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ABSTRACT

Health IT implementations often introduce radical
changes to clinical work processes and workflow. Prior
research investigating this effect has shown conflicting
results. Recent time and motion studies have
consistently found that this impact is negligible; whereas
qualitative studies have repeatedly revealed negative
end-user perceptions suggesting decreased efficiency
and disrupted workflow.

We speculate that this discrepancy may be due in part to
the design of the time and motion studies, which is
focused on measuring clinicians’ ‘time expenditures’
among different clinical activities rather than inspecting
clinical ‘workflow" from the true ‘flow of the work’
perspective. In this paper, we present a set of new
analytical methods consisting of workflow fragmentation
assessments, pattern recognition, and data visualization,
which are accordingly designed to uncover hidden
regularities embedded in the flow of the work. Through
an empirical study, we demonstrate the potential value
of these new methods in enriching workflow analysis in
clinical settings.

INTRODUCTION
Adoption of health IT (HIT) applications, such as
electronic health records (EHR) and computerized
provider order entry (CPOE), often introduces
radical changes to clinical work processes and
workflow." These changes could have an undesir-
able impact on user satisfaction, time efficiency,
quality of care, and patient safety.! ? Qualitative
studies investigating HIT-related ‘unintended
consequences’ have amply demonstrated that
disruption to established work processes and
workflow introduced by HIT adoption is a principal
cause of these suboptimal or adverse outcomes.” >
Time and motion (T&M) is a commonly used
approach for quantifying workflow to assess the
potential impact associated with HIT. Recent T&M
studies have consistently shown that this impact is
either non-significant or only marginal, evincing that
HIT implementations do not adversely affect clini-
cians’ time utilization and clinical workflow.5~*°
This suggests a paradox: why have qualitative
studies repeatedly reported negative end-user
perceptions with suggestions of decreased efficiency
and disrupted workflow whereas quantitative
studies have consistently shown that the impact is
negligible? We speculate that this discordance may
be due in part to the oversimplified workflow quan-
tifier used in the previous T&M studies: ‘average
aggregated clinician time.” While this ‘time expen-

ditures’ measure can generate valuable insights into
whether HIT adoption may cause a redistribution of
clinician time spent in various clinical activities (eg,
direct patient care vs documentation or ordering), it
is not capable of uncovering the temporal dynamics
embedded in workflow. In other words, this measure
is useful for studying clinicians’ ‘time utilization’ but
not the ‘flow of the work.’

As defined in the workflow literature, a workflow
process refers to ‘a predefined set of work steps, and
partial ordering of these steps,’'' and workflow
refers to ‘systems that help organizations to specify;,
execute, monitor, and coordinate flow of the work
cases within a distributed office environment.!!
Inspired by this view, we developed a set of new
analytical methods to quantify HIT’s impact on
workflow from the true ‘flow of the work’
perspective, through the lens of the sequential
ordering among different clinical tasks.

BACKGROUND

Despite the great potential,>~*? deployment of HIT
applications such as EHR and CPOE may not always
lead to desirable outcomes.?*?° Further, a significant
body of literature has shown that adoption of HIT
is often associated with unintended adverse conse-
quences (UACs), which could result in diminished
quality of care and escalated risks to patient
safety.® # 2° 7 Among the UACs reported to date,
‘more/new work’ and ‘unfavorable workflow
change’ are most common and most disruptive.?
They are generally attributable to problematic
human-machine interfaces,”” overly simplistic work-
flow models," and other unfavorable implementation
characteristics, such as inconvenient locations of
computer workstations,2® disrupted power structures
among clinicians,?® and unexpected changes intro-
duced to the patterns of team coordination.?’

