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ABSTRACT
Objective To formulate a model for translating manual
infection control surveillance methods to automated,
algorithmic approaches.
Design We propose a model for creating electronic
surveillance algorithms by translating existing manual
surveillance practices into automated electronic
methods. Our model suggests that three dimensions of
expert knowledge be consulted: clinical, surveillance, and
informatics. Once collected, knowledge should be
applied through a process of conceptualization,
synthesis, programming, and testing.
Results We applied our framework to central vascular
catheter associated bloodstream infection surveillance, a
major healthcare performance outcome measure. We
found that despite major barriers such as differences in
availability of structured data, in types of databases used
and in semantic representation of clinical terms,
bloodstream infection detection algorithms could be
deployed at four very diverse medical centers.
Conclusions We present a framework that translates
existing practice—manual infection detection—to an
automated process for surveillance. Our experience
details barriers and solutions discovered during
development of electronic surveillance for central
vascular catheter associated bloodstream infections at
four hospitals in a variety of data environments. Moving
electronic surveillance to the next level—availability at a
majority of acute care hospitals nationwide—would be
hastened by the incorporation of necessary data
elements, vocabularies and standards into commercially
available electronic health records.

Improving patient safety and healthcare quality has
become a high-profile national goal.1 Public disclo-
sure of the performance of hospitals has been
promoted as integral to these efforts.2 Rates of
hospital-acquired infections (HAIs)—in particular,
bloodstream infections (BSIs)—are considered
important measures for public reporting. HAIs are
increasingly considered to be preventable through
surveillance, adherence to infection control
guidelines, and bundling of effective preventive
practices.3–8

The Centers for Disease Control and Prevention
(CDC) has conducted surveillance of HAIs since the
1970s; this relies almost exclusively on manual
collection of data by infection preventionists (IPs)
using HAI case definitions developed by the CDC’s

National Nosocomial Infections Surveillance
System (NNIS) (currently the National Healthcare
Safety Network or NHSN).9 Three barriers exist for
implementation of surveillance of HAIs for
performance measurement. First, surveillance of
nosocomial infections is a time-consuming, labor-
intensive process, requiring manual collection of
clinical data from medical, laboratory, and phar-
macy records.10 Second, proper manual surveillance
requires that surveillance personnel have certain
clinical and epidemiological skills. Third, because IPs
must apply CDC case definitions to a broad range of
clinical syndromes, clinical judgment is used, and
despite training of surveillance staff, subjectivity or
inconsistent classification may be introduced in the
interpretation of surveillance definitions. Differ-
ences in surveillance practices by IPs within or
between institutions can affect sensitivity of case-
finding11 and introduce error in inter-hospital
comparisons and ranking.12

With the increased public demand for reporting
of performance measures that rank hospitals, we
need measures that have good reliability for
comparisons between hospitals. The automation of
infection surveillance through use of information
technology should increase reliability and allow for
consistent application of rules in all institutions.
An added benefit may be a more streamlined busi-
ness process for detecting infections and a reduc-
tion in surveillance work, allowing IPs to spend
more time on prevention efforts.13 14 Increased use
of electronic data in surveillance has been empha-
sized in descriptions of the NHSN.15

BACKGROUND
The work of automating infection control surveil-
lance is in its infancy.While the value of repurposing
electronic data for nosocomial infection surveillance
is established16–19 and vendor solutions for infection
surveillance exist, the knowledge bases that govern
surveillance rules are often proprietary, and differ-
ences in local health record datamake surveillance at
each center a unique, non-scalable effort. A frame-
work for developing electronic rules for infection
detection would aid in the translation of manual
surveillance approaches to those that are auto-
mated. In the development of such a framework,
several questions should be addressed, including:
1. Are the necessary data sets and fields compre-

hensively and comprehensibly available in
existing information systems?
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2. Are standardized coding schemas used across multiple
institutions in light of the semantic heterogeneity in local
data repositories (eg, differences in bacterial nomenclature
used between laboratory information systems)?

