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Abstract
This paper studies the sparsistency and rates of convergence for estimating sparse covariance and
precision matrices based on penalized likelihood with nonconvex penalty functions. Here,
sparsistency refers to the property that all parameters that are zero are actually estimated as zero
with probability tending to one. Depending on the case of applications, sparsity priori may occur
on the covariance matrix, its inverse or its Cholesky decomposition. We study these three sparsity
exploration problems under a unified framework with a general penalty function. We show that
the rates of convergence for these problems under the Frobenius norm are of order (sn log pn/n)1/2,
where sn is the number of nonzero elements, pn is the size of the covariance matrix and n is the
sample size. This explicitly spells out the contribution of high-dimensionality is merely of a
logarithmic factor. The conditions on the rate with which the tuning parameter λn goes to 0 have
been made explicit and compared under different penalties. As a result, for the L1-penalty, to
guarantee the sparsistency and optimal rate of convergence, the number of nonzero elements

should be small:  at most, among  parameters, for estimating sparse covariance or
correlation matrix, sparse precision or inverse correlation matrix or sparse Cholesky factor, where

 is the number of the nonzero elements on the off-diagonal entries. On the other hand, using the
SCAD or hard-thresholding penalty functions, there is no such a restriction.

Keywords
Covariance matrix; high dimensionality; consistency; nonconcave penalized likelihood;
sparsistency; asymptotic normality

1 Introduction
Covariance matrix estimation is a common statistical problem in many scientific
applications. For example, in financial risk assessment or longitudinal study, an input of
covariance matrix Σ is needed, whereas an inverse of the covariance matrix, the precision
matrix Σ−1, is required for optimal portfolio selection, linear discriminant analysis or
graphical network models. Yet, the number of parameters in the covariance matrix grows
quickly with dimensionality. Depending on the applications, the sparsity of the covariance
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matrix or precision matrix is frequently imposed to strike a balance between biases and
variances. For example, in longitudinal data analysis [see e.g., Diggle and Verbyla (1998),
or Bickel and Levina (2008b)], it is reasonable to assume that remote data in time are
weakly correlated, whereas in Gaussian graphical models, the sparsity of the precision
matrix is a reasonable assumption (Dempster (1972)).

This initiates a series of researches focusing on the parsimony of a covariance matrix. Smith
and Kohn (2002) used priors which admit zeros on the off-diagonal elements of the
Cholesky factor of the precision matrix Ω = Σ−1, while Wong, Carter and Kohn (2003) used
zero-admitting prior directly on the off-diagonal elements of Ω to achieve parsimony. Wu
and Pourahmadi (2003) used the Modified Cholesky Decomposition (MCD) to find a
banded structure for Ω nonparametrically for longitudinal data. Bickel and Levina (2008b)
developed consistency theories on banding methods for longitudinal data, for both Σ and Ω.

Various authors have used penalized likelihood methods to achieve parsimony on
covariance selection. Fan and Peng (2004) has laid down a general framework for penalized
likelihood with diverging dimensionality, with general conditions for the oracle property
stated and proved. However, it is not clear whether it is applicable to the specific case of
covariance matrix estimation. In particular, they did not link the dimensionality pn with the
number of nonzero elements sn in the true covariance matrix Σ0, or the precision matrix Ω0.
A direct application of their results to our setting can only handle a relatively small
covariance matrix of size pn = o(n1/10).

Recently, there is a surge of interest on the estimation of sparse covariance matrix or
precision matrix using penalized likelihood method. Huang, Liu, Pourahmadi and Liu
(2006) used the LASSO on the off-diagonal elements of the Cholesky factor from MCD,
while Meinshausen and Bühlmann (2006), d’Aspremont, Banerjee, and El Ghaoui (2008)
and Yuan and Lin (2007) used different LASSO algorithms to select zero elements in the
precision matrix. A novel penalty called the nested Lasso was constructed in Levina,
Rothman and Zhu (2008) to penalize off-diagonal elements. Thresholding the sample
covariance matrix in high-dimensional setting was thoroughly studied by El Karoui (2008)
and Bickel and Levina (2008a) and Cai, Zhang and Zhou (2009) with remarkable results for
high dimensional applications. However, it is not directly applicable to estimating sparse
precision matrix when the dimensionality pn is greater than the sample size n. Wagaman and
Levina (2008) proposed an Isomap method for discovering meaningful orderings of
variables based on their correlations that result in block-diagonal or banded correlation
structure, resulting in an Isoband estimator. A permutation invariant estimator, called
SPICE, was proposed in Rothman, Bickel, Levina and Zhu (2008) based on penalized
likelihood with L1-penalty on the off-diagonal elements for the precision matrix. They
obtained remarkable results on the rates of convergence. The rate for estimating Ω under the
Frobenius norm is of order (sn log pn/n)1/2, with dimensionality cost only a logarithmic
factor in the overall mean-square error, where sn = pn + sn1, pn is the number of the diagonal
elements and sn1 is the number of the nonzero off-diagonal entries. However, such a rate of
convergence neither addresses explicitly the issues of sparsistency such as those in Fan and
Li (2001) and Zhao and Yu (2006), nor the bias issues due to the L1-penalty and the
sampling distribution of the estimated nonzero elements. These are the core issues of the
study. By sparsistency, we mean the property that all parameters that are zero are actually
estimated as zero with probability tending to one, a weaker requirement than that of
Ravikumar, Lafferty, Liu and Wasserman (2008).