While these UAC studies have produced detailed
user accounts regarding encountered problems and
suspected causes, most of them are qualitative
investigations soliciting end-users’ self-reported
perceptions of how HIT adoption may have influ-
enced their work. Therefore, they are not adequate
to quantify the impact to assess its magnitude and
prevalence. Time and motion, which collects scru-
pulous details of how clinicians spend their time
performing each of the clinical tasks (what, when,
for how long), is a useful approach for quantifying
workflow to inspect for pre-post nuances. As
compared to other quantitative workflow assess-
ment methods, such as work sampling and time
efficiency questionnaires, T&M has been shown to
yield the most accurate results.?*~3?
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We reviewed prior T&M studies that have investigated the
workflow impact introduced by implementing HIT applications
such as EHR, CPOE, and ambulatory care e-prescribing modules.
With a few exceptions, the results of this stream of work suggest
a clear time divide: studies published before 2001 have generally
reported that HIT implementations were associated with an
increase in clinician time,** % whereas studies published after
2001 have consistently shown that HIT implementations do not
adversely affect clinicians’ time utilization in significant
ways.® 1% For example, ‘little extra time, if any, was required for
physicians to use (the POE system);® ‘(the EHR system) does
not require more time than a paper-based system during
a primary care session;’® ‘(implementation of ambulatory e-
prescribing) was not associated with an increase in combined
computer and writing time;? and ‘following EHR implementa-
tion, the average adjusted total time spent per patient across all
specialties increased slightly but not significantly.””

The discordance between the qualitative findings and the
quantitative results is thus evident. This discordance, in fact, has
already been noted in some of the T&M studies. For example,
Pizziferri et al® surveyed the physicians of the study practice
where their T&M data were collected. They found that
a majority of the survey respondents (71%) reported perceptions
of increased time spent on patient documentation contradicting
the fact that no significant differences were indicated in the
T&M data.

What may account for this discordance? We speculate that
the previous T&M studies have been overly focused on evalu-
ating whether HIT adoption may affect how clinicians allocate
their time among different clinical activities. This ‘time expen-
ditures’ focus neglects that HIT’s impact on clinical workflow
may also originate from the changed sequence of task execu-
tion—that is, disruption to the flow of the work. In this paper,
we present a set of new analytical methods consisting of
workflow fragmentation assessments, pattern recognition, and
data visualization, which are accordingly designed to uncover
hidden regularities embedded in clinical workflow.

METHOD DESCRIPTION
Workflow fragmentation assessments
First, we propose a new workflow quantifier, average continuous
time (ACT), to assess the magnitude of workflow fragmenta-
tion. Average continuous time is herein defined as the average
amount of time continuously spent on performing a single
clinical activity (or similar activities belonging to a single cate-
gory or theme; see the study design and empirical setting section
for category and theme definitions). Workflow fragmentation,
also referred to as frequency of task switching, is defined as the
rate at which clinicians switch between tasks. The shorter
continuous time spent on performing a single task, the higher
frequency of task switching. Note that ‘activity’ and ‘task’ are
used interchangeably in this paper unless otherwise specified.
This new quantifier, and magnitude of workflow fragmenta-
tion it measures, is potentially important in several ways. First,
it has been shown in the cognition literature that frequent task
switching is often associated with increased extra mental burden
on the performer (eg, task prioritizing and task activation).””~*°
Second, in a clinical setting, frequent task switching may cause
increased amounts of physical activities (eg, locating a nearby
computer workstation) and, hence, more frequent interruptions.
Third, switching between tasks that are of distinct natures could
result in a higher likelihood of cognitive slips and mistakes; for
example, the loss-of-activation error manifesting as forgetting
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what the preceding task was about in a task execution
sequence.*! *? Therefore, using this new quantifier to study
workflow disruption may provide insights as to why HIT users
may perceive decreased efficiency and disrupted workflow even
though the total amount of clinical time and its distribution
among different tasks are not significantly affected.

Recognition of workflow patterns

We define workflow patterns as hidden regularities embedded in
the sequential order of a series of clinical task execution.
Workflow patterns are collectively determined by multiple
factors, such as individual physicians’ practice styles, regulatory
requirements, team coordination needs, and even the physical
layout of a medical facility. As a result, workflow patterns are
sensitive to any new changes introduced into the environment
such as adoption of novel HIT systems.

To uncover workflow patterns from time-stamped T&M data,
we use two pattern recognition techniques: consecutive
sequential pattern analysis (CSPA) and transition probability
analysis (TPA). The CSPA searches for workflow segments that
reoccur frequently both within and across observations—referred
to as consecutive sequential patterns.*® Each consecutive
sequential pattern is composed of a sequence of clinical activities
carried out one after another in a given sequential order. Further,
we define the support for a consecutive sequential pattern as its
hourly occurrence rate. For example, if the sequence ‘talking/
rounding” — ‘paper—writing’ — ‘talking/rounding’ appears
twice per hour in workflow data on average, we note that this is a
plausible pattern with a support of 2.

