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Abstract
Current pharmacologic therapy for ischemic heart disease suffers multiple limitations such as
compliance issues and side effects of medications. Revascularization procedures often end with
need for repeat procedures. Patients remain symptomatic despite maximal medical therapy. Gene
therapy offers an attractive alternative to current pharmacologic therapies and may be beneficial in
refractory disease. Gene therapy with isoforms of growth factors such as VEGF, FGF and HGF
induces angiogenesis, decreases apoptosis and leads to protection in the ischemic heart. Stem cell
therapy augmented with gene therapy used for myogenesis has proven to be beneficial in
numerous animal models of myocardial ischemia. Gene therapy coding for antioxidants, eNOS,
HSP, mitogen-activated protein kinase and numerous other anti apoptotic proteins have
demonstrated significant cardioprotection in animal models. Clinical trials have demonstrated
safety in humans apart from symptomatic and objective improvements in cardiac function. Current
research efforts are aimed at refining various gene transfection techniques and regulation of gene
expression in vivo in the heart and circulation to improve clinical outcomes in patients that suffer
from ischemic heart disease. In this review article we will attempt to summarize the current state
of both preclinical and clinical studies of gene therapy to combat myocardial ischemic disease.
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Introduction
Coronary heart disease (CHD) is the single leading cause of death in adults in the US,
accounting for 1 in 5 deaths. According to the American Heart Association (AHA),
prevalence of total cardiovascular disease in the US in 2006 was 81.1 million people, out of
which 17.6 million people had coronary heart disease (myocardial infarction and angina
pectoris). Among the people with CHD, the prevalence of heart failure (HF) was 5.8 million
[1]. According to the AHA, estimated direct and indirect costs of coronary heart disease for
the year 2010 is 177.1 billion dollars. Pharmacologic therapies for CHD and HF have
multiple systemic side effects and are pre-disposed to several adverse drug interactions since
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polypharmacy is frequently involved in the treatment of such patients. In addition,
compliance is a major issue in these patients. Importantly, pharmacologic therapies aim to
reduce symptoms and halt progression of disease but do not necessarily reverse the
pathophysiology associated with CHD and HF. Additionally, interventional or surgical
coronary revascularization procedures in patients with multiple stenotic lesions or disease in
multiple vessels do not provide long term relief and frequently patients remain symptomatic
despite maximal anti-anginal therapies and may require repeat revascularization procedures.
The treatment of end stage HF is orthotopic heart transplantation and patients have to wait
for a year or more due to unavailability of donor hearts.

Gene therapy offers an attractive solution due to the aforementioned limitations of current
therapies. It provides continuous delivery of therapeutic proteins locally at the site of disease
after a single application, and can potentially lead to reversal of pathophysiology associated
with acute myocardial infarction. Gene modification using novel gene constructs can allow
genes to be switched on and off depending on the intracellular milieu and minimize
unwanted side effects from unrestricted protein synthesis or inhibition. Stem cell-based
therapies promote cardiac regeneration and have a higher rate of success when combined
with gene therapy [2] [3,4]. Gene therapy can therefore potentially delay the need for heart
transplantation or may even obviate the need for one by reversing the pathology, improving
cardiac function and alleviating symptoms.

Gene therapy results in synthesis or inhibition of specific proteins leading to alterations in
structure or function of the cells in the target tissues. The first step in gene therapy is to
design the gene construct with the promoter/enhancer and other stabilizing sequences
targeting the gene of interest. The construct is then integrated into the viral genome or a
plasmid producing a vector or a delivery vehicle for the gene. The next step is delivering the
transgene into the target cells to promote gene expression. Naked plasmid DNA by itself has
low transfection efficiency and hence, delivery vectors in the form of adenoviruses,
adenoassociated viruses, retroviruses and non-viral vector systems are needed to transfect
target cells significantly. Specialized catheters deliver the vectors carrying transgenes into
either coronary vessels or into the myocardium. In addition, pericardial administration and
invasive surgical intra myocardial approaches have been employed.

In this review we discuss the current preclinical gene therapy studies in in vivo models of
myocardial ischemia. We describe various gene therapy modalities that in animal models
have shown to be of benefit while targeting different dysfunctional aspects of ischemic heart
disease. These models are critical in determining which therapies are suitable for clinical
investigation.

