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ABSTRACT

Methods for efficient and accurate prediction of RNA structure are increasingly valuable, given the current rapid advances in
understanding the diverse functions of RNA molecules in the cell. To enhance the accuracy of secondary structure predictions,
we developed and refined optimization techniques for the estimation of energy parameters. We build on two previous
approaches to RNA free-energy parameter estimation: (1) the Constraint Generation (CG) method, which iteratively generates
constraints that enforce known structures to have energies lower than other structures for the same molecule; and (2) the
Boltzmann Likelihood (BL) method, which infers a set of RNA free-energy parameters that maximize the conditional likelihood
of a set of reference RNA structures. Here, we extend these approaches in two main ways: We propose (1) a max-margin
extension of CG, and (2) a novel linear Gaussian Bayesian network that models feature relationships, which effectively makes
use of sparse data by sharing statistical strength between parameters. We obtain significant improvements in the accuracy of
RNA minimum free-energy pseudoknot-free secondary structure prediction when measured on a comprehensive set of 2518
RNA molecules with reference structures. Our parameters can be used in conjunction with software that predicts RNA
secondary structures, RNA hybridization, or ensembles of structures. Our data, software, results, and parameter sets in various
formats are freely available at http://www.cs.ubc.ca/labs/beta/Projects/RNA-Params.
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INTRODUCTION

Thermodynamics-based computational methods for predic-
tion of RNA secondary structure are widely used to advance
our understanding of the enzymatic and regulatory roles of
cellular RNA (Khvorova et al. 1999; Hutvágner et al. 2001;
Lagos-Quintana et al. 2001; Miranda-Rios et al. 2001; Kimb
et al. 2004). They also aid in the design of novel RNA
molecules that can act as aptamers or enzymes (Tang and
Breaker 2000; Penchovsky and Breaker 2005), help regulate
gene expression (Bayer and Smolke 2005; Shabalina et al.
2006; Beisel et al. 2008; Lu and Mathews 2008), or respond
to molecular inputs according to logic rules (Rinaudo et al.
2007).

Thermodynamics-based methods typically find the struc-
ture with minimum free energy (MFE), from the set of all
possible structures for a given RNA sequence. Currently, the
‘‘Turner’’ free-energy model of Mathews et al. (1999a, 2004)
is the most widely used choice for calculating the free energy
of pseudoknot-free structures. However, MFE predictions
by the Turner model achieve only 60% F-measure on av-
erage, where F-measure is the geometric mean of sensitivity
and positive predictive value for base-pair prediction. To
achieve more accurate predictions, researchers must pro-
vide structural clues that guide the prediction software or
use comparative sequence analysis. The former is relatively
expensive, requiring experimental analysis of the structure
via chemical modification (Wilkinson et al. 2008) or NMR
(Hart et al. 2008) to obtain the clues, and the latter is only
possible when multiple homologous sequences from sev-
eral organisms are available (James et al. 1989). For these
reasons, methods that improve the accuracy of secondary
structure prediction from a single sequence alone are very
valuable.
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In this work we develop new methods and data sets for
deriving optimized energy parameters for the features (i.e.,
structural fragments, such as stacked pairs and various types
of loops) of the Turner free-energy model and variants. We
focus on the Turner model because its features are embed-
ded in most available methods for prediction of MFE
(Hofacker et al. 1994; Mathews et al. 1999a; Andronescu
2003) and suboptimal (Zuker 1989; Wuchty et al. 1999) sec-
ondary structures, partition function calculation (McCaskill
1990), Bayesian statistical prediction approaches (Ding
2006), prediction of oligonucleotide affinity to nucleic acid
targets (Mathews et al. 1999b; Rehmsmeier et al. 2004;
Lu and Mathews 2008), and simulation of RNA folding
kinetics (Flamm et al. 2000; Xayaphoummine et al. 2003;
Tang et al. 2008). Thus, improved parameters could im-
mediately be used by all of these methods.

Our work builds on over three decades of parameter es-
timation for the Turner energy model and its predecessors
(Tinoco et al. 1973; Xia et al. 1998; Mathews et al. 1999a,
2004). Two types of training data sets are used in parameter
estimation: Structural data sets are comprised of sequence–
structure pairs from the literature, and thermodynamic data
sets are comprised of sequence–structure–energy triples,
where the energies have been determined experimentally.

The current Turner parameters, namely, those of Mathews
et al. (1999a, 2004), were estimated using a variety of tech-
niques. For some features, parameters were inferred using
linear regression from thermodynamic data (Xia et al.
1998). For features where thermodynamic data is sparse
or not available (e.g., for multiloops), genetic (Mathews
et al. 1999a) and grid search algorithms (Mathews et al.
2004) were applied primarily to structural data. A disad-
vantage of this approach is that parameters for some fea-
tures were already fixed before other parameters were cal-
culated; this limits the range of possibilities considered for
the overall parameter set.

Do et al. (2006, 2007) considered a model similar to the
Turner model, but in which parameters are not free-energy
changes, because they are not normalized. To estimate pa-
rameters, they maximize the conditional likelihood of a
structural data set and use a gradient-based method to in-
form the estimation procedure. While the techniques of Do
et al. (2006) improve on those used by Mathews et al.
(1999a), the Do et al. (2006) parameter set is not informed
by thermodynamic data, cannot be used by software that
incorporates the Turner model, and does not reliably de-
termine free-energy changes (which are important, for ex-
ample, in determining siRNA-binding affinities) (Lu and
Mathews 2008).

In our earlier work (Andronescu et al. 2007), we de-
scribed a Constraint Generation (CG) method to estimate
Turner parameters. This method uses different types of
constraints to ensure that the energy of reference structures
are low, relative to alternatives for the same sequence, and
also that parameter values respect the thermodynamic data.

We applied CG to substantially larger data sets than used in
previous work and obtained a 5% improvement in pre-
diction accuracy over the Turner parameters. We also
proposed, but did not run on large data sets, a conditional
maximum likelihood approach (here called Boltzmann
Likelihood) that incorporated thermodynamic data.

In this work we extend earlier approaches in several
directions. First, we expand previous data sets to incorpo-
rate the latest reference structural and thermodynamic data
from available databases and the literature. Second, we
describe a Loss-augmented Max-margin Constraint Gen-
eration (LAM-CG) method; parameters are constrained so
that the more inaccurate a structure is for a sequence in the
structural training data set, the greater the margin (differ-
ence) between its free energy and that of the reference struc-
ture. Third, we provide the first analysis of the Boltzmann
Likelihood (BL) method for the Turner model on a large
data set. Our BL procedure is informed by thermodynamic
as well as structural data. Parameter sets obtained from
LAM-CG achieve 68% F-measure, and those obtained from
BL achieve 69% F-measure, both significant improvements
over our earlier CG parameters (65%) and the original
Turner parameters (60%). Fourth, we model relationships
between features; these relationships can then be exploited
so that reliable estimates of parameters for some features
(e.g., those that are covered by thermodynamic data) can
improve estimates of closely related parameters. When
BL exploits feature relationships, the resulting algorithm,
BL-FR, produces parameters with 70% F-measure, slightly
better than either BL or LAM-CG. Thus, our best parame-
ters, obtained by BL-FR, improve the accuracy of MFE-based
RNA secondary structure prediction by z10%, compared
with the Turner parameters, and also yield energy pre-
dictions that are consistent with available experimental data.

