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ABSTRACT
We aim to build and evaluate an open-source natural
language processing system for information extraction
from electronic medical record clinical free-text. We
describe and evaluate our system, the clinical Text
Analysis and Knowledge Extraction System (cTAKES),
released open-source at http://www.ohnlp.org.
The cTAKES builds on existing open-source
technologiesdthe Unstructured Information
Management Architecture framework and OpenNLP
natural language processing toolkit. Its components,
specifically trained for the clinical domain, create rich
linguistic and semantic annotations. Performance of
individual components: sentence boundary detector
accuracy¼0.949; tokenizer accuracy¼0.949; part-of-
speech tagger accuracy¼0.936; shallow parser F-
score¼0.924; named entity recognizer and system-level
evaluation F-score¼0.715 for exact and 0.824 for
overlapping spans, and accuracy for concept mapping,
negation, and status attributes for exact and overlapping
spans of 0.957, 0.943, 0.859, and 0.580, 0.939, and
0.839, respectively. Overall performance is discussed
against five applications. The cTAKES annotations are
the foundation for methods and modules for higher-level
semantic processing of clinical free-text.

INTRODUCTION
The electronic medical record (EMR) is a rich source
of clinical information. It has been advocated that
EMR adoption is a key to solving problems related
to quality of care, clinical decision support, and
reliable information flow among individuals and
departments participating in patient care.1 The
abundance of unstructured textual data in the EMR
presents many challenges to realizing the potential
of EMRs. For example, most EMRs record a narra-
tive describing the history of the current illness for
an episode of care. Clinical researchers leverage this
information by employing a number of domain
experts to manually curate such narratives. This
process can be both error-prone and labor-intensive.
Automating it is essential to developing an effective
EMR infrastructure. Natural language processing
(NLP) techniques have demonstrated successes
within the clinical domain (for an overview see
Meystre et al2). However, their widespread adoption
rests on developing comprehensive clinical NLP
solutions based on open standards and software.
Our goal is the development of a large-scale,

comprehensive, modular, extensible, robust, open-source

NLP system designed to process and extract
semantically viable information to support the
heterogeneous clinical research domain and to be
sufficiently scalable and robust to meet the rigors of
a clinical research production environment. This
paper describes and evaluates our systemdthe
clinical Text Analysis and Knowledge Extraction
System (cTAKES).

BACKGROUND
The clinical narrative has unique characteristics
that differentiate it from scientific biomedical
literature and the general domain, requiring
a focused effort around methodologies within the
clinical NLP field.2 Columbia University ’s proprie-
tary Medical Language Extraction and Encoding
System (MedLEE)3 was designed to process radi-
ology reports, later extended to other domains,4

and tested for transferability to another institu-
tion.5 MedLEE discovers clinical concepts along
with a set of modifiers. Health Information Text
Extraction (HITEx)6 7 is an open-source clinical
NLP system from Brigham and Women’s Hospital
and Harvard Medical School incorporated within
the Informatics for Integrating Biology and the
Bedside (i2b2) toolset.8 IBM’s BioTeKS9 and
MedKAT10 were developed as biomedical-domain
NLP systems. SymText and MPLUS11 12 have been
applied to extract the interpretations of lung
scans13 to detect pneumonia14 and central venous
catheters mentions.15 Other tools developed
primarily for processing biomedical scholarly arti-
cles include the National Library of Medicine
MetaMap,16 providing mappings to the Unified
Medical Language System (UMLS) Metathesaurus
concepts,17 18 those from the National Center for
Text Mining (NaCTeM),19 JULIE lab,20 and
U-compare,21 with some applications to the clinical
domain.22 Within the Cancer Biomedical Infor-
matics Grid23 initiative, the University of Pitts-
burgh’s Cancer Tissue Information Extraction
System24 25 aims at extracting information from
surgical pathology reports using the National
Cancer Institute Enterprise Vocabulary System26

and MetaMap.
In the general domain, a number of open-source

NLP toolsets exist. The OpenNLP suite27 imple-
ments a maximum entropy (ME) machine learning
(ML) classifier,28e30 with probabilities that maxi-
mize information entropy and that are derived
from a dataset to include a diverse feature set.31 32

Buyko and colleagues33 adapted the OpenNLP to the
biomedical scientific literature and demonstrated
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that the performance of OpenNLP ’s components on biotexts
represented by GENIA34 and PennBioIE35 is comparable to
that on the newswire text.

