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ABSTRACT
Objective To classify automatically lung
tumorenodeemetastases (TNM) cancer stages from
free-text pathology reports using symbolic rule-based
classification.
Design By exploiting report substructure and the
symbolic manipulation of systematized nomenclature of
medicineeclinical terms (SNOMED CT) concepts in
reports, statements in free text can be evaluated for
relevance against factors relating to the staging
guidelines. Post-coordinated SNOMED CT expressions
based on templates were defined and populated by
concepts in reports, and tested for subsumption by
staging factors. The subsumption results were used to
build logic according to the staging guidelines to
calculate the TNM stage.
Measurements The accuracy measure and confusion
matrices were used to evaluate the TNM stages
classified by the symbolic rule-based system. The
system was evaluated against a database of
multidisciplinary team staging decisions and a machine
learning-based text classification system using support
vector machines.
Results Overall accuracy on a corpus of pathology
reports for 718 lung cancer patients against a database
of pathological TNM staging decisions were 72%, 78%,
and 94% for T, N, and M staging, respectively. The
system’s performance was also comparable to support
vector machine classification approaches.
Conclusion A system to classify lung TNM stages from
free-text pathology reports was developed, and it was
verified that the symbolic rule-based approach using
SNOMED CT can be used for the extraction of key lung
cancer characteristics from free-text reports. Future
work will investigate the applicability of using the
proposed methodology for extracting other cancer
characteristics and types.

Cancer stage is assigned according to standard
criteria such as the tumorenodeemetastases
(TNM) staging standard.1 Cancer stage annotation
could add significant value to existing incidence and
mortality data collected by population-based cancer
registries as it is both a basis for planning clinical
management as well as the major prognostic factor
required to allow analysis of outcomes across
a population. Despite its importance, the quality of
stage data collected in population-based datasets is
often incomplete or inaccurate due to incomplete
medical records, data entry errors, or staging
misinterpretations.2 Currently no Australian state
or territory captures perpetual population-based
cancer stage data.3 4 The absence of stage data has

been identified in the Australian National Cancer
Data Strategy as a fundamental gap in population-
based data collections.4

Multidisciplinary cancer teams attended by
pathologists, radiologists, and cancer specialists
assign consensus cancer stage by reference to tissue-
specific staging systems providing a ‘gold standard’;
however, such teams only operate in larger centers.
Automatic classification of relevant clinical and
pathological data to assign stage could potentially
reduce reliance on expert clinical staff, reducing cost
and improving efficiency and availability of cancer
stage data.
To assist the collection of TNM stages, the

College of American Pathologists (CAP) produced
cancer case summaries as synoptic checklists
containing tumor site-specific items including
cancer staging information.5 6 The value of cancer
stage along with other key characteristics in the
CAP cancer checklists has been recognized by the
American College of Surgeons Commission on
Cancer, and documentation of checklist items in
pathology reports is now mandated as a minimum
requirement at Commission on Cancer-approved
cancer programs.5 6 While this is a positive step
toward standardizing the collection of TNM stages,
data reliability remains dependent on the skill and
experience of the individual clinician assigning and
documenting the stage. As a result, stages docu-
mented by clinicians in reports are not used for
population-based data collections. Despite this,
TNM stages explicitly recorded in free text can be
reliably extracted using regular expression pattern
matching.7 8

Related work in extracting key cancer charac-
teristics from free text can be used to build logic to
derive a cancer stage. To achieve reliable population
cancer stage data, reference to staging guideline
criteria is required. The medical text analysis
system/pathology system proposed by Coden
et al9 automatically instantiates an extensible and
modifiable cancer disease knowledge representa-
tion model (CDKRM) to capture cancer disease
characteristics including cancer stage. Natural
language processing (NLP), machine learning and
rules were used to populate the CDKRM. Selected
cancer characteristics were evaluated and showed
promise when evaluated against a corpus of
pathology reports for patients with colon cancer.
Although cancer stage characteristics were
proposed to be populated in the CDKRM, either by
extracting explicitly mentioned stages within
pathology reports or deriving it from other infor-
mation such as primary tumor description, lymph
node status, and the presence or absence of
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metastases, cancer stage was not ultimately included in the
evaluation.