We present several other analyses that provide further
insight with respect to: accuracy of our best parameters on
subfamilies of RNA structures (such as tRNAs); sensitivity
of parameter accuracy to the size and composition of the
structural data sets; and accuracy of parameters obtained
for variants of the Turner model.

Our data, software, results, and parameter sets in various
formats (including Vienna RNA and mfold formats) are
freely available at http://www.cs.ubc.ca/labs/beta/Projects/
RNA-Params.

MATERIALS AND METHODS

We start by presenting the data sets and accuracy measures
we use in this work, followed by a description of the Turner
energy model variants that are the focus of our work. Next,
we briefly describe the Constraint Generation algorithm
that was proposed in our previous work (Andronescu et al.
2007) and present our maximum margin extension. Then,
we present the Boltzmann Likelihood (BL) algorithm, which
we had briefly discussed previously (Andronescu et al. 2007),
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but which we had not run on large
training data sets. Finally, we propose a
novel way to model relationships between
the features of the model. The presenta-
tion throughout is kept at a high level.
Details needed, for example, to reproduce
the algorithms, can be found in the Sup-
plemental Material.

Data sets

We collected a structural set denoted
by S-Full that contains 3245 RNA se-
quences with known secondary struc-
tures from the RNA STRAND v2.0 data-
base (Andronescu et al. 2008). This set
contains a large number of ribosomal RNA molecules
(Cannone et al. 2002), transfer RNAs (Sprinzl and Vassilenko
2005), transfer messenger RNAs (Andersen et al. 2006), ribo-
nuclease P RNAs (Brown 1999), signal recognition particle
RNAs (Andersen et al. 2006), and secondary structures in-
ferred from tertiary structures (Berman et al. 1992; Westbrook
et al. 2003). We applied processing steps to obtain structures
that can be predicted by the features of the Turner model and
to reduce the uncertainty in the data. These steps include
shortening the structures to be at most 700 nucleotides in
length and the removal of the minimum number of base pairs
that close pseudoknots, of noncanonical base pairs, of struc-
tures with unknown nucleotides, and of overly large loops
(i.e., 50 for hairpin loops, bulges, and internal loops, and 100
for multiloops; these are removed because we suspect the
unpaired bases in such large loops do form structure, but the
structure is not yet known). A subset of S-Full was used in our
previous work (Andronescu et al. 2007).

Following standard practice for parameter estimation,
we split S-Full into two parts: roughly 80% for training
(S-Full-Train) and the remaining fraction of z20% for test-
ing (S-Full-Test) the accuracy of our parameter sets. Table
1 provides a summary of these and our other data sets. In
addition, in order to assess the accuracy of our parameters
on large RNA families and on strands that are longer than
those used in training, we created the set S-STRAND2,
which contains 2518 structures. Unlike the S-Full data set,
which contains structures of only up to 700 nucleotides in
length, S-STRAND2 also contains long molecules, includ-
ing 187 small subunit ribosomal RNAs of average length
1276 nucleotides and 52 large subunit ribosomal RNAs of
average length 2684 nucleotides (there is a large overlap
between S-Full and S-STRAND2). We evaluate the pre-
diction accuracy of our parameter sets and sets from the
literature on S-STRAND2. Table 1 shows the number of
sequence–secondary structure pairs, average length, and
standard deviation of length for these structural sets.

Secondly, we collected a thermodynamic set denoted by
T-Full that contains data from 1291 optical melting

experiments, published in 53 research articles (Freier
et al. 1986; Sugimoto et al. 1986, 1987; Groebe and
Uhlenbeck 1988, 1989; Longfellow et al. 1990; SantaLucia
et al. 1990, 1991a,b ; Antao et al. 1991; He et al. 1991; Peritz
et al. 1991; Antao and Tinoco 1992; Serra et al. 1993, 1994,
1997, 2004; Walter et al. 1994; Morse and Draper 1995; Wu
et al. 1995; Laing and Hall 1996; McDowell and Turner
1996; McDowell et al. 1997; Schroeder et al. 1996, 2003; Xia
et al. 1997, 1998; Giese et al. 1998; Kierzek et al. 1999;
Meroueh and Chow 1999; Dale et al. 2000; Schroeder and
Turner 2000, 2001; Burkard et al. 2001; Diamond et al.
2001; Mathews and Turner 2002; Proctor et al. 2002;
Znosko et al. 2002, 2004; Chen et al. 2004, 2005; Mathews
et al. 2004; Vecenie and Serra 2004; Bourdélat-Parks and
Wartell 2005; O’Toole et al. 2005, 2006; Chen and Turner
2006; Shankar et al. 2006; Vecenie et al. 2006; Badhwar et al.
2007; Davis and Znosko 2007; Tolbert et al. 2007; Christiansen
and Znosko 2008) (a subset of this set was used in our pre-
vious work) (Andronescu et al. 2007). Because the thermo-
dynamic data is valuable in that it provides free-energy change
information, and because it is relatively sparse (i.e., most of
the experiments cover different features), we use the entire
T-Full for training, and none for testing.

Accuracy measures

We measure the accuracy of a predicted RNA secondary
structure relative to a reference secondary structure using
the statistical measures sensitivity and positive predictive
value (PPV). Sensitivity represents the ratio of correctly
predicted base pairs as compared with the base pairs in the
reference structures, while PPV represents the fraction of
correctly predicted base pairs out of all predicted base pairs:

sensitivity =
# correctly predicted base pairs

# base pairs in the reference structure
; ð1Þ

PPV =
# correctly predicted base pairs

# predicted base pairs
: ð2Þ

TABLE 1. Name, description, number of sequences, average length, and standard
deviation in length of the structural and thermodynamic data sets used in this work

Data set Description No. Length Avg 6 STD

S-STRAND2 Structural set used for the evaluation of
secondary structure prediction accuracy

2518 330.9 6 503.2

S-Full Structural set (maximum length 700
nucleotides) used for the training and
testing of RNA free-energy parameters.
There is a large overlap between S-Full
and S-STRAND2.

3245 269.6 6 185.2

S-Full-Train ;80% of S-Full, used for training 2586 267.3 6 184.7
S-Full-Test ;20% of S-Full, used for testing 659 278.7 6 186.7
T-Full Thermodynamic set used for the training

of RNA free-energy parameters
1291 18.8 6 12.3
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A perfect prediction yields sensitivity 1 and PPV 1;
conversely, when these measures are 0, there are no
correctly predicted base pairs. We use the F-measure to
combine the sensitivity and PPV into a single measure. The
F-measure is the harmonic mean of the two, which is close
to the arithmetic mean when the two numbers are close to
each other, but is smaller when one of the numbers is close
to 0, thus penalizing predictions for which the sensitivity or
PPV are poor:

F-measure =
2 3 sensitivity 3 PPV

sensitivity +PPV
: ð3Þ

In addition, we measure the accuracy of the estimated
free-energy changes ê versus reference free-energy changes
e for a set of t thermodynamic data (e.g., T-Full with given
sequence, secondary structure, and free-energy change)
using the root mean squared error (RMSE):

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
t

i=1

ðei � êiÞ2

t

vuuut
: ð4Þ

RMSE is measured in kcal/mol; the closer to 0 the RMSE
value is, the more accurately free-energy changes are estimated.

The Turner model

An RNA free energy model consists of:

1. A collection of structural features (f1, f2, . . . , fp) , where
p is the number of features of the model. A feature is an
RNA secondary structure fragment whose thermody-
namics are considered to be important for RNA folding.