Our unique contribution is an NLP system specifically tailored
to the clinical narrative that is large-scale, comprehensive,
modular, extensible, robust, open-source and tested at component
and system levels.

DESIGN AND SYSTEM DESCRIPTION
The cTAKES is a modular system of pipelined components
combining rule-based and machine learning techniques aiming
at information extraction from the clinical narrative. The gold
standard datasets for the linguistic labels and clinical concepts are
created on content that is a subset of clinical notes from theMayo
Clinic EMR. Standard evaluation metrics are used to measure
the quality of the gold standards and cTAKES performance.

The cTAKES system
The cTAKES consists of components executed in sequence to
process the clinical narrative with each component incremen-
tally contributing to the cumulative annotation dataset (see
figure 1 for a running example). This provides the foundation for
future cTAKES modules for higher-level semantic processing of
the clinical free-text.

The cTAKES accepts either plain text or clinical document
architecture-compliant36 XML documents. The current open-
source release consists of the following components/annotators:
< Sentence boundary detector
< Tokenizer
< Normalizer
< Part-of-speech (POS) tagger
< Shallow parser
< Named entity recognition (NER) annotator, including status

and negation annotators.

The sentence boundary detector extends OpenNLP’s super-
vised ME sentence detector tool. It predicts whether a period,
question mark, or exclamation mark is the end of a sentence.
The cTAKES tokenizer consists of two subcomponents. The

first splits the sentence internal text stream on the space and
punctuation. The second, the context-dependent tokenizer,
merges tokens to create date, fraction, measurement, person
title, range, roman numeral, and time tokens by applying rules
(implemented as finite state machines) for each of these types.
The cTAKES normalizer is a wrapper around a component of

the SPECIALIST Lexical Tools37 called “norm,” which provides
a representation for each word in the input text that is
normalized with respect to a number of lexical properties,
including ‘alphabetic case, inflection, spelling variants, punctu-
ation, genitive markers, stop words, diacritics, symbols, and
ligatures.’38 Normalization makes it possible to map multiple
mentions of the same word that do not have the same string
representations in the input data. We did not separately evaluate
the off-the-shelf normalizer, which is used to improve the recall
defined in equation (2) of the NER annotator. Each word in the
text is normalized, and both normalized and non-normalized
forms are used by the dictionary look-up described below.
The cTAKES POS tagger and shallow parser are wrappers

around OpenNLP ’s modules for these tasks. We provide new
supervised ME models trained on clinical data.
The cTAKES NER component implements a terminology-

agnostic dictionary look-up algorithm within a noun-phrase
look-up window. Through the dictionary look-up, each named
entity is mapped to a concept from the terminology. We use
a dictionary that is a subset of UMLS,39 version 2008AB, to
include SNOMED CT40 and RxNORM41 concepts guided by
extensive consultations with clinical researchers and practi-
tioners. Each term in the dictionary belongs to one of the
following semantic types as defined in42: disorders/diseases with
a separate group for signs/symptoms, procedures, anatomy, and

An example of a sentence discovered by the sentence boundary detector:
Fx of obesity but no fx of coronary artery diseases.

Tokenizer output – 11 tokens found:
Fx of  obesity  but  no  fx of  coronary  artery  diseases  .

Normalizer output:
Fx of  obesity  but  no  fx of  coronary  artery  disease .

Part-of-speech tagger output:
Fx of  obesity  but  no  fx of  coronary  artery  diseases  .
NN  IN  NN       CC   DT  NN  IN  JJ        NN      NNS       .