We previously focussed on automating the assignment of TNM
stages for lung cancer patients by an analysis of pathology and
radiology reports2 10 using a system (cancer stage interpretation
system; CSIS) predicated on the same guidelines used by clini-
cians in assigning stage based on pathology and radiology reports.
An extract was produced consisting of sentences that were found
to contribute to the final staging decision. These sentences from
reports were evaluated against staging guideline criteria, herein
termed ‘staging factors’. Machine learning techniques based on
support vector machines were used to learn the associations
between the set of sentences in the report and each of the staging
factors. Classification accuracy was shown to be adequate for
purposes of population-level research and for indicative staging
before multidisciplinary team (MDT) meetings.

Although machine learning techniques show promise, exten-
sibility and/or generalization to staging other types of cancer
may be limited. Classification models not specific to lung cancer
would have to be trained to relate new staging factors to
sentences found in non-lung cancer pathology reports. We
therefore hypothesized that the use of complex NLP principles
in conjunction with medical ontologies such as the systematized
nomenclature of medicineeclinical terms (SNOMED CT),11

herein termed ‘symbolic rule-based classification’, may improve
the generalizability of classifiers to new cancer types or reporting
modalities.

Here we parsed pathology reports using NLP to identify
SNOMED CT concepts of relevance, and tested whether these
concepts were subsumed by concepts relating to staging
factors. References to staging factors in the free text were then
used to build logic to derive the TNM cancer stage. Lung cancer
TNM staging was used to illustrate the symbolic rule-based
approach.

METHODS
System description
The symbolic rule-based cancer stage classification system
proposed here was developed using General Architecture for Text
Engineering (GATE),12 an open source architecture for NLP.
GATE is a framework for the development and deployment of
language engineering components and resources for natural
language applications such as information extraction. The
proposed pipeline application builds upon the medical text
extraction (MEDTEX) system8 and is shown in figure 1. Here,
the cancer case synoptic reporting module implements the
relevant algorithms for extracting staging factors from free text
and building the logic to calculate the TNM stage for each
report.

The system comprises modules mapping free text to
SNOMED CT (previously reported by Nguyen et al),8 along with
further preprocessing to segment the free text into sections.

Annotations generated from these steps were used for the
extraction of staging factors and calculation of the TNM stage.
The free text to SNOMED CT mapping modules identify

SNOMED CT concepts in medical free text. The tokeniser
module splits the free text into tokens and also identifies length
measurements and units, explicitly mentioned TNM cancer
stages, and legacy SNOMED ID codes. In addition, lymph node
station identifiers (eg, ‘No 5 lymph node’ and ‘No 7, 10, and 11
lymph nodes’) frequently encountered in free-text pathology
reports were identified and are important for N staging.
The unified medical language system (UMLS) annotator and

UMLS to SNOMED CT mapper maps strings in the free text to
UMLS13 and SNOMED CTconcepts, respectively. The negation
phrase finder finds common medical negation (eg, ‘no evidence
of ’, ‘none of ’, and ‘clear of ’) and possibility (eg, ‘possible’ and
‘suspicious for ’) phrases in the free text. Possibility phrases were
included to minimize the number of false-positive findings and
diseases that may be extracted. Negation phrases were associ-
ated with neighboring SNOMED CT findings and disease
concepts in the SNOMED CT negation applicator module. An
additional concept, ‘involved’ (248448006), was added to the list
of terms considered for negation, as this concept was commonly
used to refer to the involvement of tumors in body structures.
Both negation phrase finder and SNOMED CT negation appli-
cator modules were based on the NegEx algorithm.14 15

