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ABSTRACT

Needle electromyography (EMG) is used for the diagnosis
of a neural injury in patients with a cervical/lumbar
radiculopathy, plexopathy, peripheral neuropathy, or
myopathy. Needle EMG is a particularly invasive test and
thus it is important to minimize the pain during inspections.
In this paper, we introduce the Electrodiagnosis Support
System (ESS), which is a clinical decision support system
specialized for neural injury diagnosis in the upper limb. ESS
can guide users through the diagnosis process and assist
them in making the optimal decision for minimizing
unnecessary inspections and as an educational tool for
medical trainees. ESS provides a graphical user interface
that visualizes the neural structure of the upper limb,
through which users input the results of needle EMG tests
and retrieve diagnosis results. We validated the accuracy of
the system using the diagnosis records of 133 real patients.

INTRODUCTION

Electrodiagnostic testing consists of two major parts,
electromyography (EMG) and nerve conduction
study (NCS). NCS is an effective method to detect
and localize a nerve injury, which is performed by
measuring the amplitudes and latencies of evoked
nerve action potentials after stimulating motor and
sensory nerves. In the case of EMG, a sharp needle is
used to test the patient’s muscles, and the results
help find a nerve injury. These tests are valuable
methods for finding the location and severity of
a nerve or muscle injury and predicting recovery
from a nerve lesion.

Although these two tests seem simple, patients
suffer a great deal of pain, especially when they
undergo the needle EMG test, because for this test
a sharp needle must penetrate the patients’ skin
and pierce the muscles’ fascia directly. Moreover,
this needle insertion must be performed several
times before the correct diagnosis can be made;
thus, minimizing the number of needle insertions is
an important goal for the medical practitioners.

The systems used for analyzing neural structures,
and supporting needle EMG tests for localizing
neural injury, have been developed over the past
several decades. These systems can be categorized
into the three groups based on the method employed
including the rule-based method,” ¢ 810 12 15 1819
probabilistic method,’ ** '® and knowledge-based
method.? 316 The rule-based systems evaluate a set
of rules predefined by domain experts in order to
make clinical decisions. The systems employing
probabilistic methods predict the location of nerve
injuries using probability models such as Bayesian
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networks and joint probability distributions. The
anatomical knowledge embedded in the probability
model provides the methodology for reasoning about
the location of injuries. The knowledge-based
systems interpret complex neural structures and
model a given interpretation using data structures
such as tables and networks, which can be used to
systematically predict lesions.

Although each method has unique strengths and
values in its target domain, there is room for
improvement. First, the input and diagnosis steps
could be more interactive. Some systems require that
the patient’s EMG test results are entered in batch
before the diagnosis step. For both educational tools
and clinical decision support systems, immediate
feedback after each input of a test result is important,
because it helps users to make the optimal decision
during each step. Second, some systems require that
damage to the nervous system be numerically graded
according to the clinicians’ subjective estimation,
and this can be biased. Third, in the case of an
educational tool, it is important to make the system
extensible. There are different interpretations of the
human nervous system structure, and even across
patients there could be some differences in wiring.
For improved educational experiences, it is important
to provide an intuitive interface allowing users to
change the existing neural structures or load their
own interpretation of neural structures to
incorporate into the system. Finally, an interactive
visual interface for the system is desirable. The user
experience could be substantially improved if the
system could provide an abstract view of complex
nerve structures through which users could interact
with inputs and results. The purpose of this paper is
to describe how these problems are addressed by ESS.
We describe the design, implementation, and pilot
evaluation of the ESS system. We also outline tech-
nical considerations and challenges in developing this
system.

SYSTEM OVERVIEW AND CASE DESCRIPTION

ESS is a systemized tool developed in C++ for
localization of a neural injury in an upper limb. Users
can model their own brachial plexus using an input
data file reflecting the user’s (eg, doctor’s) interpre-
tation of the neural structure. Alternatively, users
can choose to use a default file provided with the
system, which is based on the interpretation of.?
Other interpretations can be also used, such as
Dumitru, Haymarker, or Kendall’s.2”?ESS parses the
input data file and constructs an internal data
structure that is then used to build a model of the
brachial plexus reflecting the specification in the
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input file. ESS supports a rich graphical interface that can repre-
sent the brachial plexus in a window, as shown in figure 1 in the
appendix, available as an online data supplement at http://jamia.
bmj.com. The graphical interface is also clickable, enabling users
to easily input the results of patients’ EMG tests.