Shallow parser output:
Fx of  obesity  but  no  fx of  coronary  artery  diseases  .
NP  PP    NP            NP PP              NP

Named Entity Recognition – 5 Named Entities found:
Fx of obesity but no fx of coronary artery diseases .

obesity (type=diseases/disorders, UMLS CUI=C0028754, SNOMED-CT codes=308124008 and 5476005)
coronary artery diseases (type=diseases/disorders, CUI=C0010054, SNOMED-CT=8957000)
coronary artery (type=anatomy, CUI(s) and SNOMED-CT codes assigned)

artery (type=anatomy, CUI(s) and SNOMED-CT codes assigned)
diseases (type=diseases/disorders, CUI = C0010054)

Status and Negation attributes assigned to Named Entities:
Fx of obesity but no fx of coronary artery diseases .

obesity (status = family_history_of; negation = not_negated)
coronary artery diseases (status = family_history_of, negation = is_negated)

Figure 1 Example sentence processed through cTAKES components ‘family history of obesity but no family history of coronary artery diseases.’
Fx, family history.
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drugs, the latter includes terms from the Orange Book43 that
have an RxNORM code. This dictionary was enriched with
synonyms from UMLS and a Mayo-maintained list of terms. On
the basis of the output from the shallow parser, the algorithm
finds all noun phrases, which become the look-up window. The
dictionary is interrogated for permutations of variations of the
head and modifiers within the noun phrases to account for non-
lexical variations. The NER component does not resolve ambi-
guities that result from identifying multiple terms in the same
text span.

The negation annotator implements the NegEx algorithm,44

which is a pattern-based approach for finding words and phrases
indicating negation near named entity mentions. The status
annotator uses a similar approach for finding relevant words and
phrases that indicate the status of a named entity.

Each discovered named entity belongs to one of the dictionary
semantic types and has attributes for (1) the text span associ-
ated with the named entity (‘span’ attribute), (2) the termi-
nology/ontology code the named entity maps to (‘concept’
attribute), (3) whether the named entity is negated (‘negation’
attribute), and (4) the status associated with the named entity
with a value of current, history of, family history of, possible
(‘status’ attribute). These semantic types and their attributes
were selected in consultation with clinical researchers and
practitioners and supported by an analysis of clinical questions
and retrieval requests where the most frequent UMLS types and
groups were disorders, clinical drug, sign and symptom, and
procedures. Any future event is considered hypothetical; hence,
the status value will be set to ‘possible’. Allergies to a given
medication are handled by setting the negation attribute of that
medication to ‘is negated’. Non-patient experiences are flagged as
‘family history of ’ if applicable.

The cTAKES is distributed with the best-performing modules
and machine learning models for the results reported below. It is
released open-source under an Apache License, Version 2.0, as
part of the Open Health Natural Language Processing45

Consortium. The cTAKES runs on Apache Unstructured Infor-
mation Management Architecture (UIMA)46 47 and Java 1.5. It
has been tested for scalability in a cloud computing environ-
ment.48

Corpus
Absent shared community annotated resources for the clinical
domain,49 we built our own gold standard datasets for named
entity39 and linguistic annotations as described in the Gold
Standard Corpus and Inter-annotator Agreement subsection.
Both datasets are created on content derived from the Mayo
Clinic EMR. In addition, we used the gold standard linguistic
annotations of the Penn TreeBank (PTB)50 and GENIA34 corpora.
To measure the quality of the in-house developed annotations,

we report inter-annotator agreement (IAA) as the positive
specific agreement (PSA)51 and k52 53 defined as:

k ¼ PðaÞ � PðeÞ
1� PðeÞ (1)

where P(a) is the relative observed agreement among the anno-
tators and P(e) is the hypothetical probability of chance agree-
ment. P(e) is computed from a contingency matrix representing
agreements and disagreements. P(e) is the sum of the proportion
of annotator A1 assigned tags to the positive row over all
assignments and the proportion of A2 assigned tags to the
positive column over all assignments, which is added to the
proportion of annotator A1 assigned tags to the negative row
and the proportion of annotator A2 assigned tags to the negative
column.53 P(e) for the shallow parse task follows.52

Evaluation metrics
We used standard metrics:

recall ¼ TruePositives
TruePositives þ FalseNegatives

(2)

Table 1 (A) Inter-annotator agreement (IAA) as positive specific agreement on all annotations in compared sets (A1, A2, A3, A4 are the annotators;
C1 is the gold standard created by A1 and A2; C2 is the gold standard created by A3 and A4). The overall agreement between C1 and C2 when the
match criteria require that the spans overlap and the concept, negation, and status are the same is 0.746. (B) F-score and accuracy for system output
compared to disorder mention gold standard. Results for attributes should be read ‘given that the spans are exact, the accuracy for attribute X is Y’ or
‘given that the spans overlap, the accuracy for attribute X is Y.’
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precision ¼ TruePositives
TruePositives þ FalsePositives

