliza-
tion. Intact onions contain the odurless cysteine sulphoxides in
their cytoplasm, but when cells are disrupted, cysteine sulphoxides
are rapidly converted into (alk)enLylsulphenic acid, pyruvate, and
ammonia by the enzyme alliinase (Randle and Lancaster 2002),
which is initially located in the vacuole (Lancaster and Collin
1981). The corresponding thiosulphanates or the lachrymatory
factor (Z)-propanethial-oxide formed by the enzymatic reaction
give the characteristic smell of fresh onion juice. Oft-flavor pro-
duction (Paull and Chen 2000) and an environment for microbial
growth (Barry-Ryan and O’Beirne 2000) have also been associ-
ated with loss of compartmentalization.

Nutrient content

Nutrients typically found in plant tissues include vitamins and
minerals as well as phytonutrients such as phenolics, glucosinolates,
and carotenoids. As stated above, the carotenoids are susceptible to
oxidation by lipoxygenase, which may result in a loss of nutrient
content as well as color (Siedow 1991). Oxidation of phenolic
compounds may not only result in a loss of color, but may also
cause polymerization, and the resultant compounds may not be
as biologically active (Rice-Evans and others 1996). Exposure to
oxygen in general is undesirable from a nutritional point of view,
and loss of tissue compartmentalization may increase availability
and diffusion of oxygen into the plant tissue.

Thermal Processing

Traditional food processing methods have relied on high tem-
peratures as a way to ensure prolonged shelf life and food safety.
However, thermal processes suffer from the limitations of heat
transfer, with a gradient of temperature exposure from the outside
to the inside of the food, with overprocessing causing severe dam-
age to the sensory, nutritional, and functional properties (Butz and
others 2002; San Martin and others 2002).

A number of investigators have used instead mild heat treatments
to improve the shelf life quality of minimally processed products.
This approach is intended to reduce the microbial load and de-
crease enzyme activity (Stanley and others 1995). Minimal food
processing allows consumers to have fresh-like quality fruits and
vegetables that are convenient to consume, but unit operations
such as cutting, slicing, chopping, peeling, so on already cause
loss of cellular integrity as has been discussed above, with changes
in enzymatic activity, ethylene production, respiration, and accu-
mulation of secondary metabolites (Gomez Galindo and others

2007).

Thermal effects on microorganisms

Two levels of physical stress may be distinguished with regard to
the reversibility of membrane changes in microorganisms, for ex-
ample, strong and mild energy stresses (Simonin and others 2007).

Exposure to high temperatures (strong stresses) can cause continu-
ous increases in membrane permeability caused by time-dependant
changes such as lipid phase transitions and protein conformation
changes (Bischof and others 1995), eventually causing cell death.
Membrane fluidity changes may differ significantly, according to
the type of thermal stress. Simonin and others (2007) observed
that a heat shock at 75 °C for 1 min in Saccharomyces cerevisiae
induced irreversible changes in membrane fluidity, as observed by
DPH (1,6 diphenyl-1,3,5-hexatriene) anisotropy. A treatment at
50 °C for 60 min in yeast cells, however, while causing cell death,
also resulted in recovery of the initial membrane fluidity once the
yeast cells were returned to initial conditions. In the same study,
a HP treatment (300 MPa at 25 °C for 10 min) caused tran-
sient membrane perturbations similar to those observed with mild
heat treatment. Cell death may then be associated with permanent
modifications to the membranes as is the case with strong physical
stress, but with transient and reversible modifications in the case
of mild perturbations.

Guyot and others (2005) studied the mechanisms involved in
slow heat gradient induced thermotolerance of S. cerevisiae and
compared yeasts heated slowly from 25 to 50 °C at 0.5 °C/min to
a rapid heat shock at 50 °C. Both conditions were maintained at
this temperature for 1 h. A 50-fold higher survival rate in the slowly
heated yeasts was attributed to changes in the plasma membrane
properties that took place to accommodate the thermal stress.
These changes did not involve protein or intracellular molecular
synthesis. In contrast, in the case of the heat-shocked yeasts, a
complete phospholipid disorganization led to increased membrane
permeability and cell death following the heat shock.