The ‘Load’ button to the bottom left of the interface in
figure 1 is used for loading the input data file, which forms the
basis for the internal data structure. An example of an input file,
based on the book by Rubin and Safdieh,'! is shown in figure 2
available in the appendix. The internal data structure is a sparse
matrix consisting of Os and 1s, as shown in figure 3 in the
appendix. It is used not only for injury diagnosis but also for
simplifying the complex neural structure. Users can choose
a normal or abnormal muscle by double clicking its abbreviation
on the simplified upper limb graph. The full name of the muscle
is identified in the list-box to the bottom left. At any point of
time during the test, whenever the user clicks on the ‘Diagnosis’
button, ESS begins the diagnosis in order to localize the nerve
injury. The result is presented in the list-box ‘Impression’ or
‘Other possibilities” to the bottom right. The ‘Impression’ box
indicates the site most likely to be damaged given the test results
so far, and the ‘Other possibilities’ box means that there is
a chance of an injury at a site, but it is low.

For example, suppose the biceps brachii (BB) and first dorsal
interosseus (FDI) are normal, and the pronator teres (PT) and
extensor digitorum communis (EDC) are abnormal. For this case,
the ESS diagnoses that this patient has a high chance of damage to
the ‘middle trunk’ and a ‘C7 radiculopathy’, as shown in figure 1.
Also, it says that the patient might have a lesion in the ‘posterior
cord’. In fact, this patient has been diagnosed with a C7 radicul-
opathy by Korea University Anam Hospital (KUAH).

The ESS diagnosis algorithms were validated using 149 test
cases from 133 real patients who visited the Department of
Rehabilitation at KUAH. The full results of evaluation are given
in the appendix.

METHODS OF IMPLEMENTATION

Diagnosis of nerve injury

Established neural structures and myotomes of upper limbs were
used for the logical mapping of the upper limb muscles and
neural pathways, which are separated into peripheral nerve,
cord, trunk, and root. With this mapping, we can identify the
injury sites as follows.

First, let the set of muscles with normal findings be X, and
that with abnormal findings be Y, such that X={x, x; ..., x;}
and Y={y, vy, ... y;}, where x; and y; are the i-th and j-th
muscles that tested normal and abnormal, respectively. Each
muscle, x; and y;, is represented as a vector corresponding to the
row of the matrix in figure 3. Each vector dimension represents
a position of the bundle in the neural pathway, and has the
following values; 1 means normal, —1 means abnormal, and
0 means unknown status. For example, suppose we have
a patient with normal findings on the biceps brachii (BB) and
first dorsal interosseus (FDI), and abnormal findings on the
pronator teres (PT) and extensor digitorum communis (EDC).
For this patient, X=(BB, FDI) and Y=(PT, EDC). BB and FDI are
vectors that are the same as the corresponding rows of the
matrix in figure 3, given by

BB= [00000000100000001010011000]]

FDI=[0000000000000100010010001 1]
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Similarly, PT and EDC are given by

PrT=[00000000-1 0000000 -10-1-1 00-1-1 00]
EDC= [00000000 0 0-10000-1 00 0-1-10 0-1-101]

Note that the two vectors of abnormal findings are shown as
a negative number in order to indicate that the muscle paths are
potential injury candidates.

Second, once the vectors are created, we can construct
summary vectors of both normal and abnormal findings. The
summary vector of normal findings, N, is constructed by adding
up all the vectors in X. The summary vector of abnormal find-
ings, A, can be constructed similarly by adding up the vectors in
Y. The resulting N and A vectors are given by

N=[ 0000000 010 00010 0 11 1 01 1101 1]

A=[0000000-10-100000-1-10-1-2-1 0-1-2-1 0]

Finally, we construct a diagnosis vector, D, from N and A4,
given by

b=[0000000-11-100010-1 11 1-1 11 1-1 11]

The 9th dimension corresponding to the median nerve (refer
to figure 3) is set to —1, indicating an injury, because of the four
muscles tested, only one muscle, PT, passes through the median
nerve and it tested abnormal. The 10th dimension corresponding
to the musculocutaneous is set to 1, indicating normal, because
only BB passes through the musculocutaneous and is tested
normal. On the other hand, the 18th dimension corresponding
to the medial cord is set to normal despite that the summary
vector of abnormal findings indicate that it is an injury candi-
date, for the following reason. For the case of non-peripheral
nerves such as the medial cord, the route by which a nerve
passes through an abnormal muscle is a candidate injury site;
however, if it intersects a route that controls a normal muscle, it
is excluded from the candidate group, because the route ought to
be normal if the muscle it controls is found normal. In this
particular example, two muscles, BB and PT, pass through the
medial cord and BB is found normal, while PT is found
abnormal. Since BB is found normal, the medial cord is removed
from the candidate group.