(3)

F-score ¼ 2*ðprecision*recallÞ
ðprecision þ recallÞ (4)

accuracy ¼
TruePositives þ TrueNegatives

TruePositives þ FalsePositives þ FalseNegatives þ TrueNegatives
(5)

Because the NER module allows multiple annotations per
span (exact and overlapping), we also computed precision, recall,
and F-score for the partial matches, which we report as ‘spans
overlap’ in table 1B. This measure has been referred to as soft
F1-score in.54

The two OpenNLP parameters for number of iterations (the
number of times the training procedure should iterate when
finding the model’s parameters) and a cut-off (the number of
times a feature must have been seen in order to be considered in
the model) are selected by a 10-fold cross validation. The results
for the cTAKES ML components are reported on the basis of
a 10-fold cross-evaluation by averaging the results from each fold.
The tests for statistical significance use a t test for paired-two
sample means with no-difference null hypothesis.

STATUS AND REPORT
Gold standard corpus and inter-annotator agreement
Two types of gold standard annotations were created. The
linguistic annotations were used to train and evaluate cTAKES
machine learning models. The named entity gold standard
annotations were used to evaluate the NER component.

Linguistic gold standard
In addition to the widely tested PTB and GENIA corpora, our
linguistic gold standard included annotations generated on
a clinical corpus sampled from the Mayo Clinic EMR. The
Mayo-derived linguistically annotated corpus (Mayo) was
developed in-house and consisted of 273 clinical notes (100 650
tokens; 7299 sentences; 61 consult; 1 discharge summary;
4 educational visit; 4 general medical examination; 48 limited
exam; 19 multi-system evaluation; 43 miscellaneous; 1 preop-
erative medical evaluation; 3 report; 3 specialty evaluation;
5 dismissal summary; 73 subsequent visit; 5 therapy; 3 test-oriented
miscellaneous).

For the POS tags and shallow parses, we extended the PTB
annotation guidelines55 56 to the clinical domain, with specifics
for the annotations of numbering, roman numerals, drug names,
abbreviations, drug-related attributes, and symbols. Guidelines
for annotating the shallow parses (or chunks) included specifics
for the annotations of medications, key clinical phrases, nega-
tion, and shared modifiers. Examples are in tables A1 and A2 of
the online data supplement at http://jamia.bmj.com.

Three linguistic experts performed the annotation task on the
Mayo corpus. The corpus was split into 10 sets of roughly the
same size. One set was additionally split into three subsets: (1)
for developing the guidelines (150 sentences), (2) for training
(400 sentences), and (3) for measuring IAA (200 sentences). The
IAA is reported on the jointly annotated third subset consisting
of 2416 tokens and 1535 chunks (about 2.5% of the entire corpus).

Named entity gold standard
The clinical named entity corpus consists of 160 notes (47 975
tokens) randomly selected from the Mayo Clinic EMR. Alto-

gether, 1466 gold standard Disorder UMLS Semantic group
named entity annotations were discovered in it (Ogren et al39;
for IAA summary see table 1A). The most important datum that
best represents the overall consistency of the gold standard on
the entire annotation task is the agreement between C1 and C2
(0.746) for the match criteria that require the spans to overlap
and the concept code, negation, and status values to match.
These Disorder gold standard named entity annotations are used
to evaluate the NER component.

Inter-annotator agreement
The three linguistic annotators (LA) are represented as LA1, LA2,
and LA3. The POS tags IAA is excellent, with the same result of
0.993 for positive specific agreement and k because P(e) is
extremely small due to the large number of possible values
(details in table A3 of the online data supplement at http://
jamia.bmj.com). The main source of disagreement is associated
with RP (particle) and RB (adverb) part-of-speech tags (eg, ‘She
needs to lie down,’ where the bolded word was assigned an RB
tag by LA1 and RP tag by LA2). Another source of disagreement
is the VBG (verb, gerund) and NN (noun, singular or mass)
pairing (eg, ‘Her husband is disturbed by her sleeping’).
The shallow parses IAA is very strong (k > 0.8) (details in