The heading, sectioniser and synoptic reporting modules were
added to MEDTEX to allow for the filtering and processing of
appropriate substructures (or sections) in the free text. The
heading gazetteer searches for strings in the free text containing
common pathology report headings, and the heading transducer
refines the list of potential headings by applying regular expres-
sion templates to identify actual report headings. The sectioniser
uses the report headings to segment the report into sections and
annotates them with their corresponding section names. The
optional special section transducer applied regular expression rules
over self-contained parts of the document such as SNOMED ID
and/or sections toward the end of the document containing
identifier information such as names and facilities.
Finally, the cancer case synoptic reporting module extracts

staging factors and computes TNM stage. The SNOMED CT
encoded version of the CAP cancer checklist (version 1.5)5

relating to lung cancer resections (based on the AJCC 6th
edition)1 was used to identify staging factors for inclusion into
the module. Extraction of checklist items from free text relevant
to staging was implemented using the subsumption querying
protocol discussed in the next section. Logic based on the staging
guidelines was built from the staging factor subsumption results
to calculate the TNM stage.

Subsumption querying protocol
The subsumption querying protocol uses the subsumption (IS_A)
relationships in SNOMED CT. It allows for the testing of

Figure 1 Medical text extraction
(MEDTEX) pipeline application used to
classify cancer stages.
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specializations (subtypes) or generalizations (supertypes) of
expressions. Expressions consist of single concepts to more complex
expressions that include multiple concepts and refinements.
Refinements were defined using attribute nameevalue relation-
ships. Over 50 defining attributes (or concept model attributes)
can be used to model concepts. Valid attributes used to define
concepts can be obtained from the SNOMED CT user guide.9

Multiple attributes can be grouped together (into role groups) to
avoid ambiguity in concept definitions when, for example, multiple
anatomical structures are involved. Expressions can be constructed
to represent clinical concepts precisely when there is no suitable
predefined concept. This process is termed post-coordination.
An example notation of an expression with a single ‘focus’ concept,
ungrouped attribute and grouped attribute is as follows:

<focus concept>:

<ungrouped attribute name>¼<ungrouped attribute value>

{<grouped attribute name>¼<grouped attribute value>}

Multiple focus concepts are separated by a plus sign (‘+’),
while multiple attributes are separated by commas (‘,’).

For subsumption querying, expressions are transformed into
a common normalized form16 from which rules can be used to
test subsumption between expressions. In any subsumption
test, a candidate expression is tested for subsumption by
a predicate expression. In other words, the candidate expression
is being tested to see if it is subsumed by the predicate expres-
sion (specialization), or conversely the predicate expression is
being tested to see if it subsumes the candidate expression
(generalization). Piecewise subsumption queries were imple-
mented whereby concepts and attribute names and values from
predicate and candidate expressions were individually tested for
subsumption using rules detailed in the SNOMED CT trans-
forming expressions to normal forms publication.16

Two methods for generating expressions were employed. When
concepts are fully modeled, expressions were obtained from the
concept’s normal form. For partly modeled concepts, either a new
SNOMED CT extension was created to provide sufficient char-
acterization,17 or in situations in which attributes were insuffi-
cient to model the concept, ‘special case’ subsumption queries
were performed using ad hoc concepts to test for subsumption.

An example predicate and candidate expression for the direct
tumor extension staging factor value of ‘chest wall involved by
direct extension of malignant neoplasm’ (384963009) is shown
in table 1.

The search for concepts in the free text to populate the post-
coordinated expression templates has a limited scope: six terms
bounded by conjunction phrases and the start and end of
a sentence within relevant sections of the free text. The scoping
criteria are similar to those used to identify negated terms in the
NegEx algorithm.14 15 In the event that four or more concepts
were tested for subsumption in a single expression, then the six-
term proximity scope restriction was removed.