3. Do developed rules need to be faithful representations of
current case definitions, or can simpler rules be used as a
surrogate to achieve the aim of reproducible and accurate
HAI detection? And as a corollary, is the goal to determine
actual rates of infection or relative rates for ranking
institutions?

4. Can the business logic of surveillance (ie, flowcharts,
algorithms, or pseudocode describing the process) be
deployed at individual hospitals and applied to individual
data stores to produce accurate, reliable results?

Storage of the rules governing automated surveillance
processes in knowledge bases has been accomplished in a variety
of settings, including the Health Evaluation through Logical
Processing (HELP) system,16 as well as in vendor systems.20

Furthermore, standards for the sharing and generic application of
knowledge bases and decision support have been developed.
Examples include the Arden syntax,20 an American National
Standards Institute standard that specifies Medical Logic
Modules which contain information about both the logic and the
context of a decision algorithm; the GuideLine Interchange
Format,21 a methodology for the process of guideline develop-
ment using flowcharts and a set of classes to support temporality
of rules, ontology of concepts, and hierarchy of actions; and the
GELLO (objective oriented guidelines) expression language,22

which is an object oriented language that represents algorithms
used in decision support.

An excellent target for electronic surveillance is central
vascular catheter (also referred to as central-line) associated
bloodstream infections (CLABSIs),23 because CLABSIs are
common and preventable adverse events in healthcare
settings,1 24 25 and are a subset of a easily detectable electronic
trigger, blood cultures with growth of bacteria. CDC’s
Healthcare Infection Control Practices Advisory Committee
recommends ongoing surveillance for CLABSIs,24 and in many
states CLABSI monitoring has been mandated for reporting to
public agencies. Automated CLABSI detection has been achieved
in single centers or in small populations of patients.26–28

As described by NNIS/NHSN rules, surveillance for CLABSIs
entails several sequential events. The characteristics of these
events make them amenable to automation (box 1). First, IPs
review blood cultures sent to laboratories to identify those with
microbial growth (ie, positive blood cultures) and that are
hospital-associated (ie, occur after the incubation time period for
community-acquisition, ie, $ second hospital day). Then, the
number of positive blood cultures, clinical features in patients
with the positive cultures and type and number of culture
isolates are reviewed to determine whether the isolates are likely
to represent true infection (ie, are not contaminants of the blood
cultures). Finally, the clinical features and culture results from
other body sites in patients with positive blood cultures are
reviewed to classify positive cultures as due to a CLABSI or a
‘secondary’ bacteremia from another site (eg, pneumonia or
pyelonephritis with associated bacteremia). Because a positive
blood culture is the trigger for a surveillance action, these steps
can be executed as an electronic rule.

As a part of the CDC Prevention Epicenters Program, a
multicenter collaborative group seeking to use information
technology to prevent nosocomial infections, we conducted a
multicenter project to build and apply a framework for devel-
oping electronic algorithms from manual surveillance efforts,

using CLABSI surveillance as an application of this framework.
This paper describes the framework developed, challenges
encountered, and lessons learned in the development process. A
planned evaluation of the performance characteristics of elec-
tronic CLABSI surveillance as compared with manual surveil-
lance in the 20 enrolled units will be presented in a separate
report. This evaluation is not complete, and awaits the expert
review of patient charts with putative CLABSIs to determine
the accuracy of manual (ie, IP determined) and automated (ie,
algorithmically determined) surveillance.

FORMULATION PROCESS
The value of a framework for electronic rule development is that
it may reduce bias and misclassification introduced to electronic
rules that results from the process of translating manual to
automated surveillance methods. Surveillance systems seek to

Box 1 NNIS criteria for CLABSI surveillance (valid through
January 1, 2008)

Nosocomial infection
There is no evidence that the infection was present or incu-

bating at the time of hospital admission unless the infection was
related to a previous NSHN patient admission to the current
hospital.
Primary bloodstream infection criteria
Criterion 1

Patient has a recognized pathogen recovered from$1 blood
culture
Organism cultured from blood is not related to an infection
at another site.