In this paper, we investigate the aforementioned problems using the penalized pseudo-
likelihood method. Assume a random sample {yi}1≤i≤n with mean zero and covariance
matrix Σ0, satisfying some sub-Gaussian tails conditions as specified in Lemma 2 (see

Lam and Fan Page 2

Ann Stat. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Section 5). The sparsity of the true precision matrix Ω0 can be explored by maximizing the
Gaussian quasi-likelihood or equivalently minimizing

(1.1)

which is the penalized negative log-likelihood if the data is Gaussian. The matrix

 is the sample covariance matrix, Ω = (ωij), and pλn1(·) is a penalty function,
depending on a regularization parameter λn1, which can be nonconvex. For instance, the L1-
penalty pλ(θ) = λ|θ| is convex, while the hard-thresholding penalty defined by pλ(θ) = λ2 − (|
θ| − λ)21{|θ|<λ}, and the SCAD penalty defined by

(1.2)

are folded-concave. Nonconvex penalty is introduced to reduce bias when the true parameter
has a relatively large magnitude. For example, the SCAD penalty remains constant when θ
is large, while the L1-penalty grows linearly with θ. See Fan and Li (2001) for a detailed
account of this and other advantages of such a penalty function. The computation can be
done via the local linear approximation (Zhou and Li, 2008, Fan et al. 2009); see Section 2.1
for additional details.

Similarly, the sparsity of the true covariance matrix Σ0 can be explored by minimizing

(1.3)

where Σ = (σij). Note that we only penalize the off-diagonal elements of Σ or Ω in the
aforementioned two methods, since the diagonal elements of Σ0 and Ω0 do not vanish.

In studying a sparse covariance or precision matrix, it is important to distinguish between
the diagonal and off-diagonal elements, since the diagonal elements are always positive and
they contribute to the overall mean-squares errors. For example, the true correlation matrix,
denoted by Γ0, has the same sparsity structure as Σ0 without the need to estimating its
diagonal elements. In view of this fact, we introduce a revised method (3.2) to take this
advantage. It turns out that the correlation matrix can be estimated with a faster rate of
convergence, at (sn1 log pn/n)1/2 instead of ((pn + sn1) log pn/n)1/2, where sn1 is the number
of nonzero correlation coefficients. We can take similar advantages over the estimation of
the true inverse correlation matrix, denoted by Ψ0. See Section 2.5. This is an extension of
the work of Rothman et al. (2008) using the L1-penalty. Such an extension is important since
the nonconcave penalized likelihood ameliorates the bias problem for the L1-penalized
likelihood.

The bias issues of the commonly used L1-penalty, or LASSO, can be seen from our
theoretical results. In fact, due to the bias of LASSO, an upper bounded of λni is needed in
order to achieve fast rate of convergence. On the other hand, a lower bound is required in
order to achieve sparsity of estimated precision or covariance matrices. This is in fact one of
the motivations for introducing nonconvex penalty functions in Fan and Li (2001) and Fan
and Peng (2004), but we state and prove the explicit rates in the current context. In
particular, we demonstrate that the L1-penalized estimator can achieve simultaneously the
optimal rate of convergence and sparsistency for estimation of Σ0 or Ω0 when the number of
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nonzero elements in the off-diagonal entries are no larger than O(pn), but not guaranteed so
otherwise. On the other hand, using the nonconvex penalties like the SCAD or hard-
thresholding penalty, such an extra restriction is not needed.

We also compare two different formulations of penalized likelihood using the modified
Cholesky decomposition, exploring their respective rates of convergence and sparsity
properties.

Throughout this paper, we use λmin(A), λmax(A) and tr(A) to denote the minimum eigenvalue,
maximum eigenvalue, and trace of a symmetric matrix A respectively. For a matrix B, we

define the operator norm and the Frobenius norm, respectively, as  and
∥B∥F = tr1/2(BTB).

2 Estimation of sparse precision matrix
In this section, we present the analysis of (1.1) for estimating a sparse precision matrix.
Before this, let us first present an algorithm for computing the nonconcave maximum
(pseudo)-likelihood estimator and then state the conditions needed for our technical results.

2.1 Algorithm based on iterated reweighted L1-penalty
The computation of the nonconcave maximum likelihood problems can be solved by a
sequence of L1-penalized likelihood problems via local linear approximation (Zou and Li
2008, Fan et al. 2009). For example, given the current estimate Ωk = (ωij,k), by the local
linear approximation to the penalty function,

(2.1)

Hence, Ωk+1 should be taken to maximize the right-hand side of (2.1):

(2.2)

after ignoring the two constant terms. Problem (2.2) is the weighted penalized L1-likelihood.
In particular, if we take the most primitive initial value Ω0 = 0, then

is already a good estimator. Iterations of (2.2) reduces the biases of the estimator, as larger
estimated coefficients in the previous iterations receive less penalty. In fact, in a different
setup, Zou and Li (2008) showed that one iteration of such a procedure is sufficient as long
as the initial values are good enough.

Fan et al. (2009) has implemented the above algorithm for optimizing (1.1). They have also
demonstrated in Section 2.2 in their paper how to utilize the graphical lasso algorithm of
Friedman, Hastie and Tibshirani (2008), which is essentially a group coordinate descent
procedure, to solve problem (2.2) quickly, even when pn > n. Such a group coordinate
decent algorithm was also used by Meier et al. (2008) to solve the group LASSO problem.
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Thus iteratively, (2.2), and hence (1.1), can be solved quickly with the graphical lasso
algorithm. See also Zhang (2007) for a general solution to the folded-concave penalized
least-squares problem. The following is a brief summary of the numerical results in Fan et
al. (2009).