The TPA, on the other hand, computes the probabilities of
transitioning among pairs of tasks. The transition probabilities
can be estimated using the maximume-likelihood estimation
method based on empirical data. For example, the transition
probability of ‘talking/rounding’ — ‘computer—writing’ is
calculated as the number of times that this transition is observed
in the field, divided by the total number of transitions observed
originating from ‘talking/rounding.” As compared to CSPA, the
results of the TPA analysis provide an overall probabilistic view
of the sequential relations among different clinical tasks.

Note that in this study we did not consider lagged sequential
patterns (non-consecutive sequential patterns). Performing
a useful lagged sequential pattern analysis requires fine-tuning of
multiple parameters; for example, what lag constraints should
be set in order to make sure that the resulted patterns are
empirically meaningful (eg, whether a pattern A...B that
receives sufficient support should be considered even if A and B
occur many steps apart) and whether observing a lagged
sequential pattern is due to odds (eg, in a randomly generated
event sequence of infinite length, any event combinations may
be recognized as plausible patterns). Without a priori knowledge
of what settings are empirically meaningful, such decisions need
to be arbitrarily made yet can have a significant impact on
pattern recognition results. Higher-order transition probabilities
(predicting the likelihood of observing a clinical activity based on
multiple preceding events) were not considered in this study for
the same reason.

Data visualization

Data visualization and visual analytics provide a means for
transforming large quantities of numeric or textual data into
graphical formats to facilitate human exploration and hypothesis
generation.” They have been widely applied in many fields, such as
the analysis of gene expressions,™ structure of biomedical data-
bases,® and, increasingly, temporal relations among patient
records. ¥ *¢
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In this study, we use three visualization techniques to turn
complex clinical workflow data into more easily comprehensible
and more informative visual representations: (1) A ‘timeline belt’
diagram using distinct colors to delineate the sequential execu-
tion of a series of clinical tasks (figure 1). In this representation,
the ‘flow of the work’ becomes apparent and the magnitude of
workflow fragmentation becomes readily observable. (2) A
network plot exhibiting the transition frequencies between pairs
of tasks (figure 3). In this visualization, the temporal relations
among different activities and the pre-post nuances can be easily
told. (3) Heatmap visualizations displaying transition probabilities
between different tasks using varied density of colors (figure 4). In
these heatmaps, higher transition probabilities and significant pre-
post differences can be instantly recognized.

The visualization algorithms, as well as the other methods
presented in this paper, were implemented in an analytical tool
called Clinical Workflow Analysis Tool (CWAT)—available
online at http://sitemaker.umich.edu/workflow/. This tool was
programmed using Microsoft ASPnet and C# 2.0 (Redmond,
Washington, USA). The statistical procedures are based on
Visual Numerics IMSL C# Numerical Library 2.0 (Houston,
Texas, USA). Source code is available upon request.

EMPIRICAL VALIDATION

Study design and empirical setting

To demonstrate the purpose and the value of these new
analytical methods, we conducted an empirical validation study
using the T&M approach to assess the workflow impact intro-
duced by a recent CPOE implementation at our institution. The
University of Michigan Institutional Review Board reviewed and
approved the research protocol.

The study setting is a 16-bed level-1 pediatric intensive care unit
(PICU) at the University of Michigan Health System (UMHS). A
commercially sold CPOE system (Sunrise Clinical Manager,
Eclipsys, Atlanta, Georgia, USA) was deployed in the unit in July
2007. Eight independent observers shadowed a convenience
sample of second- and third-year resident physicians rotating
through the study unit two months before and six months after
the system implementation. These observers were paid medical
students and graduate students enrolled in the Programs and
Operations Analysis Department at the University of Michigan
Hospitals. They were uniformly trained by the last author (DAH)
and each conducted a few hours of training observations in the
field before the actual study data collection took place.

The observation sessions started 7:30—8:00 am or
11:30—12:00 pm; each lasted approximately three to four hours.