tables A4 and A5 of the online data supplement at http://jamia.
bmj.com). The phrasal category with the lowest agreement is
PRT (particle phrase) (IAA range is 0.500e0.727). For example,
in the sentence: ‘She is up for short periods’, LA1 annotated ‘up’
as a PRT, while LA2 as an adverbial phrase (ADVP). This
ambiguity affects the annotations of the ADVP category, which
has the second lowest agreement (IAA range is 0.841e0.899).
The disagreements for the adjectival phrase (ADJP) category
were mainly in spans that included a modifier or a post-modi-
fication (eg, ‘Bowel movements otherwise regular ’done
annotator chose the span for ‘otherwise regular ’ while the other
selected ‘regular ’ as the ADJP).
The IAA results for the named entity corpus are summarized

in table 1A with details described by Ogren et al.39

Sentence boundary detector
Experiments of various corpus combinations were conducted
(table 2A). We experimented with iteration values ranging from
100e350 and cut-off values from 1e7. The values that resulted
in the maximal accuracies in table 2A are 350 iterations and
a cut-off of 6 for GENIA, 350 iterations and a cut-off of 4 for
PTB, 100 iterations and a cut-off of 1 for Mayo, and 100 and 4
for the combined data.
There are several major sources of errors: (1) sentences

starting with titles, especially ‘Dr ’ and ‘Mr ’; (2) sentences

Table 2 Accuracy results from the OpenNLP ME classifier. Rows
represent training data; columns are test data. 10-fold cross validation
with 80/20 data split for each fold

GENIA PTB Mayo

(a) Accuracy for the openNLP sentence boundary detector

GENIA 0.986 0.646 0.821

PTB 0.967 0.944 0.940

Mayo 0.959 0.652 0.947

GENIA+PTB+Mayo 0.986 0.942 0.949

(b) Accuracy results for the openNLP POS TAGGER

GENIA 0.986 0.764 0.804

PTB 0.851 0.969 0.878

Mayo 0.812 0.844 0.940

GENIA+PTB+Mayo 0.984 0.969 0.936

ME, maximum entropy; POS, part-of-speech.
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starting with abbreviations (eg, ‘US’) and month names; (3)
numbers and numbered lists; and (4) initials of person names.
The first case constitutes roughly 73% of all the false negatives
in the PTB corpus and nearly 30% in the Mayo corpus, but it is
not present in GENIA because it consists of biomedical articles.
The second, third, and fourth cases are frequent in the Mayo
corpus because the clinical reports contain more shorthands
that are not consistently followed by periods, which creates
a challenge for the machine learning models. The clinical data
also includes more unconventional abbreviations and short
sentences (1e3 words), which offers an explanation for the low
cut-off value.

Our results are similar to those reported by Buyko et al.33

Tokenizer
The rule-based tokenizer achieves an accuracy of 0.938 without
the context-dependent tokenizer (CDT) and 0.949 with it. The
remaining errors are generally related to punctuation (the tokens
‘140e150/60e85’ and ‘S/P ’ are tokenized into three tokens) or
due to lack of relevant rules (the tokens ‘p.o.’ and ‘a.m.’ are
tokenized into four tokens). A baseline space-delimited tokenizer
achieves an accuracy of 0.716.

Part-of-speech tagger
We determined an optimal cut-off of 4 with an iteration cycle of
100. Using these values, different combinations of training and
testing corpora were used to build and evaluate the models
(table 2B). All results were obtained by using gold standard
tokens.

The accuracy of 0.986 on GENIA is comparable to the score of
0.989 on the same corpus reported by Buyko et al.33 The best
results for each training corpus were obtained when the model
was tested on the same corpus. One could consider this result
the ceiling of the tagger performance: 0.969 for PTB, 0.986 for
GENIA, and 0.940 for Mayo dataset. This supports results
previously reported in the literature33 57 58 and the explanation
that each corpus has its specific sublanguage. The differences
between the accuracy on PTB+GENIA+Mayo and ceiling
accuracy are statistically significant (p<0.01). A conclusion
could be drawn that the POS model built using data from PTB,
GENIA, and Mayo dataset could be successfully ported across
these three domains. We conclude that the optimal parameters
for a POS tagger using the OpenNLP technology are a corpus of
combined data, a frequency cut-off of 4, and iterations of 100.
The per-tag results are high for the adjectival tags (JJ) (accu-
racy¼0.887), noun tags (NN) (accuracy¼0.938), and verb tags
(VB) (accuracy¼0.925), which are prerequisites for a high-
performance shallow parser. Error analysis shows that the most
frequent failure sources are incorrect NN (5%) or VBN (2%) tags
for JJ, incorrect JJ tags (2.5%) for NN and incorrect NN (4.6%),
and NNP (1%) tags for VB (details in table A6 of the online data
supplement at http://jamia.bmj.com).