Criterion 2a
Patient has $1 of the following signs or symptoms: fever
(.38˚), chills, or hypotension
Signs and symptoms and positive laboratory results are not
related to an infection at another site
Common skin commensal (eg, diphtheroids, Bacillus sp.,
Propionibacterium sp., coagulase-negative staphylococci,
or Micrococcus spp.) is cultured from $2 blood cultures
drawn on separate occasions

Criterion 2b
Patient has $1 of the following signs or symptoms: fever
(.38o), chills or hypotension
Signs and symptoms and positive laboratory results are not
related to an infection at another site
Common skin contaminant (eg, diphtheroids, Bacillus spp.,
Propionibacterium spp., coagulase-negative staphylococci,
or Micrococcus spp.) is cultured from at least one blood
culture from a patient with an intravascular line, and the
physician institutes appropriate antimicrobial therapy

Criteria for CVC associated
During 48 h before the first blood culture positive for this

organism, did the patient have a vascular access device that
terminated at or close to the heart or one of the great vessels
(includes tunneled or non-tunneled catheters inserted into the
subclavian, jugular or femoral veins; pulmonary artery (Swan–
Ganz) catheters; hemodialysis catheter; totally implanted devices
(ie, ports); peripherally inserted central catheters (PICCs)).

CLABSI, catheter associated bloodstream infection; NNIS,
National Nosocomial Infections Surveillance System.
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detect the absolute infection status of an individual (ie, either
‘infected’ or ‘not infected’). The action of classifying individuals
as infected or not infected, however, is beset by problems of
subjectivity and at times, a lack of sufficient data. Clinicians
classify individuals as infected or not based often on subjective
criteria, and often err on the side of presuming infection for
treatment purposes; IP surveillance, on the other hand, uses
specific criteria and case definitions in an attempt to reduce
subjectivity. Despite the availability of surveillance criteria, the
opportunity still exists for IPs to apply subjective interpretations
of surveillance criteria which may introduce bias and reduce
reproducibility. For example, IPs may subjectively apply surveil-
lance criteria, may rely on clinician interpretations to aid deter-
minations of infection status, may have access to clinical criteria
that are not present in the electronic health record, or may have a
culture of practice that is locally derived and differs substantially
from other centers.

Automated surveillance, in contrast, provides for the strict
and consistent application of surveillance definitions (with
consequent elimination of clinical interpretations and judg-
ment). However, such approaches risk misclassification errors
when there are gaps in the availability of all necessary clinical
information (eg, vital signs, patient appearance, unmeasured
laboratory values, or evidence of infection elsewhere).

Automating CLABSI surveillance required that we formalize
and operationalize the steps in translating existing manual
surveillance criteria to algorithmic approaches. The NNIS (now
called NHSN) definitions used to identify CLABSIs (box 1) are
the standard criteria applied by IPs. We created algorithms to
mimic these manual surveillance criteria; five rules were devel-
oped that ranged in complexity and in required data elements.

We sought to develop a model for rule development that
would achieve the following aims:
1. Allow for code development by a single site with subsequent

distribution to partners;
2. Use existing published knowledge about automating surveil-

lance, while incorporating expert opinion;
3. Reduce bias that could result from a priori decisions made in

the rule development process, or, in other words, implement
the best practices for automated surveillance that are rooted
in evidence and consensus, not opinion.

Our intent was to establish a formal process for developing
automated surveillance criteria from existing manual processes.
To allow for widespread distribution and adoption of the algo-
rithms, standard table structures and vocabularies were used. To
develop algorithms that synthesized existing definitions and
incorporated clinical and informatics knowledge, we used a
multidisciplinary approach. To reduce bias in the electronic rules,
we followed an orderly development process composed of
conceptualization, rule development, programming, and local
testing and troubleshooting.