2. A vector of free-energy parameters, u = ðu1; u2; . . . ; upÞ,
where ui is the free-energy change value of feature fi.

3. A free-energy change function, DG(x, y, u), that defines
the free-energy change of a sequence x folded into a specific
secondary structure y. Here, we assume that DG(x, y, u) is
linear in the parameters ui:

DGðx; y; uÞ := +
p

i=1

ciðx; yÞ � ui

= cðx; yÞT � u; ð5Þ

where ci(x, y) is the number of times
feature fi occurs in secondary struc-
ture y of sequence x, and c(x, y):=
(ci(x, y), . . ., cp(x, y)) denotes the
vector of feature counts ci(x, y).

The Turner model (Mathews et al. 1999a,
2004) contains one or more features for
each type of loop in an RNA secondary
structure. Figure 1A identifies loops in
a sample structure, and Figure 1B shows

examples of features. Parameters for the features were derived
from hundreds of experiments (SantaLucia and Turner 1997)
(primarily optical melting experiments of short RNA se-
quences) as well as from structural data. We consider several
variations of the Turner model, as summarized in Table 2.
Details are provided in our Supplemental Material.

The 1999 version of the Turner model, as described by
Mathews et al. (1999a), contains a set of 363 ‘‘basic’’ features,
and a set of ‘‘extrapolated’’ features whose parameter values
are a function of the parameters for the basic features. We
call the model with the basic features only (and not the ex-
trapolated features) the Basic Turner model or M363 model.
As one example pertaining to hairpin loops, the basic model
has seven features pertaining to hairpin length, i.e., number
of unpaired bases: one for each hairpin loop length between
3 and 9. For longer hairpins the length parameter is extrapo-
lated from the length parameter for hairpins of length 9 (via
a formula by Jacobson and Stockmayer 1950).

By removing features, we obtain simplified models with
fewer features. Since the dangling end features render the
prediction and partition function algorithms more com-
plicated (McCaskill 1990; Andronescu 2003; Mathews
2004), we removed the 48 dangling end features from
the M363 model to obtain the M315 model. The most
parsimonious model that we consider has 79 features and
includes significantly fewer terminal mismatch and internal
loop features than the M315 model. Conversely, we pro-
duced ‘‘lavish’’ models by explicitly considering extrapo-
lated features of the Turner model. For example, all 2 3 2
internal loop sequences have separate parameters, which
differs from the 1999 Turner model that extrapolates these
numbers from a few simple rules. The Full Turner or M7850
model contains 7850 features (Andronescu 2003); secondary
structure prediction software uses tabulated values for
exactly these features (Hofacker et al. 1994; Andronescu
2003; Zuker 2003; Mathews 2004). When modeling feature
relationships, we use the M7726 model, which is very similar
to the M7850 model, but removes some lavish features when
available data pertaining to the features are sparse. In the

FIGURE 1. Secondary structure of a Vimentin 39 UTR protein-binding RNA region from the
Rfam database (Rfam family RF00109, S76850.1/1539-1604). (A) The various types of loops in
a pseudoknot-free secondary structure are indicated: stacked pair (two adjacent base pairs
stacking onto each other), hairpin loop (HL—a region of unpaired bases closed by a base pair),
internal loop (IL—two regions of unpaired bases closed by two base pairs), bulge loop (an
internal loop with no unpaired bases on one side), multiloop (three or more stems connected
together), and external loop. (B) Marked are examples of features of the Turner model and the
corresponding Turner parameter values (Mathews et al. 1999a).
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Results section, we explore several further models that lie
between the parsimonious and lavish models.

Algorithms

Constraint Generation: The NOM-CG algorithm

The Constraint Generation algorithm, introduced in our
previous work (Andronescu et al. 2007), seeks a set of
parameters u such that (1) the reference structure for each
sequence x in the training set has a free energy that is lower
than the free energy of every other structure, and (2) the
predicted free-energy change of structures in the thermody-
namic training set is close to the experimentally determined
value. Toward this end, the algorithm iteratively generates
constraints that help to enforce conditions (1) and (2)
above, while keeping values of u in a reasonable range, and
uses a numerical optimization procedure to find u that
satisfies these constraints. Since this variant of the Con-
straint Generation algorithm does not enforce a large
distance between the free energy of the known structure
and the free energies of other structures, we call this variant
NO-Max-margin CG (NOM-CG).

Loss-Augmented Max-margin CG: The LAM-CG algorithm

Following the ‘‘large margin’’ approach from machine
learning (see, e.g., Taskar 2005; Taskar et al. 2005; Do
et al. 2008), we do not just require that the free energy
of the true structure be less than all the others; instead,
we require that the size of the margin or difference be
proportional to the similarity between the true structure
and the predicted structure. The intuition is that it is
desirable for structures that are similar to the reference
structure to have similar energies, but the more a structure
deviates from the reference structure, the more different its
energy should be. Our LAM-CG algorithm, proposed for
the first time in this work, formalizes this requirement by
changing the constraints of the NOM-CG algorithm.

The Boltzmann Likelihood (BL) algorithm

Our Boltzmann Likelihood (BL) algo-
rithm (Andronescu et al. 2007) maxi-
mizes the conditional likelihood of the
known structures in the structural set
used for training using the Boltzmann
function (exponential of the negative
MFE normalized by the partition func-
tion) as likelihood. This algorithm is
similar to the CONTRAfold algorithm
of Do et al. (2006) but is informed by
thermodynamic as well as structural data.

The BL-FR algorithm: Modeling
feature relationships

Many features occur rarely in the train-
ing data set, which can cause problems for parameter
estimation. This is an example of the ‘‘sparse data’’
problem that is frequently encountered in machine learn-
ing. A standard solution is to use hierarchical shrinkage
methods (Gelman et al. 2004) that allow parameters to
borrow statistical strength from related parameters. We
propose a novel way of applying these ideas, and we do so
by incorporating them into the Boltzmann Likelihood
method of estimating RNA energy parameters from struc-
tural and thermodynamic data. We call this extension BL-
FR because it is a Boltzmann Likelihood model informed
by feature relationships between parameters.

Briefly, we use a graph in which each node corresponds
to a feature, see Figure 2 for an example. To derive the
graph structure and edge weights, we follow the extrapo-
lation rules used by Mathews et al. (1999a), where the
values of the ‘‘extrapolated’’ parameters are linear functions
of the values of the ‘‘basic’’ parameters. Here, we use the
same linear functions, but in a weaker way, that is, to define
a statistical model given by the graph structure and edge
weights. A directed edge from feature fi to feature fj in-
dicates that knowledge of the parameter ui can be used by

FIGURE 2. Example of relationship graph for one 1 3 1 internal
loop. This internal loop is closed by two A-U base pairs, has one U-U
mismatch, and the sequence is of type 59RYY/RYY39, where R is
a purine (A or G) and Y is a pyrimidine (C or U). Therefore, it is
connected with the features A-U closure (with unnormalized weight 2,
or normalized weight 2/4), U-U mismatch (with unnormalized weight
1) and the corresponding purine-pyrimidine group (with un-normal-
ized weight 1).

TABLE 2. Summary of some Turner model variations that are studied in this work

Model Name Description

M363 (Basic Turner) Includes the basic features of the 1999 Turner model
(Mathews et al. 1999a) pertaining to stacked pairs,
hairpin loops as well as internal, bulge, multi-, and
external loops

M315 M363 with 48 dangling end features removed
M79 (Parsimonious) M315 with some terminal mismatch and internal loop

features removed
M7850 (Full Turner) M363 with extrapolated features of the Turner 1999

model added, such as all possible 2 3 2 internal loops
M7726 (Lavish) M7850 with features for which available thermodynamic

data is sparse

The name of each model is ‘‘M’’ followed by the number of features in the model. Details
can be found in the Supplemental Material.