Shallow parser
The OpenNLP ME model is trained on IOB-formatted data,
where B indicates the beginning of the phrase, I the elements
within the phrase, and O the elements outside of the phrase. We
determined an optimal cut-off of 4 with an iteration cycle of
100, which were used for training the models represented in
table 3. The accuracy and F-score were computed using the
methodology and evaluation script from the Conference on
Computational Natural Language Learning (CoNLL) 2000
shared task. All results were obtained by using gold standard
POS tags.

The F-score of 0.93462 on GENIA is comparable to the score
of 0.9360 on the same corpus reported by Buyko et al33da state-
of-the art figure compared to the performance figures from
CoNLL 2000. The best performance on the Mayo dataset is
achieved through training on the combined corpus, with an
overall F-score of 0.924. However, domain-specific data is critical
to achieving best performance. As expected, corpus size is critical
to explain the result from training Mayo/testing Mayo experi-
ment. There is significant difference between the results for
training PTB/testing PTB and training PTB+GENIA+Mayo/
testing PTB, and training Mayo/testing Mayo and training PTB
+GENIA+Mayo/testing Mayo (p<0.0001). Comparing the
results from training GENIA/testing GENIA and training PTB
+GENIA+Mayo/testing GENIA yields a p value of 0.04, which
suggests that GENIA has distinct patterns from those in PTB
and Mayo.
The categories essential for deep parsing (NP, PP, VP) and NER

(NP and PP) have high recognition rates (0.908, 0.954 and 0.956;
details in table A7 of the online data supplement at http://jamia.
bmj.com).
Error analysis shows that about 7% of the NP errors, 2.6% of

the PP errors, and 2.3% of the VP errors are due to incorrect B, I,
and O assignments.

Named entity recognition (NER)
We reported preliminary results in the paper by Kipper-Schuler
et al59 and table 1B summarizes our most recent evaluation.
These results represent an overall cTAKES system evaluation, as
the NER module produces the annotations of greatest interest to
applications that use cTAKES and because it relies on the output
of all the other components. The NER performance is reported
in terms of F-score, while the assignment of attribute values for
each discovered named entity in terms of accuracy because each
attribute is assigned a label. The best results achieve an F-score
of 0.715 for exact matches and 0.824 for overlapping matches.
Consistent with our preliminary results,59 mapping to the

UMLS concept unique identifier (CUI) accuracy is high for exact
span matches. However, it drops when span matching is relaxed
to require only that they overlap. This follows from the nature
of dictionary-based approaches in which the span identified in
the text is used to look up the concept. If the span identified is
different than what is in the gold standard, it is no surprise that
the phrases map to different terms in the dictionary. For the
gold standard annotation of ‘degenerative joint disease’ with
CUI C0029408, the algorithm produces the right-boundary
match ‘joint disease’ with CUI C0022408 as well as the exact
match ‘degenerative joint disease’ with CUI C0029408. As the
boundary match is a broader term than the manual annotation,
it is considered a CUI non-match. Negation detection achieves
an accuracy of around 0.94 for both exact and overlapping
spans. Status annotation has an accuracy of 0.859, which is
comparable to the IAA of 0.860. We categorize the error sources
as algorithmic errors, dictionary problems, and conceptual
problems.59

Table 3 Accuracy and F-score results for the OpenNLP shallow parser.
Rows represent training data; columns are test data. 10-fold cross
validation with 80/20 data split for each fold