In postharvest fruit and vegetable applications, hot water dips
have been proposed as alternative approaches to chemical treat-
ments for fungal pathogen control. Mild thermal treatments
(45 °C, for 10 or 15 min or 48 °C for 5, 10 or 15 min) for decay
control caused by Botrytis cinerea and Monilia fructigena proved to be
effective on cherries, but not in strawberries where tissue firmness
was greatly affected at these temperatures (Marquenie and others
2002). In blueberries (Fan and others 2008) investigators showed
that 60 °C treatments for 30 s resulted in control of both B. cinerea
and Colletotrichum sp.

Thermal effects on plant tissues

Heating produces alterations in plant tissue microstructure that
influence texture, with tissue softening brought on by loss of tur-
gor pressure and purging of occluded air, thermal degradation of
middle lamella pectins, and other cell wall polysaccharides and
gelatinization of starch (Llano and others 2003).

Mild heat treatments, such as used in pasteurization or blanch-
ing, are designed to destroy pathogenic organisms in some products
and to extend shelf life. Blanching in hot water (70 to 100 °C) or
steam is a preliminary step to inactivate enzymes involved in quality
deterioration of the processed product. Examples are steam treat-
ments of carrot sticks that inactivated phenylalanine ammonia lyase
(PAL), peroxidase (POD), and syringaldazine oxidase (SOX) and
retarded surface discoloration, and formation of soluble phenolics,
isocoumarins, and lignin (Howard and others 1994). Peng and
Jiang (2004) found immersion of fresh-cut slices of Chinese water
chestnut in boiling water for 30 s resulted in complete brown-
ing inhibition after 9 d at 4 °C associated with PAL, polyphe-
noloxidase (PPO), and POD activity. Mild heat treatments at 50
to 55 °C for less than 2 min resulted in improved texture and
shelf life of broccoli and green peppers, and respiration was main-
tained following these mild heat treatments, thereby avoiding any
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deleterious consequences of anaerobic respiration (Yuksel and Bar-
rett unpublished). Mild temperature treatments (70 °C, 2 min) also
enhance the activity of pectin methylesterase (Anthon and Barrett
2006), resulting in increased tissue firmness as a result of a firming
effect due to the cell wall component of texture.

Nevertheless, blanching treatments can have an effect on cell
membranes. In kiwi fruit, blanching times of 5 min resulted in
breakdown of cell membranes as observed by the fluorescein diac-
etate (FDA) viability test, and were closely associated with green
color disappearance, a significant decrease in POD activity, and
significant loss of initial and residual relaxation forces and firmness
(evaluated as F¢/L¢; with Fy = failure force, Ly = failure defor-
mation) (Llano and others 2003). Exposure time and treatment
temperature play a role in membrane susceptibility (Schliiter and
others 2008). A 2 min exposure to 45 °C caused a 75% reduction
of the metabolic activity of fresh lettuce, measured as the maxi-
mum photochemical activity, but this pronounced reduction was
reversible over a 24 h period. In contrast, an increase to 50 °C
treatment caused irreversible damage to the photosynthetic appa-
ratus, indicating transient effects of sublethal temperatures, and a
narrow gap in between which reversible changes at the chloroplast
membrane level occur and result in the complete loss of integrity.

Lurie and others (1997) evaluated a number of heat treatments to
reduce chilling injury in tomatoes at the breaker stage. They found
that hot water dips (30 min at 40 °C or 2 min at 46, 48, or 50 °C)
before holding at 2 °C led to an increase in phospholipid content,
a lower sterol to phospholipid ratio, and more unsaturated fatty
acids relative to the unheated fruits. This can make membranes
more fluid, with better selective permeability and greater respon-
siveness to environmental stress (Bohn and others 2001; Zhang
and Tian 2009). Functional cell membranes prevented cell col-
lapse and therefore hot water dips were effective in mold control
due to elimination of a favorable environment for their growth.

Advanced Processing Technologies

In recent years, a number of novel, alternative, or “advanced”
processing technologies have generated a lot of interest for their
ability to insure microbiologically safe products with long shelf
life and superior quality as compared to conventional thermally

processed foods. Many of these technologies were initially classi-
fied as “nonthermal,” although heat may still be generated during
application of the processes. In general, the temperatures to which
foods are exposed in these advanced processes are relatively low
and may be below pasteurization temperatures (Butz and others
2002; Gerlach and others 2008; Oey and others 2008). For this
reason, there is tremendous potential for production of superior
quality food products. In general, heat adversely affects texture,
color, flavor, and nutrient content. Foods can be processed by
methods such as irradiation, high hydrostatic pressure, ultrasound,
filtration, use of antimicrobials, and electrical methods such as
pulsed electric fields (PEFs), ohmic, microwave, radiofrequency,
light pulses, and oscillating magnetic fields. These methods are
attractive to the food industry because more fresh-like, flavorful,
colorful, and nutrient rich may be produced.