Gene Therapy for Angiogenesis to Combat Ischemia
VEGF Gene Therapy

VEGF is perhaps the most highly investigated growth factor that has been studied to induce
angiogenesis in the ischemic heart. Isoforms of VEGF bind to specific receptors on
endothelial cells and play an essential role in angiogenesis [5]. The mammalian genome
encodes five isoforms of the VEGF family, which are VEGF-A, VEGF-B, VEGF-C, VEGF-
D and placental growth factor [6]. VEGF-A and VEGF-B signal via VEFG receptor-1 and
VEGF receptor-2 and regulate blood vessel physiology [7–10].

VEGF-A plays a key role in angiogenesis in the heart [6], especially during hypoxia and
nutrient deprivation [11,12]. Transcripts encoding its isoforms VEGF-121 and VEGF-165
are detected in the majority of cells and tissues expressing the VEGF gene. VEGF-121 lacks
the amino acids encoded by exon 7 of the VEGF gene, which is present in VEGF-165 and
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enables VEGF-165 to bind to heparin and heparin sulfate. Gene therapy of VEGF-165 has
been found to be highly potent for promoting angiogenesis [13]. VEGF-165 gene therapy
mediated through plasmids in rats [14,15] or through non-viral delivery systems in rabbits
[16] induces significant neovascularization and improves fractional shortening after
myocardial infarction (MI). In porcine models of MI, VEGF-165 has been shown to increase
myocardial blood flow, increase vasodilation with adenosine [17], improve wall thickening
and strain [18], improve wall motion[19], increase ejection fraction [20] and increase
myocardial viability [21] thereby leading to significant overall improvement in cardiac
function. Additionally, VEGF-121 gene therapy augments collateral circulation following
MI in rats [22], and in a porcine model of chronic myocardial ischemia [23]. Efficacy of
VEGF-121 and of VEGF-165 gene therapy is accentuated with the use of transmyocardial
laser, which results in increased capillary formation [24], and improved wall motion [25] in
pig models of cardiac ischemia.

VEGF-B is highly expressed in tissues rich in mitochondria, such as the heart, skeletal
muscle and brown adipose tissue [26] and plays an important role in revascularization of the
ischemic myocardium [27]. Overexpression of VEGF- B186 after cardiac ischemia in pigs
and rabbits leads to improved myocardial perfusion and ejection fraction [28]. Similarly
VEGF-C gene therapy demonstrates increased collateral formation and reduced wall
thickening after myocardial ischemia in piglets. [29] VEGF-D in normal porcine heart has
also proven to improve perfusion when administered through the catheter mediated
intramyocardial gene transfer [30]. Taken together these studies show that expression VEGF
via gene therapy in animal models significantly promotes angiogenesis and improvements in
cardiac function following myocardial injury. Angiogenic therapies are not without
drawbacks however and unregulated expression limits the efficacy and safety of VEGF gene
therapy [31–33]. To circumvent this hurdle, novel gene constructs have been developed
whose expression can be switched on or off depending on cellular environments. These
constructs have shown to achieve increased VEGF levels during cardiac ischemia [34,35],
lead to improved infarct size [36] and induce angiogenesis [37].

Hepatocyte Growth Factor Gene Therapy
Hepatocyte growth factor (HGF) is secreted by mesenchymal cells and acts as a multi-
functional cytokine targeting cells of epithelial origin. HGF binds to a tyrosine kinase
receptor on vascular endothelial cells thus affecting their migration, proliferation, protease
production, invasion and neovascularization [38]. Human HGF (hHGF) gene therapy has
been shown to induce angiogenesis in rats and dogs after MI [39–41]. Additionally, it has
been shown to improve remodeling [42,43], decrease apoptosis [44,45], improve
mobilization of stem cells for cardiac repair [46], decrease fibrotic scar formation [47,48],
and improve contractility of the heart [49,50]. HGF gene therapy has proven effective when
combined with ultrasound mediated microbubble destruction in an effort to improve gene
transfection in a rat model of MI [51] and is currently being evaluated in clinical trials.