Accuracy and F-score
(from CoNLL script) PTB GENIA Mayo

PTB 0.969/0.954 0.917/0.884 0.879/0.846

GENIA 0.888/0.826 0.956/0.935 0.839/0.768

Mayo 0.880/0.834 0.901/0.858 0.945/0.912

PTB+ GENIA+Mayo 0.969/0.953 0.953/0.932 0.952/0.924
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DISCUSSION
Remaining challenges
Although fast, our permutational dictionary look-up NER
approach requires maintaining a lexically variant-rich dictionary
and fails at recognizing complex levels of synonymy. In our
paper, Li et al,60 we investigated an alternative ML approach
through conditional random fields (CRFs)61 62 and support
vector machines63 that showed that CRFs with multiple
features outperform a single feature of dictionary look-up (of
note, the ML NER module is not part of the current cTAKES
release). Alternatively, a linguistic approach could be considered
in which variants of the NP candidate are generated, mapped to
a dictionary, and results ranked to produce the final mapping.16

These approaches are a trade-off between rich dictionary inclu-
sion and computational cost. Although we report positive
specific agreement values (identical to F-scores51) of 0.398 and
0.457 for exact and overlapping spans with the default
MetaMap parameters in our paper, 39 these results should not be
considered as directly comparable to our cTAKES NER compo-
nent as we did not attempt to optimize MetaMap parameters.
We plan to conduct a detailed comparative study of a variety of
approaches to eventually combine their strengths.

One of the most frequent error sources in the NER component
is the selection of one unique meaning to an named entity,
which potentially maps to several concepts.64 We investigated
supervised ML Word Sense Disambiguation and concluded that
it is a combination of features unique for each ambiguity that
generates the best results65 suggesting potential scalability
issues. The cTAKES currently does not resolve ambiguities.
Another cTAKES limitation lies in coordination structure inter-
pretationsdfor example, the phrase ‘bladder and bowel habits’
should be parsed into two concepts (‘bladder habits’ and ‘bowel
habits’), which cTAKES currently processes incorrectly as
‘bladder and bowel habits’ and ‘bowel habits’.

The cTAKES named entity attributes are similar to MedLEE’s.
Unlike MedLEE, the current cTAKES release does not include
a module for asserting the relation between a disease/disorder,
sign/symptom or procedure, and an anatomical site (MedLEE’s
BodyLoc modifier). We view this as a post-NER relation asser-
tion task, which we will address in the future in the broader
context of UMLS relation discovery from the clinical narrative.
Another future challenge is expanding the values of the status
named entity attribute with levels of granularity to express
uncertainty and relatedness to patient to reflect non-patient
experiences other than ‘family history of ’.

Global evaluation and applications
We have conducted global evaluations of cTAKES for two large-
scale phenotype-extraction studies: (1) ascertaining cardiovas-
cular risk factors for a case-control study of peripheral arterial
disease using the EMR within the eMERGE66 and (2) treatment
classification for a pharmacogenomics breast cancer treatment
study within the PGRN.67 Agreement results are in the low 90s
when compared to an expert-abstracted gold standard, which
we describe in separately submitted, under-review manuscripts.
We present a cTAKES application and extension to the discovery
of disease progression from free-text neuroradiology notes. 68 We
are conducting a global system evaluation of cTAKES output
against a manually abstracted gold standard for patient cohort
identifications for 25 clinical research studies, which will be
described in another paper.

We extended cTAKES to participate in the first i2b2 NLP
challenge for the task of identifying the document-level patient’s
smoking status69 and have extended it further to patient-level

summarization.70 Some of the limitations are a finer-grained
certainty detection and temporal resolution. An independent
evaluation of cTAKES constituted our entry in the second i2b2
NLP challenge71 highlighting cTAKES portability to data from
other institutions. For a summary of the performance of the
systems that participated in the first and second i2b2 challenges
see Uzuner et al72 and Uzuner et al.73

Current and future developments
We are actively working on cTAKES modules for coreference,74

temporal relation discovery,75 and certainty assertion, to be
implemented as downstream cTAKES components following
NER. These components are expected to contribute to a refined
set of named entity attributes. The cTAKES is being integrated
within the Ontologies Development and Information Extraction
tool.76 We recently ported the HITEx sectionizer into cTAKES,
which highlights cTAKES’s modularity. In collaboration with
University of Colorado investigators, we are extending cTAKES
for semantic processing. The cTAKES will be further enhanced
for data normalization as part of a Strategic Health IT Advanced
Research Project (SHARP) focusing on secondary use of the
EMR. By making cTAKES available open-source, we present the
community with the opportunity to collaboratively develop
the next generation clinical NLP systems for large-scale intelli-
gent information extraction from the clinical narrative.
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