Andronescu et al.
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the parameter estimation algorithm in choosing parameter
uj. Since the features covered by T-Full are those for which
we can most reliably estimate the parameters, features of
T-Full are root nodes of our graph. (A feature is covered
by a data set if there is at least one experiment in the data
set that contains that feature.) If the structural data set
has good coverage of a feature that is not in T-Full, then
the corresponding parameter value will be determined pri-
marily by the structural data. Otherwise, its value will
be determined primarily by the relationship rules. Figure 2
shows an example of a graph for 1 3 1 internal loop
features. The root nodes are covered by T-Full, and the
child nodes are features that are not covered by T-Full and
are connected with other nodes. Details are presented in the
Supplemental Material.

RESULTS

We have trained our algorithms, NOM-CG, LAM-CG, BL
(for the M363 model), and BL-FR (for the M7726 model),
using the structural data set S-Full-Train and the thermo-
dynamic training set T-Full. The result of this training
process depends on the values of the hyperparameters of
our algorithms (i.e., l, B, m, and h for the CG variants, and
r, m, and t0 for the BL variants, see Supplemental Ma-
terial). To determine hyperparameters resulting in good
models, we have performed a series of hold-out validation
experiments, in which we trained CG or BL on z80% of
S-Full-Train and T-Full using various settings of the input
arguments and validated on the remaining 20% of S-Full-
Train. Details are given in the Supplemental Material and
by Andronescu (2008). All results reported in the following
have been obtained using the argument values for which
the best average F-measure on the validation set was
obtained (these argument values are listed in Supplemental
Table 3).

Following, we first present a thorough quality evaluation
of our best parameter sets and compare the accuracy of
secondary structure prediction achieved by the resulting
models against those obtained using previous state-of-
the-art models, including the Turner99 model (the 1999
version of the Turner model) (Mathews et al. 1999a),
CONTRAfold (Do et al. 2006), and our previous param-
eters (Andronescu et al. 2007). (The 2004 version of the
Turner model [Mathews et al. 2004] produces predictions
that are <1% more accurate than the 1999 version when
measured on our test set S-Full-Test.) This is followed by
an analysis of the computation time required to obtain our
new parameter sets. Next, we investigate the sensitivity of
our algorithms to the training set size. This is followed by
an investigation of various extensions of the Turner model,
first focusing on additional features and then on relation-
ships between features. Overall, our empirical results (sum-
marized in Fig. 3 and Table 3, and discussed in more detail
below) demonstrate clearly that compared with previous

energy models, our new models achieve significantly in-
creased accuracy in the prediction of pseudoknot-free RNA
secondary structures.

Accuracy analysis

To assess the overall prediction accuracies achieved using
our new parameter sets, we evaluated them on our two sets,
S-Full-Test and S-STRAND2. While S-Full-Test has no
overlap with S-Full-Train, S-STRAND2 does contain struc-
tures from S-Full-Train, but also contains long structures
and permits analyses on many large classes of RNA mole-
cules. In addition, to assess to which extent the free-energy
values predicted using our new parameter sets agree with
existing thermodynamic data, we computed the RMSE
between the experimentally determined free-energy values
in the thermodynamic set T-Full (used for training) and the
corresponding predicted values.

As can be seen from the results shown in Table 3,
parameter set BL-FR* produces the best results in terms of
F-measure on both test sets, S-Full-Test and S-STRAND2.
Next best is BL*, followed by the parameter sets obtained
from LAM-CG and NOM-CG. All of these parameter sets
achieve substantially better prediction accuracies (in terms
of F-measure, sensitivity, and PPV) on our test sets than the
Turner99 parameters. Two of them, namely, NOM-CG and
LAM-CG, also yield a closer fit to the experimentally
determined free-energy values in T-Full than the Turner99
parameters, while the fits for the BL variants are only
moderately worse. We further note that the difference in
F-measure obtained using LAM-CG vs. BL* is quite small.

The remaining results are for previous parameter sets
that also yield better prediction accuracy than Turner99.
Those have been trained on different sets and are therefore

FIGURE 3. Sensitivity and positive predictive value (PPV) of several
parameter sets when measured on S-STRAND2. The points and
training sets used for each point are described in Table 3. CONTRA-
fold uses a parameter g to set the tradeoff between the sensitivity and
PPV (we used values from 1 to 20).
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somewhat less comparable to our new sets than those be-
tween each other. CG 1.1 is the parameter set we obtained in
previous work using an earlier version of CG (which is es-
sentially the same as NOM-CG); this set was published by
Andronescu et al. (2007) and was subsequently included as
an option in the Vienna RNA Websuite (Gruber et al. 2008).
As can be seen when comparing these results with the ones
obtained by our new sets, the latter achieve a significant
additional increase in prediction accuracy.

The CONTRAfold software by Do et al. (2006) imple-
ments an algorithm that is very similar to our BL algo-
rithm; however, it does not use a thermodynamic set.
CONTRAfold 1.1 was trained on a small set of 151 RNA
secondary structures from the Rfam database, which we
denote by S-151Rfam. As can be seen from Table 3, the
accuracy obtained by CONTRAfold 1.1 on S-STRAND2 is
only slightly higher than that achieved using Turner99
parameters, while on S-Full-Test the accuracy is slightly
poorer. A subsequent version, CONTRAfold 2.0, was trained
(by Do et al. 2007) on S-Processed, the set we had developed
and used for training CG 1.1. CONTRAfold 2.0 achieves an
average F-measure of 0.672 on S-STRAND2, which is 0.026
higher than for CG 1.1, possibly because of the differences
in the parameter estimation algorithms or energy models
(in terms of RNA structural features considered), the
maximum-expected accuracy prediction algorithm used
by CONTRAfold (Do et al. 2006), or their sophisticated
algorithm for multihyperparameter learning (Do et al. 2007).
However, CONTRAfold 2.0 does not reach the prediction
accuracies achieved by the best new parameter sets presented
in this work; in particular, the F-measure on the compre-
hensive S-STRAND2 set is 0.031 lower than that obtained by
the BL-FR* parameters. Furthermore, since CONTRAfold
does not directly consider thermodynamic data, it does not
predict observed free-energy changes well, as can be seen
from the large RMSE values reported in Table 3. Respecting

the free energies is important for reasons other than struc-
ture prediction, such as small interfering RNA selection
using hybridization thermodynamics (Lu and Mathews
2008).

Figure 3 further illustrates these performance results; we
plot the average sensitivity versus average positive pre-
dictive value (PPV) for some of the parameter sets from
Table 3, measured on S-STRAND2. CONTRAfold uses a
parameter g to control the tradeoff between the sensitivity
and PPV (we used values from 1 to 20). Again, the im-
provements in prediction accuracies achieved by the new
parameter sets developed in this study are clearly visible.

Further analysis revealed that the differences in pre-
diction accuracy observed between Turner99, BL*, and
BL-FR* are quite consistent across large structures (i.e.,
structures from S-STRAND2 with more than 2000 bases,
see Fig. 4; Supplemental Fig. 7). However, when consider-
ing short RNAs (with at most 200 bases), a much wider
variation of performance differences can be observed (see
Fig. 4; Supplemental Fig. 7). We note that while, on average,
the prediction accuracy for these small structures is much
higher than for longer RNA sequences (about 0.8 for BL*
and BL-FR*, and slightly below 0.7 for Turner99), incorrect
predictions often have no correctly predicted base pairs
(which is partially explained by the fact that there are few
potential base pairs, and that the relative contribution of
each base pair to the overall free energy is much larger for
small structures).