2.2 Some numerical results
We give a brief summary of a breast cancer data analysis with pn > n considered in Fan et al.
(2009). For full details, please refer to Section 3.2 of Fan et al. (2009). Other simulation
results are also in Section 4 in their paper.

Breast cancer data—Normalized gene expression data from 130 patients with stage I-III
breast cancers are analyzed, with 33 of them belong to class 1 and 97 belong to class 2. The
aim is to assess prediction accuracy in predicting which class a patient will belong to, using
a set of pre-selected genes (pn = 110, chosen by t-tests) as gene expression profile data. The
data is randomly divided into training (n = 109) and testing sets. The mean vector for the
genes expression levels is obtained from the training data, as well as the associated inverse
covariance matrix estimated using LASSO, adaptive LASSO and SCAD penalties as three
different regularization methods. A linear discriminant score is then calculated for each
regularization method and applied to the testing set to predict if a patient belongs to class 1
or 2. This is repeated 100 times.

On average, the estimated precision matrix  using LASSO has many more nonzeros than
that using SCAD (3923 versus 674). This is not surprising when we look at equation (2.3) in
our paper, where the L1 penalty imposes an upper bound on the tuning parameter λn1 for
consistency, which links to reducing the bias in the estimation. This makes the λn1 in
practice too small to set many of the elements in  to zero. While we do not know which
elements in the true Ω are zero, the large number of nonzero elements in the L1 penalized
estimator seems spurious, and the resulting gene network is not easy to interpret.

On the other hand, SCAD-penalized estimator has a much smaller number of nonzero
elements, since the tuning parameter λn1 is not bounded above under consistency of the
resulting estimator. This makes the resulting gene network easier to interpret, with some
clusters of genes identified.

Also, classification results on the testing set using the SCAD penalty for precision matrix
estimation is better than that using the L1 penalty, in the sense that the specificity (#True
Negative/#class 2) is higher (0.794 to 0.768) while the sensitivity (#True Positive/#class 1)
is similar to that using L1-penalized precision matrix estimator.

2.3 Technical conditions
We now introduce some notations and present regularity conditions for the rate of
convergence and sparsistency.

Let , where  is the true precision matrix. Denote by sn1 = |S1| −
pn, which is the number of nonzero elements in the off-diagonal entries of Ω0. Define
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The term an1 is related to the asymptotic bias of the penalized likelihood estimate due to
penalization. Note that for L1-penalty, an1 = λn1 and bn1 = 0, whereas for SCAD, an1 = bn1 =
0 for sufficiently large n under the last assumption of condition (B) below.

We assume the following regularity conditions:

A. There are constants τ1 and τ2 such that

B. an1 = O({(1 + pn/(sn1 + 1)) log pn/n}1/2), bn1 = o(1), and  as
n → ∞.

C. The penalty pλ(·) is singular at the origin, with limt↓0 pλ(t)/(λt) = k > 0.

D. There are constants C and D such that, when

.

Condition (A) bounds uniformly the eigenvalues of Σ0, which facilitates the proof of
consistency. It also includes a wide class of covariance matrices as noted in Bickel and
Levina (2008b). The rates an1 and bn1 in condition (B) are also needed for proving
consistency. If they are too large, the bias due to penalty can dominate the variance from the
likelihood, resulting in poor estimates.

The last requirement in condition (B) states the rate at which the nonzero parameters should
be distinguished from zero asymptotically. It is not explicitly needed in the proofs, but for
asymptotically unbiased penalty functions, this is a necessary condition so that an1 and bn1
are converging to zero fast enough as needed in the first part of condition (B). In particular,
for the SCAD and hard-thresholding penalty functions, this condition implies that an1 = bn1
= 0 exactly for sufficiently large n, thus allowing a flexible choice of λn1. For the SCAD

penalty (1.2), the condition can be relaxed as .

The singularity in condition (C) gives sparsity in the estimates [Fan and Li (2001)]. Finally,
condition (D) is a smoothing condition for the penalty function, and is needed in proving
asymptotic normality. The SCAD penalty, for instance, satisfies this condition by choosing
the constant D, independent of n, to be large enough.

2.4 Properties of sparse precision matrix estimation
Minimizing (1.1) involves nonconvex minimization, and we need to prove that there exists a
local minimizer  for the minimization problem with a certain rate of convergence, which is
given under the Frobenius norm. The proof is given in Section 5. It is similar to the one
given in Rothman et al. (2008), but now the penalty function is nonconvex.

Theorem 1 (Rate of convergence). Under regularity conditions (A)-(D), if

 and (pn + sn1)(log pn)k/n = O(1) for some k > 1, then there exists a

local minimizer  such that . For the L1-penalty, we only

need .

The proofs of this theorem and others are relegated to Section 5 so that readers can get more
quickly what the results are. As in Fan and Li (2001), the asymptotic bias due to the penalty
for each nonzero parameter is an1. Since we penalized only on the off-diagonal elements, the
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total bias induced by the penalty is asymptotically of order sn1an1. The square of this total
bias over all nonzero elements is of order OP{(pn + sn1) log pn/n} under condition (B).