MODEL DESCRIPTION
Conceptualization
Due to a dearth of comparative trials of different applications of
CLABSI rules, relianceon expert opinion for apriori assumptions in
code development was necessary. When creating electronic rules,
we identified three dimensions of expert knowledge that govern
the transition from manual to automated surveillance: (1) the
surveillance rules dimension; (2) the clinical evaluation dimension;
and (3) the information technology dimension (figure 1).

The surveillance rules dimension relates to current practice in
infection surveillance and incorporates existing surveillance

methods into the approach for electronic rule creation. In the
case of CLABSI surveillance, this dimension includes both the
NNIS and NHSN rules for CLABSI surveillance and the IP
implementation of these rules. We used our knowledge of the IP
approach for assessing individual patients to develop this
dimension of knowledge. For example, IPs may use clinical
criteria to aid in classification of infected versus not infected or
catheter-related versus secondary (ie, from an alternate site, such
as the urinary tract) BSI.
The clinical evaluation dimension describes the knowledge

necessary to relate healthcare events to the clinical significance
of those events. For CLABSI surveillance, this dimension
describes whether, for a given episode of positive blood cultures,
clinicians will classify the positive cultures as due to true
infections and the data needed to make that determination.
Examples of information contained within this dimension
include the importance of potential (especially uncommon) skin
commensal organisms as true pathogens, the value of differing
patterns of culture positivity with skin commensals in classi-
fying culture results as due to contaminants or CLABSI episodes,
the association of specific microbes recovered with secondary
BSIs and the value of positive cultures from other body sites in
determining that positive blood cultures likely represent seeding
of the blood from those sites (ie, secondary infections).
The information technology dimension describes knowledge

of the contents of typical data repositories and standard
vocabularies with respect to the inclusion of surveillance logic in
the resulting code development. It encompasses the knowledge
of available data elements, the construct of local databases and
the methods required to translate surveillance criteria into
business logic applicable to databases. The implementation of
CLABSI surveillance requires microbiology data to identify
positive blood cultures as well as patient location data to detect
location of origin of infections.

Knowledge synthesis and rule development
As noted in figure 2, NNIS surveillance rules were implemented
as algorithms for CLABSI surveillance. Because the rules were
planned for use at multiple institutions, a standard table schema
was constructed (available at http://bsi.cchil.org (accessed 1 Oct
2009)). The databases required for full implementation of the
electronic algorithms were: (1) microbiology data, including all
positive and negative culture results from both blood and other

Conceptualization
Knowledge Synthesis/Rule Development

Programming
Testing

Surveillance Rules Dimension

-NNIS surveillance definition knowledge

-Infection Preventionist (IP) surveillance 
business process knowledge

Clinical Evaluation Dimension

-Clinical practice knowledge
-Microbiology knowledge

-Semantic knowledge

Information Technology Dimension

-Database architecture knowledge
-Software development knowledge

Figure 1 Knowledge dimensions required for electronic surveillance
algorithm development.
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body sites, but excluding catheter tips or surveillance (ie, non-
clinical) cultures; (2) admission, discharge and transfer data,
using patient admission and transfer events to assign bed loca-
tions; and (3) pharmacy dispensing or ordering data, to assess if
vancomycin (a common treatment for CLABSIs) prescriptions
had occurred. Catheter tips were not included since it was
believed that centers differed in the frequency that catheter tip
cultures were obtained when CLABSIs were suspected. The code
was developed based on a plan for collaborating hospitals to
extract relevant data, harmonize semantic differences using
standard vocabularies and translation tables and fit the data to
the standard table structure.

Programming
The business logic for CLABSI rules is shown in figure 2. This
figure was used by programmers to develop SQL code. Code
development required 80 h of one programmer. The final SQL
code is available at http://bsi.cchil.org.