We also analyzed the prediction accuracy achieved by
various parameter sets on different types of RNAs (see
Table 4). For five of the 11 types of RNAs distinguished in
S-STRAND2, the predictions using the BL-FR* parameter
set are the most accurate, on average. In particular, 5S
ribosomal RNAs are predicted substantially more accu-
rately with BL-FR* than with any other parameter set.
Furthermore, the predictions obtained with BL-FR* are

TABLE 3. Accuracy comparison of various parameter sets

Parameter set Model Training sets T-Full RMSE
S-Full-Test
F-measure

S-STRAND2 F-measure
(Sn, PPV)

BL-FR* M7726 S-Full-Train + T-Full 1.51 0.695 0.703 (0.723, 0.689)
BL* M363 S-Full-Train + T-Full 1.34 0.677 0.691 (0.713, 0.675)
LAM-CG (CG*) M363 S-Full-Train + T-Full 0.98 0.668 0.677 (0.697, 0.664)
NOM-CG M363 S-Full-Train + T-Full 1.06 0.658 0.659 (0.684, 0.641)
CG 1.1 M363 S-Processed + T-Full� 1.03 0.639 0.646 (0.677, 0.623)
CONTRAfold 2.0 (g = 2) M714 S-Processed 6.02 0.655 0.672 (0.671, 0.683)
CONTRAfold 1.1 (g = 6) M906 S-151Rfam 9.17 0.591 0.608 (0.620, 0.596)
Turner99 M363 – 1.24 0.598 0.598 (0.631, 0.572)

The table shows the parameter set, the model name (Mp, where p is the number of features), the training sets used, the root mean squared error
(RMSE, measured in kcal/mol) on the T-Full set (for CONTRAfold, only the single molecules were included), and the F-measure on our sets
S-Full-Test and S-STRAND2. The first four rows refer to parameter sets obtained in this work. We use BL-FR*, BL*, and CG* to denote the
parameter sets estimated by BL-FR, BL, and CG that gave the best average F-measures on S-STRAND2. The parameter set CG 1.1 was obtained
by Andronescu et al. (2007) and subsequently included as an option in the Vienna RNA Websuite (Gruber et al. 2008) (some of the recent
optical melting data were not included in the thermodynamic set for that work, here denoted by T-Full�). Since CONTRAfold does not use
thermodynamic training data, its scores do not approximate free energies well, as indicated by the high RMSE values (italics). The boldfaced
values are the best for the respective column.
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more accurate than the predictions obtained with our
previous parameter set, CG 1.1, for all 11 types of RNAs,
and they are more accurate than the Turner parameters for
all types except the hammerhead ribozymes, which are
predicted only slightly less accurately. CONTRAfold 2.0
gives more accurate predictions for three of the 11 classes
(ribonuclease P and large subunit ribosomal RNAs, as well
as hammerhead ribozymes). We also note that a parameter
set obtained using BL for the Turner model without
dangling end features, M315, produces predictions that
are about as accurate as those using optimized parameters
for the corresponding model with dangling end features,
M363. This suggests that the inclusion of dangling ends
does not significantly affect accuracy when using BL as the
parameter estimation algorithm. Therefore, considering that

including dangling end features would
require over 1 yr of CPU time for BL
training, we decided to omit them from
the model M7726 that underlies the BL-
FR* parameter set.

Next, we analyzed the range and
quality of suboptimal structures for all
2518 structures in the S-STRAND2 data
set, with the BL* and Turner99 param-
eters. We predicted all of the subopti-
mal structures within two specified
energy ranges from the MFE: 0 kcal/
mol, yielding all secondary structures
that have the same free energy as the
MFE; and RT = 0.616 kcal/mol, the
universal gas constant multiplied by
the temperature (310 K). Table 5 shows
the results. When using BL*, there are

fewer structures whose free energy equals the MFE than
when using the Turner99 parameters (3.08 vs. 10.73
structures, on average). This is consistent with the fact
that the BL method favors a large margin between the
known structures (assumed to be the MFE structures) and
suboptimal structures. Looking at these structures in more
detail, we notice that most of them are very similar to each
other, i.e., have roughly the same abstract shape (that is,
1.04 distinct shapes for BL*, and 1.22 distinct shapes for
Turner99, on average, when measuring the third level of
abstraction of the RNAshapes software) (Steffen et al.
2006). When considering the larger energy range of 0.616
kcal/mol, there are slightly more suboptimal structures
when using BL* (95.85 vs. 83.51, on average), as well as
a slightly higher number of abstract shapes (9.84 vs. 7.38).

TABLE 4. Prediction accuracy on various classes of RNAs

RNA class No. Length Avg 6 STD

BL-FR* BL* BL no dangles CG* CG 1.1 Turner CF 2.0

F-measure (sets from this work) F-measure (previous sets)

Transfer RNA 582 79.5 6 112.4 0.790 0.781 0.795 0.804 0.744 0.598 0.769
Ribonuclease P RNA 387 332.2 6 49.8 0.606 0.604 0.588 0.601 0.563 0.547 0.664
Signal Recognition

Particle RNA
357 223.2 6 111.3 0.738 0.727 0.728 0.687 0.680 0.705 0.635

Transfer Messenger RNA 269 362.5 6 23.2 0.589 0.573 0.566 0.497 0.396 0.389 0.518
Small subunit Ribosomal

RNA
187 1276.1 6 290.4 0.502 0.474 0.453 0.477 0.495 0.385 0.473

5S Ribosomal RNA 117 117.7 6 17.0 0.874 0.795 0.795 0.776 0.795 0.725 0.727
Hammerhead Ribozyme 114 52.0 6 8.1 0.635 0.639 0.635 0.668 0.634 0.646 0.644
Group I Intron 78 362.3 6 131.9 0.592 0.611 0.608 0.605 0.578 0.550 0.617
Large subunit Ribosomal

RNA
52 2684.4 6 797.9 0.545 0.552 0.550 0.526 0.515 0.472 0.592

Ciliate Telomerase RNA 18 185.3 6 22.0 0.593 0.569 0.576 0.619 0.538 0.555 0.567
Other 357 144.8 6 378.7 0.838 0.830 0.825 0.795 0.800 0.789 0.801

S-STRAND2 2518 330.9 6 503.2 0.703 0.691 0.688 0.677 0.646 0.598 0.672

The table indicates the RNA class, the number of structures, average length and standard deviation in length, and the average F-measure
of several parameter sets for each family. The boldfaced values are the largest for the respective row.

FIGURE 4. Correlation in prediction accuracy (F-measure) per molecule between our best
parameters BL-FR* and the Turner99 parameters, on all the long and short structures in the
S-STRAND2 set. (A) Structures of lengths 2000–4000 nucleotides; the correlation coefficient is
0.72. (B) Structures of lengths 0 to 200 nucleotides; the correlation coefficient is 0.59.
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The F-measure of the best suboptimal structure in the set of
all suboptimal structures within the RT range is 0.75 for
BL* (a 6% increase from the MFE structure), and 0.65 for
Turner99.