Theorem 1 states explicitly how the number of nonzero elements and dimensionality affect
the rate of convergence. Since there are (pn + sn1) nonzero elements and each of them can be
estimated at best with rate n−1/2, the total square errors are at least of rate (pn + sn1)/n. The
price that we pay for high-dimensionality is merely a logarithmic factor log pn. The results
holds as long as (pn+sn1)/n is at a rate O((log pn)−k) with some k > 1, which decays to zero
slowly. This means that in practice pn can be comparable to n without violating the results.
The condition here is not minimum possible; we expect it holds for p ≫ n. Here, we refer
the local minimizer as an interior point within a given close set such that it minimizes the
target function. Following a similar argument to Huang et al. (2008), the local minimizer in
Theorem 1 can be taken as the global minimizer with additional conditions on the tail of the
penalty function.

Theorem 1 is also applicable to the L1-penalty function, where the local minimizer becomes
the global minimizer. The asymptotic bias of the L1-penalized estimate is given in the term
sn1an1 = sn1λn1 as shown in the technical proof. In order to control the bias, we impose
condition (B), which entails an upper bound on λn1 = O({(1+pn/(sn1+1)) log pn/n}1/2). The
bias problem due to the L1-penalty for finite parameter has already been unveiled by Fan and
Li (2001) and Zou (2006).

Next we show the sparsistency of the penalized estimator from (1.1). We use Sc to denote
the complement of a set S.

Theorem 2 (Sparsistency). Under the conditions given in Theorem 1, for any local

minimizer of (1.1) satisfying  and 

for a sequence of , if , then with probability tending to 1, 
for all .

First, since  for any matrix M, we can always take ηn = (pn + sn1) log pn/n in
Theorem 2, but this will result in more stringent requirement on the number of zero elements
when L1-penalty is used, as we now explain. The sparsistency requires a lower bound on the
rate of the regularization parameter λn1. On the other hand, condition (B) imposes an upper
bound on λn1 when L1-penalty is used in order to control the biases. Explicitly, we need, for
L1-penalized likelihood,

(2.3)

for both consistency and sparsistency to be satisfied. We present two scenarios here for the

two bounds to be compatible, making use of the inequalities 
for a matrix M of size pn.

1. We always have . In the worst case scenario where they

have the same order, , so that ηn = (pn+sn1) log
pn/n. It is then easy to see from (2.3) that the two bounds are compatible only when
sn1 = O(1).

2.
We also have . In the optimistic scenario where they
have the same order,
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Hence, ηn = (1 + sn1/pn) log pn/n, and compatibility of the bounds requires sn1 =
O(pn).

Hence, even in the optimistic scenario, consistency and sparsistency are guaranteed only
when sn1 = O(pn) if the L1-penalty is used, i.e., the precision matrix has to be sparse enough.

However, if the penalty function used is unbiased, like the SCAD or the hard-thresholding

penalty, we do not impose an extra upper bound for λn1 since its first derivative 
goes to zero fast enough as |θ| increases (exactly equals zero for the SCAD and hard-
thresholding penalty functions, when n is sufficiently large; see condition (B) and the
explanation thereof). Thus, λn1 is allowed to decay to zero slowly, allowing even the largest

order .

We remark that asymptotic normality for the estimators of the elements in S1 have been
established in a previous version of this paper. We omit it here for brevity.

2.5 Properties of sparse inverse correlation matrix estimation
The inverse correlation matrix Ψ0 retains the same sparsity structure of Ω0. Consistency and
sparsistency results can be achieved with pn as large as log pn = o(n), as long as (sn1 + 1)(log
pn)k/n = O(1) for some k > 1 as n → ∞. We minimize, w.r.t. Ψ = (ψij),

(2.4)

where  is the sample correlation matrix, with  being the diagonal
matrix with diagonal elements of S, and υn1 is a regularization parameter. After obtaining ,
Ω0 can also be estimated by .

To present the rates of convergence for  and , we define

where  and modify condition (D) to (D’) with λn1 there replaced by υn1, and impose

(B’) cn1 = O({log pn/n}1/2), dn1 = o(1). Also,  as n → ∞.

Theorem 3 Under regularity conditions (A),(B’),(C) and (D’), if (sn1+1)(log pn)k/n = O(1)

for some k > 1 and , then there exists a local minimizer  for (2.4)

such that  and  under the

operator norm. For the L1-penalty, we only need 

Note that we can allow pn ≫ n without violating the result as long as log pn/n = o(1). Note
also that an order of {pn log pn/n}1/2 is removed by estimating the inverse correlation rather
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than the precision matrix, which is somewhat surprising since the inverse correlation matrix,
unlike the correlation matrix, does not have known diagonal elements that contribute no
errors to the estimation. This can be explained and proved as follows. If sn1 = O(pn), the
result is obvious. When sn1 = o(pn), most of the off-diagonal elements are zero. Indeed, there
are at most O(sn1) columns of the inverse correlation matrix which contain at least one
nonzero element. The rest of the columns that have all zero off-diagonal elements must have
diagonal entries 1. These columns represent variables that are actually uncorrelated from the
rest. Now, it is easy to see from (2.4) that these diagonal elements, which are one, are all
estimated exactly as one with no estimation error. Hence, an order of (pn log pn/n)1/2 is not
present even in the case of estimating the inverse correlation matrix.

For the L1-penalty, our result reduces to that given in Rothman et al. (2008). We offer the
sparsistency result as follows.