Since the algorithms were to be applied locally at each site,
generic code was developed to accommodate differences in local
databases. In addition, to promote use of standards, accom-
modate nomenclature differences between local hospital data sets
and enhance interoperability, standard table structures for input
data and standard vocabularies (ie, SNOMED and LOINC29)
were used, and a structured query language pseudocode was
developed in T/SQL to allow transparency of rule implementa-
tion to investigators. Other sites were allowed to adapt and test
the code for use in their data warehouse environments.

Testing
The CLABSI algorithms were tested at the development site in
several steps. First, a random sample of isolates was queried from
the local database at the development site and the paper charts

were reviewed for these episodes. To test the fidelity of the algo-
rithm, an investigator who was a clinical knowledge expert (ML)
audited the clinical charts of patients using a convenience sample
(n530) of consecutive isolates evaluated by the algorithm, and
made assessments of the classification status of the isolates (ie,
true infection vs contaminant, CLABSI vs secondary). Discrep-
ancies between manual and electronic algorithm determination
were closely examined. Discrepancies had two causes: (1) missing
electronic data that changed the algorithm’s interpretation; and
(2) incorrect representation of the algorithm business logic in
SQL, leading to misclassification by the electronic algorithm.
Missing data and errors in code creation were resolved locally at
this point, and we performed iterative retesting using both
already-sampled and newly-sampled isolates.

VALIDATION THROUGH EXAMPLE
The final CLABSI surveillance rules are shown in figure 2. Each
episode, or BSI event, begins with a blood culture with microbial
growth (ie, a positive blood culture). Each episode is defined as all
unique positive blood cultures found in a patient identified during a
five calendar-day period. The collection day of the positive blood
culture isolate is assessed; isolates obtained before the third hospital
day are considered community-onset and disregarded. Isolates
obtained on or after the third hospital day are considered hospital-
onset in origin and are classified as infections or contaminants. The
classification of common skin commensals (CSCs)—organisms
that commonly grow on skin and can contaminate blood cultures
as they are being obtained or processed (ie, coagulase-negative
staphylococci, Corynebacterium spp., Micrococcus spp., Bacillus spp.,
and Propionibacterium spp.)—differs among the five algorithms; for
all rules, isolates that are not CSCs are considered true infections.
Following the classification of an isolate as a contaminant or a

true infection, all additional blood isolates of the same species

Positive Blood Culture Hospital Onset >2nd Hospital Day
Yes

Deduplication

For rules A, B, & D, only the earliest isolate in a 30 day period is counted; others of the same species are ignored.  For 
infection isolates in rules C & E with scores of 0.2 or 0.5, subsequent isolates of same species are counted until total score in 
30 day period equals/exceeds 1; remaining are ignored.

Episode Grouping

Group by 5 day intervals, with earliest isolate in a 5 day period to start episode. Label each episode with unique number. 

Assign ward location based on first isolate in episode.

Primary vs. Secondary

CSC’s: Detection of identical species or genus from a wound culture during a specified interval (both -3 to +7 days of culture 
(sub rule S1), or entire admission (sub rule S2))

Non CSCs: Detection of identical species or genus from any non-blood culture during a specified interval (both -3 to +7 days 
of culture (sub rule S1), or entire admission (sub rule S2))

Infection vs. Contamination*

Rule A:
Infection:
Non CSCs
Contaminants:
All CSCs

Rule B:
Infection:
2 of >2 with same CSC
All non-CSCs 

Contaminants:
All other combinations 
of CSCs

Rule C:
Infection:
2 of >2 with same CSC
All non-CSCs 

Infection Probability:
1 of 1 with CSC: 0.5
1 of 2 with CSC: 0.2

Contaminants:
All other combinations of 
CSCs

Rule D:
Infection:
1 of >1 with CSC + 
Vanco on same day
2 of >2 with same CSC
All non-CSCs 