For the peripheral nerves, however, the diagnosis cannot be
completed at this stage if there are contradictory findings,
because we need to also consider the order of the muscles in the
same nerve pathway, and the number of tests performed on
them. In this case, the nerve is not removed from the candidate
group and we wait until the localization step to make the final
call. This process is explained in the next section.

As such, we can retrieve all candidate injury sites from D by
selecting the positions with —1. In this example, the candidate
injury sites include the median nerve, radial nerve, posterior
cord, and middle trunk and C7 segment. The aforementioned
process is formally described in algorithm 1 in the appendix,
available as an online data supplement at http://www.jamia.org.

Localization of nerve injury

Of the candidate injury sites identified in the previous step, the
peripheral nerves can be localized further in order to identify the
potential injury region more precisely. In this section, we explain
how to perform this localization and how to divide candidate
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injury sites into two groups—namely, ‘impression’ and ‘other
possibilities’, using clinical heuristics.

Continuing with the previous example, the candidate injury
sites were the median nerve, radial nerve, posterior cord, middle
trunk, and C7 segment. Of these five sites, the median and radial
nerves are peripheral nerves. For peripheral nerves, we attempt
to localize the injury site only if nerve inspection has been made
more than once. Peripheral nerves tested just once are classified
as ‘other possibilities,” because if the physician suspected the
nerve to be a likely injury site, he or she might have tested it
more than once. In our example, the two nerves were tested
only once, and according to such clinical heuristics, the median
and radial nerve injuries are classified as ‘other possibilities.’

On the other hand, for a brachial plexus, we use the following
heuristics to determine the ‘impressions’ list. The site with the
most intersections of injury routes has a high chance of injury,
and when there are an equal number of intersections, the more
proximal region has a higher chance of injury. In our example,
there are three brachial plexus candidate injury sites including
the posterior cord, middle trunk and C7 root segment. Of these
three candidates, we removed the posterior cord injury from the
‘impressions’ candidates, as the number of abnormal findings is
smaller than the others. The posterior cord was found abnormal
once, while the other two candidates were found abnormal
twice. Of these two candidates, the C7 segment injury was
selected for the ‘impressions’ list, because it is closer to the root
than the middle trunk. This process is formally described in
algorithm 2, available in the appendix.

For localization of peripheral nerve injuries, we use the
following principle. If more than two muscles have an abnormal
finding in the same peripheral nerve, there is a chance of
a peripheral neuropathy, and when the proximal muscle is
normal and the distal muscle is not, this indicates a nerve injury
between the muscles. The detailed localization process is
formally introduced in algorithm 3, available in the appendix.

DISCUSSION
In summary, ESS is a CDSS for neural injury diagnosis. Although
ESS is proposed primarily for educational purposes, we envision
that its core diagnosis could be also embedded in medical devices
after further improvements. ESS is interactive, as it narrows
down the candidate injury sites by interacting with users. Users
can trigger a diagnosis at any point in time. ESS then computes
the candidate injury sites given the input provided by the user
up to that point. ESS is highly extensible, as it allows users to
modify the input file in order to reflect their own interpretation
of the neural structure. Its core software logic is also designed to
be easily extended to other neural systems such as lower limb.
The ESS diagnosis algorithms employ both structural analysis
of the neural system and fine-tuned clinical heuristics. The
diagnosis algorithms were validated using 149 test cases from
133 real patients and the results are reported in the appendix.
Given the positive validation results, we believe that the
current version of ESS can be effective as an educational tool for
medical trainees. However, the number of test cases that we
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used for validation could be too small to establish reliability for
clinical applications. More research would be needed to establish
reliability for clinical use. In the future, we plan to incorporate
NCS test results in the diagnosis process, which could improve
the accuracy of results further, especially for the diagnosis of
a brachial plexopathy. We also plan to extend the system to deal
with other neural structures such as the lumbosacral plexus.
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