Theorem 4 (Sparsistency) Under the conditions given in Theorem 3, for any local

minimizer of (2.4) satisfying  and  for some

ηn → 0, if , then with probability tending to 1,  for all .

The proof follows exactly the same as that for Theorem 2 in Section 2.4, and is thus omitted.

For the L1-penalty, control of bias and sparsistency require υn1 to satisfy bounds like (2.3):

(2.5)

This leads to two scenarios:

1. The worst case scenario has

meaning ηn = sn1 log pn/n. Then compatibility of the bounds in (2.5) requires sn1 =
O(1).

2. The optimistic scenario has

meaning ηn = sn1/pn · log pn/n. Then compatibility of the bounds in (2.5) requires
sn1 = O(pn).

On the other hand, for penalties like the SCAD or the hard-thresholding penalty, we do not
need an upper bound for sn1. Hence, we only need (sn + 1)(log pn)k/n = O(1) as n → ∞ for
some k > 1. It is clear that SCAD results in better sampling properties than the L1-penalized
estimator in precision or inverse correlation matrix estimation.

3 Estimation of sparse covariance matrix
In this section, we analyze the sparse covariance matrix estimation using the penalized
likelihood (1.3). Then it is modified to estimating the correlation matrix, which improves the
rate of convergence. We assume that the yi’s are i.i.d. N(0, Σ0) throughout this section.
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3.1 Properties of sparse covariance matrix estimation

Let , where . Denote sn2 = |S2| − pn, so that sn2 is the number of
nonzero elements in Σ0 on the off-diagonal entries. Put

Technical conditions in Section 2 need some revision. In particular, condition (D) now
becomes condition (D2) with λn1 there replaced by λn2. Condition (B) should now be (B2)

an2 = O({(1 + pn/(sn2 + 1)) log pn/n}1/2), bn2 = o(1), and  as n → ∞.

Theorem 5 (Rate of convergence). Under regularity conditions (A), (B2), (C) and (D2), if

(pn + sn2)(log pn)k/n = O(1) for some k > 1 and (pn + sn2) log , then there exists

a local minimizer  such that . For the L1-penalty, we

only need .

Like the case for precision matrix estimation, the asymptotic bias due to the L1-penalty is of
order sn2an2 = sn2λn2. To control this term, for the L1-penalty, we require λn2 = O({(1 + pn/
(sn2 + 1)) log pn/n}1/2).

Theorem 6 (Sparsistency). Under the conditions given in Theorem 5, for any local

minimizer  of (1.3) satisfying  and 

for some ηn → 0, if , then with probability tending to 1,  for all
.

For the L1-penalized likelihood, controlling of bias for consistency together with
sparsistency requires

(3.1)

This is the same condition as (2.3), and hence in the worst case scenario where

we need sn2 = O(1). In the optimistic scenario where

we need sn2 = O(pn). In both cases, the matrix Σ0 has to be very sparse, but the former is
much sparser.

On the other hand, if unbiased penalty functions like the SCAD or hard-thresholding penalty
are used, we do not need an upper bound on λn2 since the bias an2 = 0 for sufficiently large
n. This gives more flexibility on the order of sn2.
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Similar to Section 2, asymptotic normality for the estimators of the elements in S2 can be
proved under certain assumptions.

3.2 Properties of sparse correlation matrix estimation
The correlation matrix Γ0 retains the same sparsity structure of Σ0 with known diagonal
elements. This special structure allows us to estimate Γ0 more accurately. To take advantage
of the known diagonal elements, the sparse correlation matrix Γ0 is estimated by minimizing
w.r.t. Γ = (γij),

(3.2)

where υn2 is a regularization parameter. After obtaining  Σ0 can be estimated by .

To present the rates of convergence for  and , we define

where . We modify condition (D) to (D2′) with λn2 there replaced by υn2, and (B) to

(B2′) as follows: (B2′) cn2 = O({log pn/n}1/2), dn2 = o(1), and  as n →
∞.

Theorem 7 Under regularity conditions (A),(B2′),(C) and (D2′), if (pn+sn2)(log pn)k/n =

O(1) for some k > 1 and , then there exists a local minimizer  for
(3.2) such that

In addition, for the operator norm, we have

For the L1-penalty, we only need .

The proof is sketched in Section 5. This theorem shows that the correlation matrix, like the
inverse correlation matrix, can be estimated more accurately, since diagonal elements are
known to be one.

Theorem 8 (Sparsistency). Under the conditions given in Theorem 7, for any local

minimizer  of (3.2) satisfying  and  for

some ηn → 0 , if , then with probability tending to 1,  for all
.
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The proof follows exactly the same as that of Theorem 6 in Section 5, and is omitted. For
the L1-penalized likelihood, controlling of bias and sparsistency requires

(3.3)

This is the same condition as (2.5), hence in the worst scenario where

we need sn2 = O(1). In the optimistic scenario where

we need sn2 = O(pn).

The use of unbiased penalty functions like the SCAD or the hard-thresholding penalty,
similar to results in the previous sections, does not impose an upper bound on the
regularization parameter since bias cn2 = 0 for sufficiently large n. This gives more
flexibility to the order of sn2 allowed.