Contaminants:
All other combinations 
of CSCs

Rule E:
Infection:
2 of >2 with same CSC
All non-CSCs 

Infection Probability:
1 of >1 cultures + Vanco 
on same day: 0.5

Contaminants:
All other combinations 
of CSCs

Figure 2 Algorithm for electronic BSI surveillance. BSI, bloodstream infection; CSC, common skin commensals.
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are ignored for the subsequent 30 days and are considered
duplicates. Isolates obtained within a 5 day period are grouped
together into an episode. Episodes are characterized as primary
BSIs (ie, an intravascular infection) or secondary (ie, related to
infection at another site, such as the respiratory or urinary tract
infection). Cultures from body sites other than blood are
compared to blood culture isolates (all sites for non-CSCs, only
wound sites for CSCs); if any blood isolate in an episode is
deemed secondary (ie, due to match with culture results from a
non-bloodstream site), then the entire episode is classified as a
secondary BSI episode. Two rules are used for the assessment of
secondary BSIs: in the first (S1), only non-bloodstream isolates
obtained within 3 days before, to 7 days after a bloodstream
isolate are considered, while the second (S2) uses all non-blood-
stream isolates obtained during the same hospital admission as a
bloodstream isolate. The ward location of BSI episodes is
assigned based on the patient location at the presumed time of
incubation of infection, judged based on the location of the
patient 2 days prior to collection date of the first positive blood
culture in an episode. Prior admissions are used in the dedupli-
cation process, in that the 30 day rule for deduplication can cross
admissions, but prior admission information is not used in the
assignment of community—or nosocomial—onset for BSIs.
Clinical information such as the presence of hypotension or fever
is not used in the algorithms. Future iterations of the algorithms,
with more robust data requirements, may include these data
elements and might augment the performance characteristics of
rules particularly in the setting of CSCs.

Primary BSI episodes identified by the electronic rules are
further classified as CLABSIs if a central venous catheter was
present at the time of the episode. Where these data are available
electronically (eg, nursing documentation on a structured form),
this determination can be automated. If the presence of a central
vascular catheter is not determinable electronically, manual
assessments of the presence of central lines must be made by
chart review. Similarly, determination of the denominator—
central-catheter days for the studied unit—relies on either
manual data collection or through electronic documentation.

Distribution and implementation of CLABSI surveillance code
Following central testing of the algorithm and correct classi-
fication of CLABSI episodes as compared to human review of
sampled episodes, code was distributed to partner institutions
with the aim of rule implementation and validation at each site.
The code was developed at Hospital A, which used Microsoft
SQL Server 2000, with microbiology and bed information tables
for patient location. Of the three partner hospitals that adopted
the CLABSI algorithms, Hospital B did not have a data ware-

house incorporating laboratory and other clinical data; Hospital
C used SYBASE for its clinical data warehouse and had stored
microbiology, bed information and central-line utilization tables;
and Hospital D used an ORACLE database platform for its
clinical data warehouse.
Several challenges for code implementation were noted—

issues in data structure and format and in compatibility of SQL
code (table 1). Because code was redeveloped at each center as
needed, custom solutions were developed at each center. Two
problems were notable. First, microbiology data exhibited
significant semantic differences between centers, and in two
centers were not available as discrete data, but rather, in free text
format. Second, differences in local SQL languages required
redevelopment time at each center. Specific examples of issues
unique to each hospital will now be described.
Because Hospital B did not have an accessible data warehouse

at the time of the project, a data extract based on an existing
report found in the microbiology system, printed to a text file,
was imported into the SQL server database used at Hospital A.
The data were unstructured, and converted to a flat table using
customized templates developed using Monarch (Datawatch
Corporation, Chelmsford, MA, USA). The resulting report
contained organism names that were reported in free text fields,
while specimen source information was discrete and mapped to
standard nomenclature. Organism names were further refined
using python scripts and validated to ensure accuracy.
Hospital C, which had an internally developed and validated