Finally, we analyzed the correlation between the numer-
ical values of the parameters in the Turner99 model, our
BL* parameters, and our CG* parameters. We found that
the correlation between the CG* and Turner99 parameter
values is quite high (with a Pearson correlation coefficient
of r = 0.91), while a somewhat weaker correlation (r = 0.78)
is observed between the BL* and Turner99 parameter
values (see Supplemental Fig. 8). The CG* parameter values
are generally within 62 kcal/mol of the Turner99 values,
while some of the BL* values differ by up to slightly >4
kcal/mol from the corresponding Turner99 values. We
found that by choosing a higher weight r of the thermo-
dynamic set in BL*, we could reduce that difference
(Supplemental Fig. 8D) and obtain slightly more accurate
predictions of free-energy changes on T-Full; however, this
comes at the cost of a slightly reduced average prediction
accuracy on our structural test sets. These parameters may
be preferred when the focus is more on the estimated free-
energy change and less on the predicted secondary structure.
Note that the BL-FR* parameter values cannot be easily
compared with any of the other sets, since they are based on
a different model with a much larger set of features.

Runtime analysis

When using our new energy models, the computational
effort expended in obtaining them by running CG and BL,
respectively, is irrelevant. However, for anyone interested in
running those procedures, for example, on different sets of
training data, running times are of interest, and for this
reason, we briefly discuss them in the following. All run-
ning times we report have been measured in terms of CPU
time on a reference machine with a 3GHz Intel Xeon CPU

with 1MB cache size and 2GB RAM, running Linux 2.6.16
(OpenSUSE 10.1).

The total running time of our BL and CG procedures on
the S-Full-Train structural set is 6–8 CPU months, and 1–3
CPU days, respectively.

CG performs MFE secondary structure prediction for all
sequences in the structural training set. For a sequence of
length 1000 nucleotides, the MFE prediction (using our
SimFold software implemented in C++) takes z17 sec, and
the CPU time needed to compute the MFE prediction for
the entire set S-Full-Train is roughly 57 min. Since this task
can be parallelized easily and efficiently, it can be completed
in less than a few minutes when run on a cluster of 30 CPUs.
In addition, CG solves a quadratic optimization problem
with a growing number of constraints at each iteration (we
use the commercial package CPLEX 10.1.1 for this task). The
CPU time differs between iterations; NOM-CG requires z10
min per iteration, while LAM-CG is slower, taking up to 2 h
per iteration. Overall, running NOM-CG on S-Full-Train
requires slightly over 1 d of CPU time (z20% of this time is
spent for prediction), while running LAM-CG takes z3
CPU days (only 2% of this time is spent for prediction, while
the remaining 98% are used for optimization).

Unlike CG, BL requires the computation of the partition
function and its gradient for each sequence in the training
structural set. While the theoretical asymptotic time com-
plexity for this task is the same as that of MFE secondary
structure prediction (namely, cubic in the sequence length),
in practice (due to different constant terms) computing the
partition function and base-pair probabilities takes signif-
icantly longer than computing an MFE secondary structure,
and computing the gradient of the partition function is
even more time-consuming. Using our SimFold package,
these three computations take z17 CPU minutes for a
sequence of length 1000, and z1 d for the entire set S-Full-
Train. Again, this latter task can be parallelized easily and
efficiently, and thus can be completed in around 1 h on

TABLE 5. Analysis of predicted suboptimal structures for all molecules in S-STRAND2, using SimFold (Andronescu 2003) with the BL*
and Turner99 parameters, for two ranges (0 kcal/mol and RT = 0.616 kcal/mol, where R is the universal gas constant and T is the
temperature 310K)

Energy range 0 kcal/mol Energy range RT = 0.616 kcal/mol

BL* Turner99 BL* Turner99

# Suboptimals within range 3.08 6 11.38 10.73 6 52.40 95.85 6 163.02 83.51 6 155.39
# Shapes within range 1.04 6 0.22 1.12 6 0.39 9.84 6 14.60 7.38 6 10.96
Rank of best suboptimal 1.18 6 1.91 2.27 6 9.33 59.65 6 116.54 45.50 6 99.25
F (Sn, PPV) of MFE 0.69 (0.71, 0.67) 0.60 (0.63, 0.57) 0.69 (0.71, 0.67) 0.60 (0.63, 0.57)
F (Sn, PPV) of best subopt. 0.69 (0.72, 0.67) 0.61 (0.65, 0.57) 0.75 (0.78, 0.74) 0.65 (0.69, 0.62)

To measure how different the suboptimal structures were, we computed the third (middle) abstract level shapes using the RNAshapes software
(Steffen et al. 2006). The last three rows show the rank of the best suboptimal structure with respect to F-measure, and the F-measure, sensitivity,
and positive predictive value for the MFE structure and the best suboptimal structure (average and standard deviation). For computational
reasons, we determined a maximum of 500 suboptimal structures (only 264 for Turner99 and 287 for BL* out of all 2518 input sequences
reached this maximum for the RT = 0.616 kcal/mol range; none reached it for the 0 range). In addition, the dangling end model used was
slightly different for suboptimal structures (dangling ends were always added, not only when there was a free base available); we have seen
evidence (data not shown) that this model difference is insignificant.

Andronescu et al.

2312 RNA, Vol. 16, No. 12



a cluster of 30 CPUs. The IPOPT gradient-based solver
used in each iteration of BL requires additional partition
function and gradient computations; when running BL on
S-Full-Train, these computations add up to another 115
CPU days, resulting in a total running time of 200 CPU
days (i.e., 6.7 CPU months). It might be possible to achieve
significant speedups by using the interior-point stochastic
gradient algorithm of Carbonetto et al. (2008) instead of
the standard barrier approach that IPOPT uses.

Typically, the number of BL and BL-FR iterations
increases with the number of features in the energy model
considered. However, the differences are relatively modest,
and overall, our most complex model (7802 features)
requires only 1.3 times as much running time as our most
parsimonious model (79 features).

Sensitivity to the training structural set

Clearly, the results obtained from CG and BL depend on
the structural set used for training. To better understand
and quantify this dependency, we performed four addi-
tional experiments. Considering the substantial computa-
tional cost involved in these analyses, we restricted them to
BL and LAM-CG.

First, we conducted a fivefold cross-validation analysis by
splitting the training set S-Full-Train into five parts of
about the same size; each of these parts was then used as a
validation set for determining prediction accuracy of mod-
els obtained by training BL and LAM-CG on the remaining
four parts (Supplemental Table 5). The results from this
analysis clearly demonstrate that both parameter estimation
methods consistently produce models with substantially
higher prediction accuracy than achieved using the Turner
parameters. Furthermore, the maximum difference be-
tween the F-measures obtained for different validation
sets is less than 0.03, which suggests that a difference in
F-measure between two algorithms or two models that
is greater than 0.03 may be statistically significant.

In our second experiment, we focused on the question as
to which extent the quality of the parameters obtained by
our estimation methods depends on the amount of
structural training data used. We investigated this question
by training BL and LAM-CG on increasingly smaller
subsets of S-Full-Train (see Supplemental Table 6; Supple-
mental Fig. 9). Our results indicate that for both methods,
the difference in prediction accuracy (average F-measure)
obtained by training on all of S-Full-Train versus on only
one-eighth of the full set is less than 0.01. This suggests that
more data of the same type (i.e., from the same classes of
RNAs, or mostly obtained by comparative sequence anal-
ysis) would probably not significantly improve the quality
of the parameters obtained by our estimation methods.