Concepts from the free text were symbolically manipulated to
populate the post-coordinated expression templates that were
defined for each staging factor. The subsumption querying
protocol was used to test for subsumption against staging factor
concepts from the checklist, including other factors relevant to
staging but were not separately itemized in the checklist (eg,
regional lymph node and distant metastasis staging factors).

The staging factor subsumption results were then used to
build the logic based on the staging guidelines to calculate the
TNM stage. In brief, T[X,is,0e4], N[X,0e3] and M[X,1] stage
assignments were assigned by searching for staging factors that

relate to the most advanced stage (ie, T4, N3 and M1 for T, N
and M stage, respectively), and then working down toward the
least. This iterative search process terminates when a positive
finding for a staging factor was found. For more information on
the individual post-coordinated expression templates for each
staging factor and the logic used to generate the final TNM
stage, see the data supplement available online only.

Corpus description
A corpus of 1205 de-identified pathology reports for 1054 lung
cancer patients extracted from a statewide pathology informa-
tion system (AUSLAB) within Queensland Health was obtained
with research ethics approval from the Queensland Health
Research Ethics Committee. A development (or training) set of
114 reports pertaining to 100 random lung cancer patients from
the corpus was used to identify (or annotate) staging factor
findings. These findings were subsequently used to define post-
coordinated expressions and/or rules for each staging factor.
For system evaluation, a corresponding database of patho-

logical TNM staging decisions18 containing ‘patient-level’
pathological TNM stages collected by MDTover a 5-year period
ending in December 2005 was used as the gold standard. All
MDT staging decisions were based on the same reports from
AUSLAB, and the same staging criteria used for system devel-
opment (ie, AJCC 6th edition).1 The database had corresponding
TNM staging decisions for 718 of the 1054 lung cancer patients
in AUSLAB. One problem was that M0 stage (no distant
metastases) was recorded in the database, but was not report-
able by the lung cancer resection checklist (because the absence
of distant metastases could not be ascertained by pathological
examination limited to resected lung). Therefore M0 (database)
was assigned as equivalent to MX (distant metastasis status
unable to be assessed) in resection reports. The proposed system
had potential to classify all stages in the database, except for T0
(no evidence of primary tumor), which was assumed to be TX
(primary tumor not assessable) by the system. As the database
was not used for system development, the entire 718 patient
cases were used to evaluate the cancer stage classified by the
system. Database statistics are given in table 2.

RESULTS
Using the symbolic rule-based classification system described,
staging factors were automatically extracted to calculate the

Table 1 An example predicate and candidate expression for
subsumption querying

Concept 384963009 | chest wall involved by direct extension
of malignant neoplasm |

Normal form 384963009 | chest wall involved by direct extension
of malignant neoplasm | :
116676008 | associated morphology |
¼ 49755003 | morphologically abnormal structure |

Predicate expression
(SNOMED CT extension)

385413003 | tumor extension finding | :
363714003 | interprets | ¼ 370052007 | status of
invasion by tumor |
{116676008 | associated morphology |
¼ 49755003 | morphologically abnormal structure |
,363698007 | finding site | ¼ 78904004 | chest wall
structure | }

Candidate expression
template

385413003 | tumor extension finding | :
363714003 | interprets | ¼ <invasion>
{116676008 | associated morphology | ¼
<morphology>
,363698007 | finding site | ¼ <topology> }

where <invasion>, <morphology> and <topology> are invasion, morphology and
topology concepts from the free text used to populate the post-coordinated candidate
expression template.
SNOMED CT, systematized nomenclature of medicineeclinical terms.
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TNM stage for each report. Reports not relevant to lung cancer
staging were assigned TX, NX, and MX by the system, indi-
cating that the respective stage cannot be assessed. Post-
processing of the system’s ‘report level’ stages were performed
such that the most advanced T, N or M stage output from
reports for the same patient is output as the final ‘patient level’
TNM stage.