data warehouse, was able to use the SQL-coded algorithms with
minor modification, that is, correction of capitalization and
formatting of SQL and adaptation of code to local data struc-
tures. This was possible because of the similarities in imple-
mentation of SQL between Microsoft SQL Server and SYBASE
(both use T/SQL).
At Hospital D, reuse of the SQL code was abandoned due to

differences between implementation of SQL in ORACLE (used
at Hospital D) and Microsoft SQL Server (used at Hospital A)
(ie, PL/SQL vs T-SQL). Therefore, the algorithms and flowchart
were used to develop a database agnostic, generic code.30

Microbiology data at Hospital D, like Hospital B, were limited by
the use of free text fields in organism name fields, prompting
standardization of the organism name list and a review of the
business process of microbiology reporting of organism names.
Natural language processing methods were used to translate free
text organism name reports to a set of discrete organisms.

Development of validation data sets
To verify that code redevelopment at each partner hospital
faithfully represented the original code, each hospital tested its

Table 1 Hospitals, database systems and challenges encountered in automated bloodstream infection surveillance

Hospital Database system Challenges Solutions

Hospital A Microsoft SQL Server 2000 Leveraging knowledge dimensions Consultation among knowledge experts

Hospital B None—extract of data given to Hospital A Free text, unstructured microbiology data Use of templates to import data to flat
files (Datawatch Monarch)

Ad hoc requests needed for individual data
extracts

Python script to standardize free text data

Bed information obtained from billing data
warehouse

Hospital C SYBASE Negative cultures not available Could not run 1 of 5 rules (Rule C)

Hospital D (30) Oracle Free text, unstructured microbiology data Natural language processing

Review of business processes of
microbiology reporting

SQL language version incompatibility (ie,
T-SQL vs PL/SQL)

Algorithm rewritten from conceptual
flowchart
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algorithms against a specially developed test data set (available
at http://bsi.cchil.org). Derived from cleaned Hospital A data,
the data set contained de-identified, linked results from micro-
biology, pharmacy and bed information databases. Five test
tables were developed representing a 2 year period: (1) a micro-
biology data set for all positive and negative blood cultures; (2) a
microbiology data set of positive non-blood site cultures; (3)
patient location information, based on admission-discharge-
transfer transactions; (4) a pharmacy data set of Vancomycin
prescriptions; and (5) a SNOMED mapping table, with organism
names mapped to SNOMED codes. In addition, sample outputs,
with raw counts and aggregated counts for each of the five rules,
were provided. Using the example of the test data set, Hospitals
B–D compared their rule-generated BSI counts to aggregated
monthly data and patient level counts. When discrepancies were
noted, algorithms were reviewed and improved iteratively until
observed results matched expected results for the test data set.
This process continued at each site until an exact match
occurred. The time to achieve an exact match varied between
sites, occurring within 3–4 weeks at one site (Hospital C) and
requiring several months for the entire process at another
(Hospital D).

DISCUSSION
Using a planning and development process that included coor-
dination of informaticians, programmers, clinicians and
surveillance experts, we developed and deployed algorithms for
the automatic surveillance of CLABSIs. These algorithms
allowed for the comparison of several methods of CLABSI
classification and consistent surveillance rule application across
large disparate academic medical centers. Despite differences in
data availability, structure and SQL language type, we were able
to adapt the business logic such that it could be universally
applied. Our framework should assist others in developing and
distributing electronic algorithms that approximate existing
surveillance definitions, which often rely on local institutional
practices and subjective interpretation of clinical findings in
patients. As more data are available in electronic health records
(eg, vital signs and clinical impressions), opportunity for
augmentation of surveillance algorithms with these clinical data
will occur. Consumers of the results of surveillance algorithms,
for example, CDC, could play an integral role in ensuring that
algorithm development uses a standard approach, in deter-
mining that developed algorithms generate expected results
when using test data sets and in disseminating validated
knowledge bases and algorithms using standards based
approaches like Arden syntax.