Figure 1 A ‘timeline belt’ visualization
exhibiting workflow fragmentation
before and after the computerized
provider order entry (CPOE)
implementation. Each row (belt)
represents a time and motion (T&M)
observation session. Colored stripes
designate the execution of clinical
activities belonging to different task
categories. For example, the purple
stripes represent ‘talking/rounding’
activities and the black stripes
represent ‘computer—read.” Hence,
color transitions indicate cross-
category task switches. Length of

a colored stripe is proportional to how

The morning and afternoon sessions were equally split roughly.
At the beginning of a session, the observer randomly approached
a resident physician who was working in the unit at the time.
With the resident’s consent, the observer started shadowing the
subject and recording T&M data using a portable tablet
computer equipped with a standard data acquisition tool.
Elements of the data captured included date of observation,
tasks performed, starting and ending time, and a unique study
code assigned to each of the study participants.

The data acquisition tool, initially developed by Overhage et a/
and subsequently refined by Pizziferri et al,° ® is recommended
by the Agency for Healthcare Research and Quality for collecting
T&M data in clinical workflow studies.*” In this tool, the clinical
work is characterized as 60 distinct activities, which are further
grouped into 12 categories and 6 themes to allow for analysis at
different level of specificity. The 12 categories include: ‘comput-
er—read,” ‘computer—writing,” ‘patient activity,” ‘paper—read,’
‘paper—Ilooking for, ‘paper—writing,’ ‘other—Ilooking for,’
‘personal,” ‘talking/rounding,’ ‘phone,” ‘waiting,” and ‘walking/
moving’. The six themes are: ‘direct patient care,’” ‘indirect patient
care—write,” ‘indirect patient care—read,” ‘indirect patient
care—other,” ‘administration,” and ‘miscellaneous.” In this study,
we modified this classification schema slightly to reflect special
data acquisition needs in inpatient settings (provided in Appendix 1
of the online supplementary data).

Results from the empirical validation study

Descriptive statistics

The pre-implementation T&M data contain 67.8 hours of
observations of a cohort of two second-year and two third-year
resident physicians (all female) over 20 clinical sessions. The
post-implementation data, consisting of 86.7 hours of observa-
tions over 22 clinical sessions, were collected from another
cohort of ten second-year and two third-year residents (7
females and 5 males). The residents participating in the pre-
implementation data collection were not part of the post-
implementation observations (or vice versa) because none of
them rotated in the study unit during both study phases. The
average patient census did not change significantly in the study
unit before and after the implementation (15.3%0.1 pre and
14.6=0.9 post, p=0.13).

The ‘timeline belt’ visualization

Figure 1 depicts the ‘timeline belt’ visualization. Each row (belt)
represents an observation session composed of colored stripes
designating the execution of clinical activities belonging to

Iong the task lasted. Il A Computer — Read [ D. Paper - Read Il G. Other — Looking For J. Phone
B B. Computer—Writng [l E. Paper —Looking For [[] H. Personal K. Waiting
B C. Patient Activity B F. Paper - Writing B 1. Talking/Rounding I L Waling/Moving
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A. Time Distribution Across Task Categories

C. Average Amount of Time Continously Spent in a Task Category

Percentage

B. Time Distribution Across Task Themes

Percentage

S
S [ M Pre-CPOE W Post-CPOE|

Seconds

Figure 2 Pre-post comparison: multiple measures (*p<0.05, **p<0.01, ***p<0.001; based on Welch's t test).

different task categories. Length of a colored stripe is propor-
tional to how long the task lasted. Note that several observa-
tions were right-truncated to fit the graph for print. Further, all
observations are left-aligned regardless of their actual starting
time. The online tool provides more alignment options.

In the ‘timeline belt’ visualization, it can be easily observed
that the post-CPOE representation contains more densely
populated color transitions each corresponding to a task switch.
This suggests that the CPOE implementation might have caused
an increased level of workflow fragmentation. We further
quantified this visual observation using statistical analysis
methods and pattern recognition techniques.

Workflow impact measured as ‘time expenditures’

Before performing the workflow fragmentation analysis, we first
applied the traditional ‘average aggregated clinician time’
measure to study how the physician participants allocated their
time among different clinical tasks before and after the CPOE
implementation. Key findings at the activity level are presented
in table 1. A full report of the results is provided in Appendix 2A
of the online supplementary data.