HP processing. High hydrostatic pressure processing 1is
the advanced technology that is being adopted most quickly by
the food industry as a potential alternative to pasteurization of
food products (Basak and Ramaswamy 1998; Welti-Chanes and
others 2005; Rastogi and others 2007). Recently combination
HP high temperature processes are also being studied as steriliza-
tion processes (Matser and others 2004; Rastogi and others 2008).
HPs range from 100 MPa (c. 1000 atm) up to 900 MPa (c. 9000
atm), and pressures used in commercial systems commonly are
between 400 and 700 MPa (San Martin and others 2002). The
extent of temperature increase during pressure application varies
with the composition of the food but is normally 3 to 9 °C/100
MPa (Patterson 2005). Examples of successful HP-treated foods
commercially available are fruit jams and sauces (Cano and de An-
cos 2005), guacamole, sliced cooked hams, oysters, and meal kits
that contain meat, salsa, guacamole peppers, and onions (Patterson
2005). Matser and others (2004) illustrated that temperature ex-
posure during HP processing was much lower than conventional
heat sterilization (Figure 3).

Effects of HP on biochemical reactions

Most biochemical reactions result in a volume change and are
therefore affected by pressure (Patterson 2005). HP treatments fa-
vor biochemical reactions that lead to a volume decrease while
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Figure 3-Temperature in center of can with
spinach (T retort) compared to temperature of the
retort unit (T system). Temperature in center of
pouch with spinach during high-pressure
sterilization (T HP-sterilization). (From Matser
and others 2004.)
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inhibiting or retarding reactions that lead to a volume increase.
Noncovalent interactions constitute the main target for the mod-
ulation of biomolecular characteristics through pressure (Balny
2004). Application of HP to food products results in increased
microbial inactivation, promotes protein conformational changes,
and may enhance enzyme inactivation (Barbosa-Canovas and oth-
ers 2005). Enzymes vary greatly in their ability to withstand pres-
sure (Patterson 2005), with some enzymes activated and others
inactivated by HP.

Boonyaratanakornkit and others (2002) reported that the eftects
of pressure on protein structure and function can vary dramatically
depending on the magnitude of the pressure, the reaction mech-
anism (in the case of enzymes), and the overall balance of forces
responsible for maintaining protein structure. Also, interactions
between the protein and the solvent are critical in determining
the response of a protein to pressure. Most covalent bonds par-
ticipating in the protein primary structure are pressure insensitive,
at least up to 1000 to 1500 MPa. Thus, in the absence of co-
valent bond formation or breaking, the largest contributions are
expected to arise from hydration changes that accompany non-
covalent interactions (Balny 2004). Covalent bonds are negligibly
compressible under pressure and are generally unaffected at the
pressures used in food processing. This means that many of the
components responsible for the sensory and nutritional quality of
foods, such as flavor components and vitamins, are not destroyed
by HP (Patterson 2005), making this technology of interest to the
food industry.

Kato and others (2002) showed in a specific study involving
membrane bound Nat/K* ATPase that HP effects on membrane
damage take place in 3 steps. Pressures below 100 MPa induced
a decrease in membrane fluidity of the lipid bilayer and reversible
changes in transmembrane protein conformation. Pressures of 100
to 220 MPa caused reversible phase transitions in parts of the lipid
bilayer, from the liquid crystalline to the gel phase, and dissocia-
tion and conformational changes in the protein subunits. Pressures
above 220 MPa destroyed and fragmented the membrane structure
due to protein unfolding and interface separation. These changes
explain pressure observed damage to cell organelles at approxi-
mately 200 to 300 MPa in plant cells and microorganisms. Tauc
and others (1998) observed that HP increases the orientational
ordering of fatty acids, no matter whether they are saturated or
unsaturated, while temperature decreases the ordering.