Third, we eliminated all training data from S-Full-Train
that used structural data determined by comparative
sequence analysis. This left us with 238 structures from

the Protein Data Bank (Westbrook et al. 2003), determined
by X-ray crystallography and NMR (secondary structures
were generated from the tertiary structures using RNAView)
(Yang et al. 2003). The prediction accuracy obtained when
training our estimation methods on this data is significantly
lower than that achieved by training on a similarly sized
subset of S-Full-Train that includes structures from com-
parative sequence analysis (see Supplemental Table 6). We
hypothesize this to be caused primarily by the fact that the
average length of the PDB structures is much smaller (50 vs.
about 260), and the number of alternative structures for
short molecules is not large enough for informative training.

Finally, we removed all small subunit ribosomal RNAs
from the training set S-Train-Full (yielding 2070 sequence-
structure pairs) and trained BL with the same hyper-
parameters used to obtain BL* (let BL-no-small-subunit
denote this parameter set). The F-measure of S-STRAND2
remained the same as for BL* (0.691). That suggests that,
when measured on many RNA families, the parameters are
as accurate whether or not a particular class is included in
the training (in this case, the small subunit rRNAs). How-
ever, when measured only on the subset of 187 small subunit
rRNAs from S-STRAND2 (none of them used for training),
the F-measure drops from 0.474 for BL* to 0.394 for BL-no-
small-subunit, a significant decrease. This suggests that,
when tested on molecules of a family that was not used
for training, it is likely the performance will be poorer.

Extensions of the Turner model

In what follows we explore several variations of the basic
Turner model without dangling ends, M315, by removing
and adding some features, as suggested by other models
and by experimental research. Although it would be in-
teresting to add the dangling ends in the future, we estimate
that this would increase the computation time required for
parameter estimation up to >1 yr of CPU time. We take
a ‘‘parsimonious’’ approach, in which we keep only 79
features, and a ‘‘lavish’’ approach, which uses an extended
set of up to 7802 features. Table 1 gives details of these
models, and details about each class of features that we
considered can be found in Supplemental Table 7. We used
BL (which, as demonstrated earlier, tends to give slightly
better results than LAM-CG and NOM-CG) to estimate
parameters for these models.

In order to select for the best model, we again performed
a hold-out validation experiment, in which we used about
four-fifths of S-Full-Train and the thermodynamic set
T-Full as training data. The prediction accuracy (average
F-measure) was validated on the remaining fifth of S-Full-
Train.

We found that the average F-measure of 0.646 for the
parsimonious model M79 was worse than the value of
0.684 observed for the optimized M315 model, but still
higher than the 0.598 measured for the M363 model with
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the original Turner parameter values. On the other hand,
the accuracy achieved using the most lavish model we
considered, M7802, was essentially the same as that using
M315 (average F-measure 0.683). Further experiments with
models that use ‘‘lavish’’ expansions of only some sets of
features (e.g., ones related to loop lengths) indicate that
‘‘lavish’’ features for special hairpin and internal loops lead
to the single biggest improvement in average F-measure
over the fully parsimonious model. We note that none of
the models we considered appear to achieve significant
improvements over the optimized basic Turner model,
M315 (see Supplemental Table 7).

One possible explanation for this observation could be
that the extensions to the energy model we considered are
all relatively minor. It is possible that more drastic changes,
such as a different energy function or more realistic features
for multiloops, would yield further improvements. We
note, however, that supporting such features would require
significant changes in the algorithms for RNA secondary
structure prediction (including partition function and
gradient calculations). Another reason might lie in limita-
tions of the structural data that we used. It is possible that
this data is biased by artifacts of the comparative sequence
analysis methods (recall that most of it was determined in
this manner), has too much noise, or that we introduced bias
when processing it, for example, by removing pseudoknots.

The use of feature relationships offers a way to deal with
the fact that, particularly for the extensions of the Turner
model we considered, currently available structural data
offers only sparse coverage for some model features. This is
reflected in the percentages of features covered by T-Full
for M79, M315, and M7802, which are 100%, 75%, and
7%, respectively.

When reducing the size of the structural training set,
BL-FR produces substantially better results than BL (see
Supplemental Table 8; Supplemental Fig. 10). For example,
when trained on one-eighth of S-Full-Train, BL-FR using the
lavish model M7802 achieved an average F-measure of 0.677
compared with 0.643 measured for BL using the same model.
Furthermore, we observed that for even smaller structural
training sets, the accuracy achieved by BL with the lavish
model decreased markedly, while a less-pronounced decrease
in accuracy was observed for BL-FR. This provides further
evidence that, indeed, feature relationships help to offset the
detrimental effect of insufficient structural training data.

Based on the insights gained from our analysis of ex-
tended models and feature relationships, we created a com-
bined lavish model with 7726 features, described in detail
in the Supplemental Material. We trained BL-FR on
S-Full-Train and obtained the BL-FR* parameter set that
was analyzed in detail in the Accuracy Analysis section. The
better average accuracy obtained with the BL-FR* param-
eter set demonstrates that carefully considering more fea-
tures and similarities between features can improve the
quality of the free-energy change parameters obtained.

DISCUSSION

In this work we presented improved algorithms for RNA
free-energy change parameter estimation and a novel way
of modeling relationships between the features of the model.
We trained our algorithms and evaluated our results on
diverse and comprehensive structural and thermodynamic
data sets. We obtained free-energy change parameters that
facilitate significantly better secondary structure prediction
accuracy (F-measure) on average, while the free-energy es-
timations are close to experimentally determined values.

We have focused on free-energy models that do not
include pseudoknots; however, our algorithms can estimate
improved parameters for models with pseudoknots as well, as
we have recently demonstrated (Andronescu 2008; Andro-
nescu et al. 2010). The parameter sets described in this study
can be incorporated into any software that requires energy-
based RNA computations without pseudoknots, including:

d minimum free energy and suboptimal secondary struc-
ture prediction software, such as Mfold (Zuker 2003),
RNAstructure (Mathews 2004), and the Vienna RNA
package (Hofacker et al. 1994)—our earlier parameters
are already part of widely used software such as the RNA
Vienna Web Servers (Gruber et al. 2008) and SimFold
(Andronescu 2003);

d algorithms that focus on probabilities or ensembles of
RNA secondary structures and base pairs (such as the
aforementioned packages) or perform sampling or clus-
tering of RNA secondary structures, such as RNAshapes
(Steffen et al. 2006) and Sfold (Ding and Lawrence 2003);

d algorithms that focus on stochastic simulations, RNA
cotranscriptional folding, and folding kinetics, such as
Kinefold (Xayaphoummine et al. 2003) and Kinwalker
(Geis et al. 2008);

d algorithms that predict consensus RNA secondary struc-
tures common to phylogenetically related molecules, such
as Dynalign (Harmanci et al. 2007), PARTS (Harmanci
et al. 2008), Foldalign (Havgaard et al. 2007), and
RNAalifold (Bernhart et al. 2008);

d algorithms that predict secondary structures of interact-
ing RNA molecules, such as the work of Dirks and Pierce
(Dirks et al. 2007), PairFold, or MultiFold (Andronescu
et al. 2005);

d algorithms that measure the hybridization efficiency
between probes and targets (Andronescu et al. 2005;
Tulpan 2006), or predict the target site accessibility for
small interfering RNAs (Lu and Mathews 2008);

d algorithms for noncoding RNA discovery in genomes
(Washietl et al. 2005; Torarinsson et al. 2006; Uzilov et al.
2006).