As table 1 shows, the proportion of physician time spent on
using computers to read ‘chart, data, labs’ (2.47% pre vs 6.3 post,
p<0.001) and ‘write orders” (0.03% pre vs 2.69% post, p<0.001)
significantly increased after the CPOE implementation. These
increases were, not surprisingly, compensated by a nearly four-
fold drop in the proportion of time allocated to ‘paper—writing
orders’ (4.21% pre vs 0.11% post, p<0.001) as well as decreases
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in other paper-based activities (reported in Appendix 2A of the
online supplementary data). With both computer-based and
paper-based ordering activities combined, the proportion of
physician time spent on writing orders reduced considerably
after the CPOE implementation (4.24% pre vs 2.81% post),
although this decrease is only marginally significant (p=0.115).

Figure 2A shows the results at the category level. Significant
pre-post differences were found in four task categories. First, there
was a more than doubled increase in the proportion of physician
time spent on retrieving data at computer terminals (‘comput-
erdread’: 5.33% pre vs 12.87% post, p<0.01). Further, significant
decreases were found in the proportion of time allocated to paper
documentation activities and finding paper forms (‘paper-
dwriting’: 5% pre vs 1.89% post, p<0.01; ‘paperdlooking for’:
0.32% pre vs 0.02% post, p<0.01). These changes were natural
consequences of the transition from a paper-based operation to
computerized order entry. The other significantly affected task
category is ‘patient activities.” After the CPOE implementation,
the physicians were able to spend more time interacting with
patients (1.18% pre vs 4.05% post, p<0.05). At the theme level
(figure 2B), the only significant change was a more than threefold
increase in the proportion of physician time spent in ‘indirect
patient caredread’ activities (3.99% pre vs 12.59% post, p<0.001).
The proportion of time distributed to ‘direct patient care’ was
barely affected (45.17% pre vs 48.01% post, p=0.34).

These findings based on the ‘time expenditures’ analysis are
consistent with the results of the recent T&M studies.® '
Therefore, the conclusions are similar—the CPOE
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A. Pre-CPOE 6. Other—Looking For
E. Paper—Looking For
B. Computer—Writing
F. Paper—Writing
5
od
L. Walking/Moving

A. Computer—Read

D. Paper—Read

B. Post-CPOE

G. Other—Looking For

E. Paper—Locking For

B. Computer—Writing

C. Patient Activity
F. Paper—Wiiting
S0g
L. Walking/Maoving

A. Computer—Read

D. Paper—Read

Figure 3 Network plots exhibiting bidirectional task transition frequencies. Nodes=task categories; edges=transitions between pairs of task
categories. Width of an edge is proportional to the transition frequency between the pair (number of bidirectional transitions observed per hour
between the two task categories). The edges representing the transitions between ‘talking/rounding” and ‘computing—read’ or ‘computing—writing’
are highlighted in red because they are most relevant in studying health IT’s impact on clinical workflow. In both graphs, numeric labels are provided for

the top five most frequent task transitions.

implementation was neither associated with an increase in
clinician time spent on writing orders nor did it cause a reduc-
tion in clinician time allocated to direct patient care activities.

Results of workflow fragmentation assessments

Overall, the average amount of time continuously spent
performing a single task significantly decreased from 163
seconds before the CPOE implementation to 107 seconds after
the implementation (p<0.001). Figures 2C, D display the
workflow fragmentation analysis results at the category and the
theme level, respectively.

Among the 12 task categories, significant decreases in ACT
were found in three categories: ‘computer—read’ (138 seconds
pre vs 55 seconds post, p<0.05), ‘personal’ (266 seconds pre vs
158 seconds post, p<0.05), and ‘talking/rounding’ (265 seconds
pre vs 194 seconds post, p<0.01). The largest relative decrease
occurred in the ‘computer—read’ category where average task
duration dropped more than 60%. Similarly, significantly shorter
durations were observed on conducting tasks related to the
‘direct patient care’ theme (222 seconds pre vs 169 seconds post,
p=0.001) as well as ‘miscellaneous’ (177 seconds pre vs
70 seconds post, p=0.001). These findings confirm the visual
observation of the ‘timeline belt’ diagram that the post-CPOE
clinical workflow had become more fragmented.