Effects of HP on microorganisms

Yeast cells are interesting to compare to plant cells because of
the presence of a cell wall, a central vacuole, and organelles. Most
microbial cells lack a cell wall, but yeast cells are more similar
to plant cells. Even though the vacuolar composition in yeasts is
mainly lipidic (Hartmann and others 2006), the presence of similar
structures makes it an interesting case for study with respect to plant
cells. In yeast cells, no alterations in the subcellular structure were
observed below 100 MPa, but at around 200 MPa transmission
electron microscopy results indicated an alteration in subcellular
structure, where the nucleus membrane pores were shown and
morphological changes in mitochondria were observed, resulting
in the yeast cells being incapable of growth (Sato and others 1995).

Hartmann and Delgado (2004) studied the mechanical effects
of compression in yeast cells by modeling and simulation, taking
into account material parameters derived from thermodynamic
relationships of water and lipids under high hydrostatic pressure. It
was found that the deformation of the cell under pressure deviates
strongly from isotropic volume reduction, and in particular or-

ganelle membranes exhibit 80% eftective strain value at 400 MPa.
These authors showed that the presence of different material re-
sistances in a cell generated a heterogeneous distribution of strains
with consequently substantial deformations, with excessive strain
on organelle membranes and excessive stress in the cell wall, and
concluded that high hydrostatic pressure treatment may mechani-
cally injure biological cells and tissues.

In bacteria, Lactobacillus plantarum showed inactivation of the
membrane transport system at relatively low pressures of 200 MPa,
which represented a sublethal injury but did not affect the vi-
ability of the cell (Ginzle and others 2001). In Escherichia coli,
Manas and Mackey (2004) determined that the pressure resistance
of the stationary phase was much higher than that of exponen-
tial phase cells, both types presenting aggregation of cytoplasmic
proteins and condensation of the nucleoid after treatment at 200
MPa for 8 min. In addition to these events, exponential phase
cells showed perturbations of envelope structure, loss of osmotic
responsiveness, and loss of protein and RNA to the extracellu-
lar medium. Based on this evidence, the authors proposed that
exponential phase cells were inactivated under HP by irreversible
damage to the cell membrane. In E. coli, Casadei and others (2002)
determined that there was a relationship between culture growth
temperature, membrane fatty acid composition, and pressure resis-
tance in exponential and stationary phase cells. Deep-sea bacteria
have been studied to understand the adaptive changes in response
to the increase in pressure. It was found that a greater amount
of unsaturated fatty acids in the membrane lipids was present
(DeLong and Yayanos 1985; Yano and others 1998). In S. cere-
visiae, mutant strains that lacked the ability to accumulate tre-
halose, a molecule that can play a role in stabilizing membranes
(Crowe and others 2001), and/or accumulate heat shock proteins
showed less barotolerance than the control strain when exposed to

180 MPa (Iwahashi and others 1997).

Effects of HP on plant tissues

Changes in cell biopolymers (proteins, polysaccharides, and
lipids) occur during HP treatments. Pressure induces changes
in polysaccharides, which can affect their functionality and the
texture/structure of plant foods (Butz and others 2002; Butz and
Tauscher 2002; Cano and de Ancos 2005). Protein structure (un-
folding, aggregation, gelation) and fat crystallization have been
shown to take place as a result of HP treatment.

Textural changes in plant tissues caused by pressure treatments
may result from physical disruption of the tissue. Prestamo and
Arroyo (1998) observed cellular structure changes and membrane
folding of cauliflower and spinach leaves after HP processing at
400 MPa with cryofracture scanning electron microscopy. Micro-
scopic studies of onion epidermis cells revealed severe damage to
the vacuoles after 300 MPa treatments at 25 °C, with the odor
of fresh onions changed toward that of braised or fried onions,
and a strong increase in 2-methyl-pent-2-enal, one of the main
products of alliinase (Butz and others 1994). Luscher and others
(2005) stated that the membrane damage extent of vegetable tis-
sue might be influenced by the relative rigidity of the gel-phase
membranes and that a better understanding of the state of the
membranes after the pressure treatments, with or without phase
transitions, might give an explanation for the extent of cell via-
bility, drip loss, and changes in texture related to turgor pressure
in plant tissue materials. Measurement of the maximum photo-
chemical efficiency in lettuce, which is a physiological indicator
of photosynthetic activity and therefore cell viability and tissue
vitality (Schliiter and others 2008), showed that HP treatments
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of 150 MPa caused irreversible cell damage, and critical changes
in the chloroplastic membrane integrity. Below 150 MPa, tran-
sient changes in the membrane can be inferred since there was
an initial decrease in maximum photochemical efficiency, with
recovery observed during a 24 h period. Cell damage in this study
was affected by pressure level and treatment durations.