Major barriers in this process were identified andwill need to be
addressed for national automated CLABSI surveillance. First, the
process of translating current surveillance definitions which use
manual processes into electronic rulesmay lead to algorithms that
vary among institutions. As a result, unless a standard approach to
develop rules and validate rates produced by the resulting auto-
mated surveillance tools is developed, rates generated by these
rules may vary due to differing rule development methods and
coding. Such discrepancies may affect inter-hospital comparisons.
The use of standards-based approaches to rendering generic
knowledge bases20–22 31 may be a method to disseminate guide-
lines and algorithms to multiple centers. Test data sets, as we
used, could be a way to test the implementation of generic
knowledge bases at centers. Second, substantial differences in the
electronic availability and format of data elements stored at each
hospital provided challenges for the implementation of rules. For
example, we encountered the use of free text descriptions of

microbiology specimens and the absence of negative cultures in
some data sets in this project. Given that the data flow of
microbiology results begins in instruments, moves to a labo-
ratory information system and often is transferred to a full
electronic health record, devising workflows to capture discrete
data instead of free text would seem to be a desirable, and
achievable, goal. In addition, incorporating fields in laboratory
information systems that have discrete interpretations of free
text reports would aid this process. Pattern matching and natural
language processing, while promising techniques, require evalu-
ation to determine whether sufficient sensitivity and specificity
exist in interpretation of reports. Third, differences in database
types make the use of a database agnostic algorithm a necessary
goal. A major challenge was the heterogeneity of local nomen-
clatures and lack of standard vocabulary usage for describing
microbiology data in most centers. Therefore, exposing data
using standards (ie, in vocabulary and database schema) will
minimize development time required at individual centers. Use
of standards in code sets and knowledge bases may have limited
utility unless the difficult task of harmonizing data sets is
accomplished first.
Our experience mimics that of Kahn et al,19 in their

description of the GermWatcher expert system, in that the data
required are only loosely coupled with a center ’s electronic
medical record databases. Our attempt to develop a detection
algorithm knowledge base which is modular and shareable is
similar to other knowledge base methods for decision
support.16 20 Despite the 20 year history in the literature of
knowledge base development for nosocomial infection surveil-
lance and the great potential for healthcare quality improve-
ment with use of these methods, our experience suggests that
nationwide deployment of electronic infection surveillance faces
significant barriers due to the lack of harmonization between
electronic health records.

CONCLUSION
TheCDChas a stated goal to streamline surveillance practices, and
the automationof infectiondetectionwould achieve this aim.15 For
automated surveillance, IT infrastructure is essential. Despite the
call for a paperless medical record by the year 2001 by the Institute
OfMedicine, many hospital systems continue to use paper reports
for laboratory values and lack the capability to share results elec-
tronically.32 In some settings, electronic clinical datamay be stored
in data warehouses, but there are no national assessments of how
these data are structured, how semantically distinct they are or
how accessible they are for surveillance activities.
We present a framework that translates existing practice—

manual infection detection—to an automated process for
surveillance. We believe that a multidisciplinary approach with
active consultation among informaticians, surveillance experts,
and clinicians will be required to allow interpretation and struc-
turing of data in data warehouses to enable enhanced electronic
surveillance activities. In addition, clear steps for validating the
results of automation are essential. Our experience details barriers
and solutions discovered during development of electronic
surveillance for CLABSIs at four hospitals in a variety of data
environments (table 1). Moving electronic surveillance to the next
level—availability at a majority of acute care hospitals nation-
wide—would be hastened by incorporation of necessary data
elements, vocabularies and systems into commercially available
electronic health records. Such dissemination of standards may
be achieved by increasing visibility of existing deficiencies, by
using national mandates or by improving financial support for
hospitals to deploy electronic health records.
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