In particular, all of the new parameter sets provided on our
web page except BL-FR* are fully compatible with the
Turner model and our previous set CG 1.1. (Parameter sets
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that do not include values for dangling end features effec-
tively set those values to zero.) The set of features corre-
sponding to the BL-FR* set include some minor changes, e.g.,
the addition of features for bulges of size 1 (see details in
the Supplemental Material).

We identify three most important directions for future
work: combining predictions, improving the quality of data,
and improving the model features and energy function,
described in the following.

Combining predictions

Although, on average, our best parameters give significantly
more accurate results than do previous parameters, we have
encountered numerous situations in which one set of
parameters produces better predictions for some molecules
and another set of parameters produces better predictions
for other molecules (see the plots in Supplemental Fig. 7 for
examples of different prediction accuracy of individual
molecules, and Table 4 for different prediction accuracy
averaged on RNA families). To improve the chance of
predicting the correct structures, we could borrow the idea
used by the software that predicts suboptimal secondary
structures (Zuker 1989; Wuchty et al. 1999) and use several
parameter sets, several models, or several algorithms to
obtain several predictions. For example, if we use the
Turner parameters, the BL* and CG* parameters to predict
the secondary structures in the set S-STRAND2 and we
measure the accuracy of the best structure, we obtain 0.73
average F-measure (whereas the average F-measures of the
Turner, LAM-CG and BL parameters are 0.60, 0.68, and
0.69)—this is substantially better, but still far from 1.

Therefore, one direction for future work is to investigate
whether there is any correlation between poorly predicted
structures and the parameters used, and ideally one would
want to come up with an algorithm that chooses the best
parameter set or the best prediction algorithm given an
input RNA sequence. One could adopt a portfolio-based
approach in which multiple predictions are combined or
a best algorithm (parameter set or model) is selected on
a per-instance basis (Xu et al. 2008).

Improving the quality of data

Other data sets could be used to train our parameter
estimation algorithms, in addition to or instead of the
structural and thermodynamic data that we have used.
Isothermal titration calorimetry can be used for systems
where optical melting cannot be performed. Such data
could be used in exactly the same way as the optical melting
data that we have used in our work. Data from differential
scanning calorimetry could be used as well.

Similarly, data from optical tweezers experiments could
be considered. Optical tweezers can be used to unfold or
refold RNA secondary structures (including pseudoknots),

the work required by the unfolding or refolding process can
be measured (Hansen et al. 2007), and the free-energy
change can be inferred. However, in practice, the inferred
free-energy change has a low degree of accuracy. Such data
could nevertheless be included in our approaches (with a low
weight to account for the large error in these experiments).

We hypothesize that using a moderately large structural
data set that is more reliable may yield more accurate free-
energy parameters than using a larger structural set of
questionable quality. Therefore, we believe that future work
should be focused toward a better understanding of which
kind of data are more reliable and on collecting and using
as much as possible of these data.

Improving the model features and energy function

Our results show that revising the features of the model in
addition to considering feature relationships gives an
increase in prediction accuracy. However, we could not
exceed an accuracy barrier of z70.3% when averaged over
a large set. We hypothesize that more significant changes in
the model might provide a closer approximation to the true
model.

First, perhaps a linear energy function for pseudoknot-
free structures is too limited, especially for longer struc-
tures. Second, there is evidence from the literature that
there are non-nearest neighbor effects that are not consid-
ered in the Turner model. For example, Kierzek et al.
(1999) noted that the stability of AA and UU mismatches is
sensitive to the proximity of the mismatch to the end of the
helix. Third, coaxial stacking features for multiloops have
not been included in our approaches, but are part of the
RNAstructure software (Mathews 2004; Lu et al. 2006) and
are shown to better represent the true physical model.
Furthermore, Mathews and Turner (2002) noted that the
asymmetry of the unpaired bases in multiloops should be
considered. While it may be challenging to incorporate such
contributions in dynamic programming algorithms, it might
be possible to implement them more easily by selecting a
number of suboptimal structures using an approximated
free-energy function and recomputing the exact free-energy
change with the more complex model, or by using heuristic
approaches.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.

ACKNOWLEDGMENTS

We thank Doug Turner, George Mackie, and Raymond Ng for
their insightful comments on an earlier version of this work. We
thank Nima Aghaeepour, Aashish Dattani, Monir Hajiaghayi, and
Hosna Jabbari for their valuable feedback and contributions to the

Improved RNA free-energy parameters

www.rnajournal.org 2315



web page, Alex Brown for help with the code, and the anonymous
reviewers for valuable suggestions. This work was supported by
NSERC grants to M.A., A.C., and K.P.M; IBM fellowship to M.A.;
UBC graduate fellowship to M.A.; MITACS grants to A.C. and
H.H.H.; CIFAR grants to K.P.M.; and NIH grant R01GM076485
to D.H.M.

Received October 7, 2009; accepted August 1, 2010.

REFERENCES

Andersen ES, Rosenblad MA, Larsen N, Westergaard JC, Burks J,
Wower IK, Wower J, Gorodkin J, Samuelsson T, Zwieb C. 2006.
The tmRDB and SRPDB resources. Nucleic Acids Res 34: 163–168.

Andronescu MS. 2003. ‘‘Algorithms for predicting the secondary
structure of pairs and combinatorial sets of nucleic acid strands.’’
Master’s thesis, Department of Computer Science, University of
British Columbia, Vancouver, BC, Canada.

Andronescu MS. 2008. ‘‘Computational approaches for RNA energy
parameter estimation.’’ PhD thesis, Department of Computer
Science, University of British Columbia, Vancouver, BC, Canada.

Andronescu M, Zhang Z, Condon A. 2005. Secondary structure
prediction of interacting RNA molecules. J Mol Biol 345: 987–
1001.

Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP.
2007. Efficient parameter estimation for RNA secondary structure
prediction. Bioinformatics 23: 19–28.

Andronescu M, Bereg V, Hoos HH, Condon A. 2008. RNA STRAND:
The RNA Secondary Structure and Statistical Analysis Database.
BMC Bioinformatics 9: 340. doi: 10.1186/1471-2105-9-340.

Andronescu, M, Pop C, Condon AE. 2010. Improved energy param-
eters for RNA pseudoknotted secondary structure prediction. RNA
16: 26–42.

Antao VP, Tinoco I. 1992. Thermodynamic parameters for loop
formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res
20: 819–824.

Antao VP, Lai SY, Tinoco I. 1991. A thermodynamic study of
unusually stable RNA and DNA hairpins. Nucleic Acids Res 19:
5901–5905.

Badhwar J, Karri S, Cass CK, Wunderlich EL, Znosko BM. 2007.
Thermodynamic characterization of RNA duplexes containing
naturally occurring 1 3 2 nucleotide internal loops. Biochemistry
46: 14715–14724.

Bayer TS, Smolke CD. 2005. Programmable ligand-controlled ribo-
regulators of eukaryotic gene expression. Nat Biotechnol 23: 337–
343.

Beisel CL, Bayer TS, Hoff KG, Smolke CD. 2008. Model-guided design
of ligand-regulated RNAi for programmable control of gene
expression. Mol Syst Biol 4: 224. doi: 10.1038/msb.2008.62.

Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A,
Demeny T, Hsieh SH, Srinivasan AR, Schneider B. 1992. The
nucleic acid database. A comprehensive relational database of
three-dimensional structures of nucleic acids. Biophys J 63: 751–
759.

Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF. 2008.
RNAalifold: Improved consensus structure prediction for RNA
alignments. BMC Bioinformatics 9: 474. doi: 10.1186/1471-2105-
9-474.
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