Kato and others (1997) studied the eftect of HP on pectic sub-
stance degradation and tissue softening. No degradation of pec-
tic substance was observed after 45 min at 700 MPa. However,
the degree of esterification decreased in pressurized carrot disks,
suggesting pectin methyl esterase activity occurred. Similar re-
sults were observed by De Roeck and others (2008), following
the molar mass distribution of pectin polysaccharides in carrots in
brine treated at high temperature and atmospheric pressure (80 °C,
0.1 MPa) and under a HP sterilization treatment (80 °C, 600 MPa).
Their results indicated that solubilization of cell wall components
occurred as a result of high-temperature processing, whereas the
combination of high temperature and pressure processing did not
solubilize the cell wall.

Butz and others (2002) determined that vegetable matrices had
altered water retention after HP treatments, where the water re-
lease of tomato pulp measured after centrifugation indicated that
600 MPa, 60 min treated samples had much lower water release
than the 95 °C, 60 min, and the untreated samples. This change
in the water release observed was attributed to the strong effect
HP has on the structure of macromolecules, affecting binding
properties of polar and nonpolar substances.

Roldin-Marin and others (2009) showed that the processing
of onion (Allium cepa L. var. cepa, “Grano de Oro”) with treat-
ments that combine low temperature (5 °C) with pressures of 100
and 400 MPa for a constant time (5 min) significantly increased
the amount of total phenols extracted from onion. Low temper-
ature pressure processing resulted in an increase in quercetin-4’-
glucoside, total quercetin, and quercetin-3,4’-diglucoside yields of
33, 26, and 17%, respectively, as compared with untreated onions.
Moreover, processing onions at low (5 °C) and medium (27.5 °C)
temperatures, combined with a HP of 400 MPa maintained the
antioxidant activity of the untreated onions and there was a trend
toward an increase in antioxidant activity in pressurized onions as
pressure levels were raised from 100 to 400 MPa. Disruption of
cellular compartmentalization may be desired, as it may lead to im-
proved bioaccesability (Verlinde and others 2008) and extraction
yield (Oey and others 2008) of certain nutrients.

Electric field processing. Over the past 20 y, there has been
a tremendous increase in the published literature related to the
potential use of different parts of the electromagnetic spectrum,
such as ohmic, moderate and PEFs, infrared and microwaves, to
process foods. In general, field strengths of E < 100 V/cm are
considered to be low intensity electric fields, while E in the range
of 0.1 to 1 kV/cm are considered to be moderate electric fields, and
E > 5 kV/cm are considered to be high-intensity electric fields

(Fincan and Dejmek 2002; Lebovka and others 2002; Rastogi
2003; LoefHler 2006). A typical setup for PEF applications includes
a power supply, function and pulse generator, sample chamber
with 2 electrodes, and data acquisition system such as depicted in
Figure 4 (Asavasanti and others 2010).

As with HP applications, these methods may hold promise for
production of higher quality preserved foods due to their inherent
ability to uniformly and simultaneously treat the entire food.

Electric field effects on microorganisms

In a review by Raso and Barbosa-Canovas (2003), the authors
stated that PEFs are very effective at killing vegetative cells of bac-
teria, yeast, and mold but may be less effective at destroying spores
and enzymes. Application of high-intensity electric fields results
in increased permeability of microbial and plant cell membranes,
creating reversible, and/or irreversible pores in the primarily lipid
membrane structure. For microbial cells, this quickly leads to cell
death. The mechanism by which PEFs inactivate microorganisms
is not completely understood, but Heinz and others (2002) sug-
gested that damage to the cell membrane is the primary response
causing microorganisms to die following PEF processing. These
authors described a critical level of PEF application above which
microbial inactivation occurred.