Results of workflow pattern recognition

Table 2 reports the consecutive sequential patterns uncovered
that received a support of 1 or above. Five CSPA patterns were
identified in the pre-implementation phase of the study and
eleven in post-implementation. For example, after the CPOE
system was implemented, the hourly rates of observing the
transitions of ‘talking/rounding’ — ‘walking/moving’ (1.19 pre
vs 2.68 post), ‘walking/moving’ — ‘talking/rounding’ transition
(1.24 pre vs 2.39 post), ‘talking/rounding’ — ‘computer—read’
(<1 pre vs 2.41 post), and ‘computer—read’ — ‘talking/
rounding’ (<1 pre vs 2.21 post) increased nearly or more than
twofold. These prominent transitions were all centered on the
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‘talking/rounding’ activity (either from or to), which is the most
essential clinical process in inpatient settings.”

We further plotted the bidirectional transition frequencies as
two network graphs (figures 3A, B). The purpose was to exhibit
the pre-post differences more effectively. In both graphs, the
network nodes represent task categories; width of an edge is
proportional to the bidirectional transition frequency (hourly
occurrence rate) between the two task categories. Further, the
network nodes are distributed using a circular layout and the
‘talking/rounding’ activity is placed in the middle because of its
central role.

By contrasting figure 3A, B, representing the pre-CPOE and post-
CPOE clinical environment, respectively, it can be easily observed
that several task transitions had become much more frequent
(thicker edges) after the CPOE system was implemented. These
include ‘talking/rounding’ <> ‘computer—read,’ ‘talking/rounding’
< ‘paper—writing,” and ‘talking/rounding’ < ‘walking/moving,’
as well as between ‘computer—read’ and ‘computer—writing.’

The network plots shown in figure 3 were produced using
GUESS (v0.5-alpha), an open-source graph exploration system
(http://graphexploration.cond.org). A full report of the transi-
tion frequencies among all pairs of task categories is provided in
online Appendix 2C of the online supplementary data.

Next, we performed the TPA analysis to compute the transi-
tion probabilities between different pairs of clinical tasks.
Figure 4 visualizes the results as three heatmaps (pre-CPOE,
post-CPOE, and pre-post comparison). On these heatmaps,
varied density of color designates transition probabilities esti-
mated based on the empirical data. The probabilities are also
reported in each of the cells; for example, the second cell in the
first row in figure 4A can be read as ‘before the CPOE imple-
mentation, the probability of observing the task context changed
from computer—read to computer—writing was 0.2472, out of
all possible transitions originating from computer—read.’

In these heatmap representations, it can be easily observed
that the CPOE implementation might have recalibrated the
probabilities of transitioning between different task pairs. For
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Figure 4 Heatmaps exhibiting task transition probabilities (*p<0.05, **p<0.01, ***p<0.001; based on Welch's t test). Formula for color
determination = red: 255; green: 255—transition probability><500, rounded to integers; blue: 0.

example, the likelihood of observing the ‘talking/rounding’ —
‘computer—read’ transition significantly increased from 0.077
pre-implementation to 0.32 post-implementation (p<0.05),
compensated by a similar level of decrease in the likelihood of
observing the transition of ‘talking/rounding’ — ‘paper—
writing’ (0.31 pre vs 0.022 post, p<0.05). Depending on the
implementation characteristics (eg, where the CPOE worksta-
tions were located, whether mobile computing devices were
available), these changes may potentially introduce significant
disruption to clinical workflow.

J Am Med Inform Assoc 2010;17:454—461. doi:10.1136/jamia.2010.004440

DISCUSSION

The limitations of the empirical validation study, such as the
small sample size (hence unbalanced pre and post sample char-
acteristics), idiosyncratic features of the CPOE system studied,
and unique settings of the PICU site, constrain the power and
generalizability of practical inferences that can be drawn.
Therefore, the empirical study should only be interpreted as
a demonstration of how the new methods presented in this
paper may be used in future research to enrich workflow anal-
ysis in clinical settings.
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Table 1 Time distribution among clinical activities (%): summary of
key findings
Pre-CPOE  Post-CPOE

Activity Mean SEM Mean SEM Welch's t p Value
Computer—read/chart, data, 247 069 6.3 074 3.77 <0.001
labs**

Computer—writing/orders** 0.03 003 269 053 504 <0.001
Paper—read/chart, data, labs* 1.1 033 1.89 029 1.81 0.039
Paper—uwriting/orders™* 421 106 011 0.06 —3.88 <0.001
Writing orders (combining 424 105 281 052 -1.23 0.12

computer—and paper-based
ordering activities)

*p<0.05;**p<0.001. CPOE, computerized provider order entry.