4 Extension to sparse Cholesky decomposition
Pourahmadi (1999) proposed the modified Cholesky decomposition (MCD) which facilitates
the sparse estimation of Ω through penalization. The idea is to represent zero-mean data y =
(y1, ⋯ , ypn)T using the autoregressive model:

(4.1)

where T is the unique unit lower triangular matrix with ones on its diagonal and (i, j)th

element being −ϕij for j < i, and D is diagonal with ith element being . The
optimization problem is unconstrained (since the ϕij’s are free variables), and the estimate
for Ω is always positive-definite.

Huang et al. (2006) and Levina et al. (2008) both used the MCD for estimating Ω0. The
former maximized the log-likelihood (ML) over T and D simultaneously, while the latter
suggested also a least square version (LS), with D being first set to the identity matrix and
then minimizing over T to obtain . The latter corresponds to the original Cholesky
decomposition. The sparse Cholesky factor can be estimated through minimizing

(4.2)

This is indeed the same as (1.1) with the substitution of Ω = TTD−1T and penalization
parameter λn3. Noticing that (4.1) can be written as , the least square version is to
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minimize  in the matrix notation. Aggregating the n observations and
adding penalty functions, the least-square criterion is to minimize

(4.3)

In view of the results in Sections 2.5 and 3.2, we can also write the sample covariance
matrix in (4.2) as  and then replace  by T, resulting in the normalized
(NL) version as follows:

(4.4)

We will also assume the yi’s are i.i.d. N(0, Σ0) as in the last section.

4.1 Properties of sparse Cholesky factor estimation
Since all the T’s introduced in the three models above have the same sparsity structure, let S
and sn3 be the nonzero set and number of nonzeros associated with each T above. Define

For (ML), condition (D) is adapted to (D3) with λn1 there replaced by λn3. Condition (B) is
modified as (B3) an3 = O({(1 + pn/(sn3 + 1)) log pn/n}1/2), bn3 = o(1) and

 as n → ∞.

After obtaining  and  from minimizing (ML), we set .

Theorem 9 Under regularity conditions (A),(B3),(C),(D3), if (pn + sn3)(log pn)k/n = O(1) for

some k > 1 and , then there exists a local minimizer  and  for

(ML) such that ,  and

. For the L1-penalty, we only need .

The proof is similar to those of Theorems 5 and 7 and is omitted. The Cholesky factor T has
ones on its main diagonal without the need for estimation. Hence, the rate of convergence is
faster than .

Theorem 10 (Sparsistency). Under the conditions in Theorem 9, for any local minimizer ,

 of (4.2) satisfying  and , if

, then sparsistency holds for , provided that 

and , for some ηn, ζn → 0.

The proof is in Section 5. For the L1-penalized likelihood, control of bias and sparsistency
impose the following:
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(4.5)

The worst scenario corresponds to ηn = sn3 log pn/n and ζn = pn log pn/n, so that we need sn3
= O(1). The optimistic scenario corresponds to ηn = sn3/pn · log pn/n and ζn = log pn/n, so
that we need sn3 = O(pn).

On the other hand, such a restriction is not needed for unbiased penalties like the SCAD or
hard-thresholding penalty, giving more flexibility on the order of sn3.

4.2 Properties of sparse normalized Cholesky factor estimation
We now turn to analyzing the normalized penalized likelihood (4.4). With T = (tij) in (NL)
which is lower triangular, define

Condition (D) is now changed to (D5) with λn1 there replaced by λn5. Condition (B) is now

substituted by (B5) , bn5 = o(1),  as n → ∞.

Theorem 11 (Rate of convergence) Under regularity conditions (A),(B5),(C) and (D5), if

sn3(log pn)k/n = O(1) for some k > 1 and , then there exists a local

minimizer  for (NL) such that  and rate of convergence in the
Frobenius norm

and in the operator norm, it is improved to

For the L1-penalty, we only need .

The proof is similar to that of Theorems 5 and 7 and is omitted. In this theorem, like Lemma
3, we can have pn so that pn/n goes to a constant less than 1. It is evident that normalizing
with  results in an improvement in the rate of convergence in operator norm.

Theorem 12 (Sparsistency). Under the conditions given in Theorem 11, for any local

minimizer  of (4.4) satisfying  if , then

sparsistency holds for , provided that  for some ηn → 0.

Proof is omitted since it goes exactly the same as that of Theorem 10. The above results
apply also to the L1-penalized estimator. For simultaneous persistency and optimal rate of
convergence using the L1-penalty, the biases inherent in it induce the restriction sn3 = O(1)
in the worst scenario where , and sn3 = O(pn) in the optimistic scenario where
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. This restriction does not apply to the SCAD and other asymptotically
unbiased penalty functions.

5 Proofs
We first prove three lemmas. The first one concerns with inequalities involving the operator
and the Frobenius norms. The other two concern with order estimation for elements in a
matrix of the form A(S − Σ0)B, which are useful in proving results concerning sparsistency.

Lemma 1 Let A and B be real matrices such that the product AB is defined. Then, defining

, we have

(5.1)

In particular, if A = (aij), then |aij| ≤ ∥A∥ for each i, j.

Proof of Lemma 1. Write B = (b1, ⋯ , bq), where bi is the i-th column vector in B. Then

Similarly,

which completes the proof of (5.1). To prove |aij| ≤ ∥A∥, note that , where ei is the
unit column vector with one at the i-th position, and zero elsewhere. Hence, using (5.1),

and this completes the proof of the lemma. □

Lemma 2 Let S be a sample covariance matrix of a random sample {yi}1≤i≤n, with E(yi) = 0
and var(yi) = Σ0. Let yi = (yi1, ⋯ , yipn) with yij ~ Fj, where Fj is the c.d.f. of yij , and let Gj

be the c.d.f. of , with

(5.2)

for some λ0 > 0. Assume log pn/n = o(1), and that Σ0 has eigenvalues uniformly bounded
above as n → ∞. Then for constant matrices A and B with ∥A∥, ∥B∥ = O(1), we have maxi,j
|(A(S − Σ0)B)ij | = OP({log pn/n}1/2).