Previous studies have found that plant tissue disruption under
PEF treatments can be achieved at room temperature using mod-
erate electric fields of 0.5 to 5.0 kV/cm within 107 to 1072 s,
whereas for breakdown of microbial membranes, field strengths
of 15 kV/cm, and higher are required (Dunn 2001; Lebovka and
others 2001, 2002). Wouters and others (2001) found a linear re-
lationship between microbial inactivation and percentage of per-
meabilized cells, up to a 3.6 log reduction, using electric fields
between 12 and 15 kV/cm. These authors stated that the primary
process parameters that affect microbial inactivation are the elec-
tric field strength, number of pulses, duration and shape of pulses,
and initial product temperature.

Electric field effects on plant tissues

Knorr and others (2001) reviewed food processing scenarios
that would benefit from the application of PEFs to increase mass
transfer and therefore assist with osmotic dehydration or expres-
sion of plant cell extracts. These authors described the effects of
high electric field pulses (HELP) on various plant tissues, as illus-
trated in Table 1. Because electric fields increase the permeability
of membranes that retain the primarily liquid cell contents, they
create larger openings through which water can be diftused to
dehydrate and concentrate plant tissues, and also if these open-
ings are reversible they provide for easier introduction of desirable
components such as nutrients or flavor compounds.

Most commercial PEF applications to date have been on liquid
products such as juices, but there is 1 commercial operation that
utilizes PEF for extraction of beet sugar (Heinz and others 2002).

Function |
Genarator |
—

Figure 4-Schematic diagram of the pulsed
electric field treatment system.

_Sample and
sample holder

R126 Journal of Food Science ¢ Vol. 75, Nr. 7,2010



Advanced processing and cell integrity. ..

Angersbach and others (1999) have suggested that PEF treatment
of plant tissues can initiate separate membrane breakdowns of the
plasma membrane and the tonoplast membrane, giving rise to 2
possible critical electrical field strengths. However, they did not
present data to support their hypothesis. Application of PEFs of
sufficient strength and pulse number results in not only membrane
changes but also removal of the turgor component of texture
(Lebovka and others 2003). Lebovka and others (2004) studied
the effect of PEF treatments on textural properties of carrots,
potatoes, and apples, reporting that PEF resulted in loss of turgor
and rupture of cell membranes.

Quantification of Cell Membrane Permeability and/or
Integrity in Plant Tissues

In plants, cell membranes are one of the first targets of plant
stress, and alterations in membrane structure may cause a modifi-
cation of cellular compartmentalization (Vazquez-Tello and others
1990). From a biological point of view, mild processing of plant
tissue will mimic stress conditions, therefore knowledge of how
the plant material will be affected in relation to different food pro-
cessing manipulations is fundamental for quality assurance and
process optimization (Gomez Galindo and others 2007). The
quantification of cellular disruption in plant tissues, imparted by
the loss of membrane integrity, will allow correlate the cell struc-
ture changes occurring at the molecular and microscopic level
to the functionality and quality of fruit and vegetable products
(Knorr 1994; Angersbach and others 1999). Cell membrane de-
terioration may be assessed in many different ways, for example,
changes in composition, structure, or function such as fluidity or
permeability, or by the loss of protein functionality. In living cells
and multicellular tissues, membrane permeability has previously
been estimated using a number of methods, including measuring
conductivity of leachates and solids lost during soaking and vol-
ume exudates (Vasquez-Tello and others 1990), light scattering,
fluorescence microscopy and volume-sensitive fluorescent indica-
tors (Stanley 1991; Verkman 2000), electrical impedance (Rastogi
and others 1999), and nuclear magnetic resonance (Van Der Weerd
and others 2001, 2002). Some of the methods that have been used
in plant tissues to test for cell membrane permeability and/or in-
tegrity in intact and processed plant tissues are briefly described
below.

Electrolyte leakage

The amount of ion efflux into a solution plant tissue is im-
mersed in has long been used as a measurement of the intactness
and permeability of cell membranes (Murray and others 1989;
Vasquez-Tello and others 1990). The relationship between con-

Table 1-Changes in fruit juice composition following pre-
treatments with pulsed electric fields' (adapted from Knorr and
others 2001).