Overall system TNM stage accuracy with respect to the
database of staging decisions is shown in table 3. The breakdown
of cases by stage is shown in the confusion matrix in table 4.

To allow direct comparison between the proposed symbolic
rule-based system and the predecessor machine learning-based
lung cancer staging system (CSIS),2 post-processing of the
proposed system’s output stages was required. The database of
pathological staging decisions and the same corpus of pathology
reports were used as the development set in CSIS. Due to limited
numbers of cases of TX, T0, Tis, and N3 assignments, these
stages were not implemented in CSIS and pathological M stage
was also omitted for the same reason. The CSIS was therefore
developed using the database of staging data and pathology
reports for the remaining 710 lung cancer patients. Unbiased
classifier results were achieved using N-fold cross-validation. In
contrast, the proposed system used a fraction of the available
reports for development (see Corpus description).

To compare the results from the proposed system directly
with CSIS, the same 710 cases were compared. Post-processing
of the proposed system’s outputs was required for stages not
implemented in CSIS. As TX stages in CSIS were implicitly
assigned using the Tand N relevance classifiers and no T0 or N3
stages were output from the proposed system, no TX, T0 or N3
adjustments were required in the proposed system. However,
the four Tis cases output by the proposed system were assigned
as equivalent to a T1 stage (indicating that the tumor is at least
assessable). Overall TNM stage accuracy with respect to the
database of pathological staging decisions for both the proposed
system and CSIS are shown in table 5.

DISCUSSION
Overall TNM stage accuracy with respect to the database of
pathological staging decisions (table 3) and against a machine
learning-based approach (table 5) were very encouraging.
In particular, the proposed methodology performs close to

state-of-the-art statistical machine learning approaches. Given
that the machine learning-based approach learned examples
from the entire corpus to build its classifiers (although active
learning may be investigated to reduce the amount of training
data required), the small difference in performance improvement
was not expected. The machine learning approach was able to
learn the variations in reporting styles at both an individual and
institutional level. In contrast, the proposed system only used
a fraction of the corpus for system development, which
substantially reduces the amount of annotated training data but
at the expense of additional expert resources to define post-
coordinated expressions and/or rules.
Symbolic rule-based classification systems allow semantics

and relationships between symbols (or concepts) to be taken
into account and provide a flexible and extensible framework for
clinical information extraction. Symbolic approaches allow
a greater coverage of stages, for example, Tis, N3, and M1, which
have very low prevalence and are generally not suitable for
training using machine learning approaches. Finer grain extrac-
tions were also able to be achieved to highlight phrases (bounded
by concepts) that refer to staging factors rather than at
a sentence or document level as typically achieved by machine
learning approaches.
The confusion matrices presented in table 4 show the most

common stage confusions for the symbolic rule-based system
against the database of pathological staging decisions. For T
staging, the most common confusions were between T1 and T2,
and T2 and T4 stages, with a number of cases falsely called T2
when the assignments should have been T3. For N staging, the
most common confusions were between N0 and N1, and N1
and N2. For M staging, high accuracy is gained due to a high
prevalence of the MX stage, but there were a large number of
incorrectly assigned M1 stages.
Examination of misclassifications revealed that the sources of

errors were largely attributable to terms referring to the prox-
imity of tumors to certain body structures (eg, ‘near ’ and
‘abuts’), and possibility phrases (eg, ‘most likely’) found in the
reports but not part of the list of negation or possibility phrases
used for negation detection. These false-positive findings
consequently incorrectly assign a more advanced stage. Other
sources of errors include staging factors in guidelines that had no
corresponding item in the cancer checklist (eg, invasion of
trachea, and separate tumors in same or different lobes). These
staging factors were not implemented, and as a result were
overlooked by the system and thus a less advanced stage would
be output. Another source of error relates to the parsing of
lymph nodes in which a combination of numbers and words
were used to represent lymph nodes. For example, the phrase
‘No 5 and peribronchial lymph node metastases’ was unable to
output a higher N stage (ie, N2) for the ‘No 5 lymph node
metastasis’. Having knowledge of examples of false positives and
negatives allows for potential further refinement of the free-text
extraction algorithms (including the NLP components) to
improve system accuracy, however, possibly at the expense of
increased complexity.
In addition to the errors above, the confusion matrix shows