Remark: The conditions on the yij’s above are the same as those used in Bickel and Levina
(2008b) for relaxing the normality assumption.
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Proof of Lemma 2. Let xi = Ayi and . Define  , with covariance matrix

Since ∥(AT B)T∥ ≤ (∥A∥2 + ∥B∥2)1/2 = O(1) and ∥Σ0∥ = O(1) uniformly, we have ∥Σu∥ =

O(1) uniformly, Then, with , which is the sample covariance matrix for the
random sample {ui}1≤i≤n, by Lemma A.3 of Bickel and Levina (2008b) which holds under
the assumption for the yij’s and log pn/n = o(1), we have

In particular, it means that

which completes the proof of the lemma. □

Lemma 3 Let S be a sample covariance matrix of a random sample yi1≤i≤n with yi ~ N(0,
Σ0). Assume pn/n → y ∈ [0, 1), Σ0 has eigenvalues uniformly bounded as n → ∞, and A =
A0 + Δ1, B = B0 + Δ2 are such that the constant matrices ∥A0∥, ∥B0∥ = O(1), with ∥Δ1∥, ∥Δ2∥
= oP(1). Then we still have maxi,j|(A(S−Σ0)B)ij| = OP({log pn/n}1/2).

Proof of Lemma 3. Consider

(5.3)

where K1 = A0(S − Σ0)B0, K2 = Δ1(S − Σ0)B0, K3 = A0(S − Σ0)Δ2 and K4 = Δ1(S − Σ0)Δ2.
Now maxi,j |(K1)ij | = OP({log pn/n}1/2) by Lemma 2. Consider K2. Suppose the maximum
element of the matrix is at the (i, j)-th position. Consider ((S − Σ0)B0)ij, the (i, j)-th element
of (S − Σ0)B0. Since each element in S − Σ0 has a rate OP(n−1/2), the i-th row of S − Σ0 has
a norm of OP({pn/n}1/2). Also, the j-th column of B0 has ∥B0ej∥ ≤ ∥B0∥ = O(1). Hence, ((S −
Σ0)B0)ij = OP({pn/n}1/2).

Hence, we can find cn = o({n/pn}1/2) such that each element in  has an order
larger than that in Δ1, since ∥Δ1∥ = oP(1) implies that each element in Δ1 is also oP(1) by
Lemma 1.

Then suitable choice of cn leads to

(5.4)

At the same time, Theorem 5.10 in Bai and Silverstein (2006) implies that, for yi ~ N(0, Σ0)
and pn/n → y ∈ (0, 1), with probability one,
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Hence, if we have pn/n = o(1), we must have , or it will contradict
the above. It means that ∥S−Σ0∥ = oP(1) since Σ0 has eigenvalues uniformly bounded. Or, if
pn/n → y ∈ (0, 1), then we have ∥S − Σ0∥ = OP(1) by the above.

Since S − Σ0 is symmetric, we can find a rotation matrix Q (i.e. QTQ = QQT = I) so that

where Λ is a diagonal matrix with real entries. Then we are free to control cn again so as to
satisfy further that cn∥Λ∥2 = oP(∥Λ∥), since ∥Λ∥ = ∥S − Σ0∥ = OP(1) at most. Hence,

where the last line used the previous proof for constant matrix B0. Hence, combining this
with (5.4), we have maxi,j |(K2)ij| = OP({log pn/n}1/2). Similar arguments go for K3 and K4.
□

Proof of Theorem 1. The main idea of the proof is inspired by Fan and Li (2001) and
Rothman et al. (2008). Let U be a symmetric matrix of size pn, DU be its diagonal matrix
and RU = U − DU be its off-diagonal matrix. Set ΔU = αnRU + βnDU. We would like to
show that, for αn = (sn1 log pn/n)1/2 and βn = (pn log pn/n)1/2, and for a set  defined as

,

for sufficiently large constants C1 and C2. This implies that there is a local minimizer in

 such that  for sufficiently large n,
since Ω0 + ΔU is positive definite. This is shown by noting that

since Ω0 has eigenvalues uniformly bounded away from 0 and ∞ by condition (A), and
∥ΔU∥F = O(αn + βn) = o(1).

Consider, for Σ = Σ0 + ΔU, the difference
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where

It is sufficient to show that the difference is positive asymptotically with probability tending
to 1. Using Taylor’s expansion with the integral remainder, we have I1 = K1+K2, where

(5.5)

with the definitions Ωv = Ω0 + vΔU, and . Now,

where we used ∥ΔU∥ ≤ C1αn + C2βn = O((log pn)(1−k)/2) = o(1) by our assumption.

Consider K1. It is clear that |K1| ≤ L1 + L2, where

Using Lemmas 1 and 2, we have

Lam and Fan Page 18

Ann Stat. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



This is dominated by K2 when C1 and C2 are sufficiently large.