Compositional factor Grapes Apple Black currant
Total solids (°Brix) Higher Higher Same
Density (g/mL) Higher Same Same
Acidity (meq/L) Higher Higher Higher
pH Lower Higher Same
Conductivity (ms/cm) Higher Higher Higher
Turbidity Lower Higher Lower
Pectins Lower Higher Higher
Proteins Higher Same Higher
Ascorbic acid Higher

'PEF treatments were 2 to 3 kV/cm, 20 to 40 pulses at the rate of 0.7 ms.

ductivity (the electrolyte concentration in solution) and time has
been shown to follow an asymptotic curve and may be represented
by a Ist-order reaction equation, where the rate of leakage varies
with the extent of tissue damage (Murray and others 1989). The
initial fast increase in conductivity has been associated with pas-
sive physicochemical processes (diffusion, adsorption/desorption)
in the apoplast, while the 2nd slower stage is attributed to the
functional activity of the plasmalemma (Kocheva and others 2005;
Saltveit 2002). Increased injury, as indicated by the net leakage,
may result from either an increased efflux due to damage to the
semipermeability of the plasmalemma, or a decreased influx due
to damage to the active transport system (Palta and others 1977).
Lack of selectivity regarding the contribution of different ions, as
well as the interpretation in terms of physicochemical and electro-
chemical parameters of the membranes are some of the limitations
to this method (Kocheva and others 2005).

Cell viability

The determination of viable cells by membrane integrity assays
rely on the uptake and active retention of dyes such as neutral red
(Admon and Jacoby 1980; Ehara and others 1996) and fluorescein
(Heslop-Harrison and Heslop-Harrison 1970) in living cells, or
passive staining of the contents of dead cells with dyes such as Evans
blue, that leaks through ruptured cells (Baker and others 1994).
The FDA method as described by Heslop-Harrison and Heslop-
Harrison (1970) has been used for fleshy fruit tissues in developing
grapes (Krasnow and others 2008) and in cucumber tissue (Sajnin
and others 2003). This method detects active cellular metabolism
by the conversion of FDA, a nonpolar nonfluorescent fluorescein
analogue that passes through the cell membrane, whereupon in-
tracellular esterases cleave off the diacetate group, producing the
highly fluorescent product, which accumulates in cells with intact
membranes. Fluorescent dyes have also been used for microor-
ganisms, where, for example, flow cytometric analysis has been
applied to study cell membrane site injuries to identify viability of
bacterial populations (Ananta and others 2005).

A nonfluorescent dye, widely used for cell viability and plant
cell vacuole staining (Admon and Jacoby 1980) is neutral red.
This azine dye is uncharged and nonionized in alkaline solutions,
diffuses across membranes due to its lipophilic nature and ionizes
and accumulates in the acidic vacuolar medium, appearing as dark
red colored vacuoles in intact cells (Ehara and others 1996; Fincan
and Dejmek 2002). The penetration of the dye into the tissue
depends on the integrity of the cell membrane and the capacity
to maintain pH gradients (Repetto and others 2008).

TH-NMR

The application of NMR imaging and relaxometry studies of
plants subjected to stress has proven to be a valuable technique for
reflecting anatomical details of the entire tissue and water status
(Van Der Weerd and others 2001, 2002). 'H-NMR studies on
intact plant tissues have shown that spin lattice (T) and spin—spin
(T,) relaxation times can be related to the water content of
the tissue, the properties of water in different parts of the tissue
and the interaction with macromolecules, discriminating difter-
ent populations of water within the tissue. The exchange rates
between the cellular compartments are controlled by the perme-
ability of the intervening membranes (Snaar and Van As 1992a,
1992b; Van Der Weerd and others 2002). Protons with a short
relaxation time are associated with the extracellular (apoplastic)
water and with the total tissue water of hydration, while protons
with a long relaxation time are associated with the intracellular

Vol. 75,Nr.7,2010 « Journal of Food Science R127

R: Concise Reviews

in Food Science



800819 pood Ul
SMaIABY 8SI9U0Y Y

Advanced processing and cell integrity. ..

water (Snaar and Van As, 1992b; Van Der Weerd and others 2002).
A loss of cellular compartmentalization results in an exchange of
water protons between the less mobile extracellular water as well
as the tissue water of hydration and the more mobile intracellular
water, contributing to the decline in the spin—spin relaxation time,
T, (Hills and Remigereau 1997; Maheswari and others 1999).