The T&M data contain rich time-stamped information that can
be used to examine the sequential ordering of distinct tasks in
a task execution sequence. Analyzing T &M data from this ‘flow of
the work’ perspective makes use of this information to allude to
the actual impact HIT adoption may introduce to clinical ‘work-
flow.” As shown in the empirical validation study, using the
traditional ‘time expenditures’ measure—that is, lumping clini-
cian time spent in different clinical activities to assess whether
introduction of HIT may cause a redistribution—does not use this
temporal information and, therefore, loses the ‘flow of the work’
insights derivable from T &M data. This fact may account for the
discordance discussed earlier between the quantitative results and
the qualitative findings. For example, our T&M data collected in
the empirical study seem to suggest that the post-CPOE envi-
ronment contained shorter, more fragmented task execution
episodes. The direct consequence is a higher frequency of task
switching, which may be associated with more rapid swapping of
task rules in clinicians’ memory, increased rates of running into
distinct task contexts, extra physical activities (eg, locating
a nearby computer terminal), and more frequent waiting and
idling (eg, waiting for the computer system to respond). Conse-
quently, clinicians may perceive decreased time efficiency and
disrupted workflow even though the time utilization analysis
does not suggest an adverse impact. To confirm this speculation,
we encourage other researchers to consider using the new
methods presented in this paper to analyze T&M data collected in
future studies as well as those collected in prior efforts. We believe

Table 2 Consecutive sequential patterns discovered

Pattern Support
A. 2-Length sequential pattern, pre-CPOE
Talking/rounding — paper—writing 1.84
Paper—writing — talking/rounding 1.68
Walking/moving — talking/rounding 1.23
Talking/rounding — walking/moving 1.19
B. 3-Length sequential pattern, pre-CPOE
Talking/rounding — paper—writing — talking/rounding 1.22
C. 2-Length sequential pattern, post-CPOE
Talking/rounding — walking/moving 2.69
Talking/rounding — computer—read 2.42
Walking/moving — talking/rounding 2.39
Computer—read — talking/rounding 2.22
Computer—read — computer—writing 1.91
Computer—writing — computer—read 1.54
Computer—writing — talking/rounding 1.05
D. 3-Length sequential pattern, post-CPOE
Talking/rounding — walking/moving — talking/rounding 1.56
Computer—read — talking/rounding — computer—read 1.27
Walking/moving — talking/rounding — walking/moving 1.21
Talking/rounding — computer—read — talking/rounding 1.05
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that this exercise may help illuminate the quantitative-qualitative
paradox found in the literature.

It must be noted that, although these new methods may help
enrich T&M analysis, several limitations intrinsic to the T&M
approach (eg, observer bias and difficulty in observing multi-
tasking activities) could undermine the validity or generaliz-
ability of T&M-based research findings. In addition to improving
the accuracy and consistency of T&M observations, researchers
have shown that using automated activity recognition tools,
such as radio-frequency identification (RFID) tags, can greatly
enhance the quality and efficiency in collecting workflow data.”!
Further, quantitative methods such as T&M are not capable of
revealing the root causes of HIT workflow impact and whether
the impact may exert an actual influence on user satisfaction,
time efficiency, clinician performance, and patient outcomes.
Additional research is needed to relate HIT-associated clinical
workflow changes to these outcomes variables. Researchers have
demonstrated that some of these facets can be studied using
ethnographically based investigations,”® °° questionnaires and
interviews, "> cognitive engineering”™ and computer-
supported cooperative work (CSCW) approaches,” or even
using physiological devices to directly measure the level of
clinicians’ brain activities in different task situations.”®

CONCLUSION

Recent quantitative studies applying the time and motion
approach to assess HIT workflow impact have shown non-
significant effects, conflicting with the guarded end-user
perceptions reported in qualitative investigations. The workflow
measure used in the recent T&M studies, ‘average aggregated
clinician time,” may be a factor accounting for the inconsistency.
In this paper, we introduce a set of new analytical methods
consisting of workflow fragmentation assessments, pattern
recognition, and data visualization that are accordingly designed
to address its limitation. Through an empirical validation study,
we show that applying these new methods can enrich workflow
analysis, which may allude to potential workflow deficiencies
and corresponding re-engineering insights. In this paper, we also
demonstrate the value of using data visualization techniques to
turn complex workflow data into more comprehensible and
more informative graphical representations.
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