that many reports were incorrectly assigned either a TX or NX
stage. This suggests that no relevant staging information from
these patients’ reports were extracted. For T staging, the
minimum requirement for a non-TX stage in the system was
that the histologic type was non-default. This was observed to
be not sufficient and did not capture all specializations of
‘carcinoma’ (68453008). An additional subsumption query on
‘carcinoma’ would upgrade many of the false-positive

Table 2 Key statistics for the database of pathological TNM staging
decisions

Data Cases Stage breakdown Reports

Pathology reports with
TNM stage decision

718 TX 3 NX 59 MX 695 828

Tis 0 N0 437 M1 23

T0 5 N1 150

T1 204 N2 72

T2 405 N3 0

T3 52

T4 49

TNM, tumorenodeemetastases.

Table 3 Accuracy of system with respect to database
of pathological staging decisions

Stage Cases Accuracy % (95% CI)

T 718 72 (69 to 75)

N 718 78 (75 to 81)

M 718 94 (92 to 96)
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TX stages. For N staging, many of the NX false-positive cases
were biopsy or wedge resection reports, which generally do not
have any regional lymph node information relevant for staging.
It is conjectured that in these cases, the ground truth N stages
were acquired from data sources beyond those available in this
study.

Other limitations and considerations
A symbolic rule-based clinical information extraction system
based on SNOMED CT has several limitations. First, there are
gaps in the SNOMED CT ontology where concepts were not
fully modeled and may have missing or no defining relation-
ships. This was overcome by creating SNOMED CT exten-
sions,17 in which valid concept model attributes were used to
model the concepts. In some cases, no concept model attributes
were available to define the concept and special case (ad hoc)
subsumption queries on free-text concepts were necessary.

Another limitation of the system is that piecewise subsump-
tion queries were performed rather than direct expression-based
subsumption querying. Implementations of expression-based
subsumption querying were not available at the time of system
development and as a result piecewise subsumption queries on
concepts and attribute names and values were performed to
achieve an equivalent result. Expression-based subsumption
querying is currently under development and will be available in
the near future to replace the piecewise subsumption queries in
the proposed system. This will provide a unified framework for
subsumption querying and decreases the amount of concept
manipulation that is required for piecewise subsumptions.

Furthermore, TNM stages extracted or derived from
pathology reports may not accurately reflect a patient’s cancer
stage, particularly for the M component in which the required
information may not be available from pathology reports.
Supplementing M staging results from pathology reports with
those found in radiology reports would potentially reduce the
number of false negatives and improve the M staging results.

The proposed symbolic rule-based approach using SNOMED
CT is flexible and robust and provides a framework for clinical

information extraction from free text. Although staging lung
cancers may be more straightforward than other cancers from
pathology reports due to the detailed relevant information
contained in these reports, future work will investigate the
applicability of pathology reports (and other report types) for
staging other cancer types. Indeed, if detailed summaries,
synoptic reports or even explicitly mentioned stages are avail-
able, then this may make determining stage easier for all
cancers.

CONCLUSION
A symbolic rule-based MEDTEX system using the SNOMED
CT ontology and its semantics was proposed to extract lung
TNM staging factors automatically from free-text pathology
reports. The extraction methodology used was based on
the subsumption querying of concepts in free text using post-
coordinated SNOMED CT expression templates. Lung TNM
stages were classified by building logic from the relevant staging
factors. Although lung cancer was used as a case study, future
work will investigate the applicability of the proposed symbolic
rule-based approach for extracting other cancer characteristics
and types.
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