"H-NMR diffusion experiments can also be used to determine
properties of the cell boundaries (Anisimov and others 1998; Io-
nenko and others 2006). The bulk diffusion coefficient depends
on the temperature and viscosity of the fluid as well as the bound-
aries encountered that will restrict diffusion of the water molecules
(Van As 2007). Ionenko and Anisimov (2001) demonstrated with
a spin-echo NMR method that the roots of maize seedlings ex-
posed to treatments that destroyed cell membranes, for example,
nitrogen vapurs, boiling water vapur, diethyl ether and low tem-
perature (—10 °C), had an increase in the diffusion coefficient
with respect to the untreated roots. Using T,-diffusion correla-
tion spectroscopy in pears, Hernindez-Sanchez and others (2007)
found that fruit with internal browning, a disorder that devel-
oped during storage in controlled atmosphere that leads to cell
de-compartmentalization and browning reactions, had higher dif-
fusion coefticients of the 2 compartments determined than those
of the sound tissue.

Research Approach

The accompanying 6 manuscripts aim to understand the ef-
fects on plant tissues of HP and electric field processing, 2 of the
most prominent new technologies being quickly adopted by the
food industry. Cell membranes are one of the 1st targets of plant
stress and many food processes impact membrane integrity, causing
detrimental quality as a result of undesired biochemical reactions
and loss of texture attributes. Different methods, of different com-
plexity and accessibility, that allow quantification of changes in
membrane permeability and integrity were evaluated and related
to texture changes in onions after HP, electric field, and thermal
processing.

The manuscripts by Gonzalez and others (2010a) as well as by
Gonzalez and others (2010b) are an anatomical and cytological
approach to cell integrity quantification. Neutral red, a dye com-
monly used to evaluate cell viability and integrity of plant vacuoles
was used. Image analysis was used as a quantification methodology.
In the 2nd manuscript, texture analysis of raw and processed sam-
ples was carried out and the different texture parameters studied
were correlated to cell membrane integrity.

In the manuscript by Gonzalez and others (2010c) '"H-NMR
was used as a quantification method to study cell integrity after HP
and thermal processing. 'H-NMR relaxometry was used as a tool
to determine the changes in the different proton environments
within the raw and processed tissue and obtain information on
cell compartmentalization.

The 4th manuscript presents a biochemical approach by Gon-
zalez and others (2010d) and the products of enzymatic reactions,
which are formed after loss of cell of compartmentalization, were
monitored as indicators of cell rupture. The leakage of electrolytes
into solution, frequently used to evaluate membrane damage, was
compared. An integration of all methods was used to determine
changes in membrane permeability and integrity. There was strong
agreement between methods in the determination of the ranges
of HP and temperature that induce changes at the plasmalemma
and tonoplast level.

The 5th and 6th manuscripts in this series evaluate another
method of minimal processing, PEFs, using the same model onion
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tissue, and many of the same methods of quantifying effects on
membrane integrity. The manuscript by Asavasanti and others
(2010) measures the electrical properties, ion leakage rate, texture
and amount of enzymatically formed pyruvate before and after
PEF treatment for a range of applied field strengths and number
of pulses. The last manuscript, by Ersus and others (2010), uses
"H-NMR and ion leakage to evaluate the effects of electric field
strength, pulse width, total pulse duration, and frequency on the
integrity of onion tissues.

Conclusions

The quantification of changes that plant tissues undergo at the
macroscopic, microscopic, and molecular level as a result of food
processing will allow for a better comprehension of how tissue
structure impacts the texture, color, flavor, and nutrient content
of fruit and vegetable products. This review emphasizes the effects
of HP and electric field processing, 2 of the most prominent new
technologies being quickly adopted by the food industry, and their
impact on biological tissues as compared to thermal processes.
Plant cell membranes are one of the 1st targets of plant stress,
where small increases in the level of physical stress applied, may
make the difference between reversible and irreversible membrane
changes. Many food processes are above these threshold limits and
impact membrane integrity, causing detrimental loss of texture
attributes and affecting their “fresh-like” quality. Some methods
that will allow for cell membrane integrity quantification in plant
tissues were discussed and were evaluated in the accompanying
manuscripts, where the effects of HP, pulse electric filed, and
thermal processing on cell membrane integrity at the tonoplast
and plasmalemma level were determined.
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