Now, consider I2 − L2 for penalties other than L1. Since  on , we have
that |ωij| = O(C1αn + C2βn) = o(1) for all . Also, note that the condition on λn1
ensures that, for , |ωij| = O(αn + βn) = o(λn1). Hence, by condition (C), for all

, we can find a constant k1 > 0 such that

This implies that

Hence,

With the assumption that , we see from the above that I2−L2 ≥ 0

since , using .

For the L1-penalty, since we have maxi≠j |S − Σ0| = OP((log pn/n)1/2) by Lemma 2, we can
find a positive W = OP(1) such that

Then we can set λn1 = 2W(log pn/n)1/2 or one with order greater than (log pn/n)1/2, and the
above arguments are still valid, so that I2 − L2 > 0.

Now, with L1 dominated by K2 and I2 − L2 ≥ 0, the proof completes if we can show that I3
is also dominated by K2, since we have proved that K2 > 0. Using Taylor’s expansion, we
can arrive at

where o(1) and O(1) are the terms independent of C1 and C2. By condition (B), we have
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which is dominated by K2 with large enough constants C1 and C2. This completes the proof
of the theorem. □

Proof of Theorem 2. For Ω a minimizer of (1.1), the derivative for q1(Ω) w.r.t. ωij for
 is

where sgn(a) denotes the sign of a. If we can show that the sign of ∂q1(Ω)/∂ωij depends on
sgn(ωij) only with probability tending to 1, the optimum will be at 0, so that  for all

 with probability tending to 1. We need to estimate the order of sij − σij
independent of i and j.

Decompose sij − σij = I1 + I2, where

By Lemma 2 or Lemma A.3 of Bickel and Levina (2008b), it follows that maxi,j |I1| =
OP({log pn/n}1/2). It remains to estimate the order of I2.

By Lemma 1, , which has order

where we used condition (A) to get ∥Σ0∥ = O(1), and using ηn → 0 so that

,

Hence,  implies .

Combining the last two results yields that

By conditions (C) and (D), we have
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for ωij in a small neighborhood of 0 (excluding 0 itself) and some positive constant C3.

Hence, if ωij lies in a small neighborhood of 0, we need to have  in
order to have the sign of ∂q1(Ω)/∂ωij depends on sgn(ωij) only with probability tending to 1.
The proof of the theorem is completed. □

Proof of Theorem 3. Because of the similarity between equations (2.4) and (1.1), the
Frobenius norm result has nearly identical proof as Theorem 1, except that we now set ΔU =
αnU. For the operator norm result, we refer readers to the proof of Theorem 2 of Rothman et
al. (2008). □

Proof of Theorem 5. The proof is similar to that of Theorem 1. We only sketch briefly the
proof, pointing out the important differences.

Let αn = (sn2 log pn/n)1/2 and βn = (pn log pn/n)1/2, and define .
Want to show

for sufficiently large constants C1and C2.

For Σ = Σ0 + ΔU, the difference

where

with I1 = K1 + K2, where

(5.6)

and Σv = Σ0 + vΔU, SΩ0 is the sample covariance matrix of a random sample {xi}1≤i≤n
having xi ~ N(0, Ω0). Also,

(5.7)
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The treatment of K2is different from that in Theorem 1. By condition (A), and (pn + sn2)(log
pn)k/n = O(1) for some k > 1, we have

Thus, we can use the Neumann series expansion to arrive at

where the little o (or oP, O or OP in any matrix expansions in the remainder of this proof)
represents a function of the L2 norm of the residual matrix in the expansion. That is,

, and . With SI difined as the sample
covariance matrix formed from a random sample {xi}1≤i≤n having xi ~ N(0, I),

(see arguments in Lemma 3). These entail

Combining these results, we have

Consequently,

All other terms are dealt with similarly as in the proof of Theorem 1, and hence we omit
them. □

Proof of Theorem 6. The proof is similar to that of Theorem 2. We only show the main
differences.

It is easy to show

Our aim is to estimate the order of |(−ΩSΩ + Ω)ij|, finding an upper bound which is
independent of both i and j.
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Write

where I1 = −Ω(S − Σ0)Ω and I2 = Ω(Σ − Σ0)Ω. Since

we have

where  by Lemma 1, with ∥Σ−Σ0∥2 = O(ηn).
Hence, we can apply Lemma 3 and conclude that maxi,j |(I1)ij| = OP({log pn/n}1/2).

For I2, we have

Hence, we have

The rest goes similar to the proof of Theorem 2, and is omitted. □

Proof of Theorem 7. The proof is nearly identical to that of Theorem 5, except that we now

set ΔU = αnU. The fact that  has no estimation error eliminates an order (pn log

pn/n)1/2 that contributes from estimating  for (3.2). This is why we can
estimate a sparse correlation matrix more accurately.

For the operator norm result, we refer readers to the proof of Theorem 2 of Rothman et al.
(2008). □

Proof of Theorem 10. For (T,D) a minimizer of (4.2), the derivative for q3(T,D) w.r.t. tij for
 is

Now STTD−1 = I1 + I2 + I3 + I4, where
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By the MCD (4.1), . Since i > j for , we must have . Hence, we can
ignore I4.

Since ∥T−T0∥2 = O(ηn) and ∥D−D0∥2 = O(ζn) with ηn, ζn = o(1), and by condition (A) we

can easily show . Then we can apply Lemma 3 to
show that maxij |(I1)ij| = (log pn/n)1/2.

For I2, we have . And finally.

.

With all these, we have . The rest of the proof goes
like that of Theorem 2 or 6. □
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