Fibroblast Growth Factor Gene Therapy
Fibroblast growth factors (FGFs) bind to tyrosine kinase receptors and mediate mitogenic
and cell survival activities. FGFs promote tissue growth and affect cellular proliferation and
migration [52,53]. FGF family members differ from one another in their ligand affinities and
tissue distribution. FGF-1 and FGF-2 promote endothelial cell proliferation and the physical
organization of endothelial cells into tube-like structures. FGF-2 gene therapy has been
shown to consistently improve arteriogenesis and echocardiographic parameters of left
ventricular (LV) function in chronic ischemia in pigs [54,55]. FGF-2 dependent pathway is
activated following the delivery of a “master switch” gene called PR39, which when
overexpressed also activates VEGF dependent pathways and leads to improved myocardial
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perfusion in a porcine model of chronic ischemia [56]. FGF-4 and FGF-5 are secretory FGFs
that have further advantages and may cause paracrine and endocrine effects when compared
to FGF-1 and FGF-2, which are primarily intracellular. FGF-4 gene therapy results in
increased perfusion and decreased dysfunction in stress induced MI in pigs [57] while
FGF-5 gene therapy not only improves blood flow [58] but also reduces pacing induced
regional myocardial dysfunction by stimulating the mitotic replication of myocytes, leading
to an increase in LV mass [59].

Angiogenesis through Gene Modified Cells
Gene modified cells act as transgene carriers when they have been transfected with the gene
of interest. These cells have the ability to overexpress the transgene and lead to increased
levels of therapeutic proteins in target tissues. The potential benefit of cell-based therapy lies
in the ability of the myogenic cells to differentiate into a cardiac phenotype, become a part
of the myocardium and prevent adverse LV remodeling [60]. The transfected cells also
express the transgene to produce sustained growth factor release, which then promotes
angiogenesis and improves cell implantation and survival. Cells derived from a variety of
sources have been employed. Vascular smooth muscle (VSMC) cells modified to
overexpress VEGF, when administered via intra coronary route in an intermittent repetitive
LAD occlusion model increase collateral circulation in the ischemic heart [61]. Fibroblasts,
gene modified to overexpress bFGF gene, when administered by coronary injections in a
swine model of chronic ischemia lead to improved collateral formation and myocardial
contraction as measured by coronary angiography and electromechanical mapping [62].

Skeletal myoblasts (SkMs) modified to overexpress VEGF, when transplanted in MI
models, not only increase angiogenesis and improve cardiac contractile function [2,63,64]
but also decrease the amount of apoptosis in the ischemic heart [3]. In a rat model of MI-
induced by cryogenic injury, delivering SkMs overexpressing the growth factor VEGF leads
to an improvement in the survival of these transplanted SkMs making them available in the
ischemic tissue for extended periods [65]. In addition, transplantation of SkMs transfected to
overexpress angiopoietin [4] and SDF-1alpha [66] also enhanced angiogenesis and
improved LV function in the ischemic heart. Furthermore, SkMs transfected with adenovirus
to overexpress HIF-1alpha improved transplanted cell survival, cell engraftment and
angiogenesis after rat MI [67]. Thus, SkMs have been used to produce both angiogenic and
pro-survival factors in the ischemic heart.

Some advantages of MSCs are their ability to be transduced by vectors easily, ability to be
delivered systemically and their capacity to home in to damaged tissues. MSCs also possess
low immunogenicity and hence can be used allogenically [68]. As transgene carriers, MSCs
have been used to overexpress angiogenic growth factors such as VEGF-165 [69], FGF-1
[70], HGF [71] leading to increased vessel density and improved perfusion of the ischemic
heart. Transplanted MSCs modified to express Akt were resistant to apoptosis [72],
attenuated remodeling [73] and were found to have anti-apoptotic actions on distant
ischemic myocardial cells away from their sites of injection[74]. Other single genes used in
transfection of MSCs for treating the ischemic heart were angiogenin [75], HSP20 [76],
BCL-2 [77], HO-1 [78], Shh [79] which showed neovascularization, decreased fibrosis,
improved contractile function, improved remodeling and improved graft cell survival of the
ischemic heart respectively. All the therapies mentioned so far have utilized the
overexpression of a single gene. Multiple gene expression by transplanted cells has also
been achieved. MSCs have been modified to express a combination of angiopoietin-1 and
Akt [80], which led to improved survival of transplanted cells, increased blood vessel
density and improved fractional shortening and ejection fraction in the ischemic heart. Other
combinations achieved through cell based gene delivery were VEGF with IGF-1 [81] and
VEGF with bFGF [82], resulting in improvement in EF and decreased scar formation after
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MI. Apart from the above-mentioned cells, cord blood stem cells after gene modification to
overexpress VEGF with PDGF [83] and angiopoietin-1 [84] have also been used leading to
angiogenesis after rat MI. Thus we see cell based gene delivery improves angiogenesis in
the ischemic heart through expression of angiogenic factors while the transplanted cells
perform myogenic and regenerative functions in the ischemic heart.

Gene Therapy for Myocardial Reperfusion Injury
Gene Therapy and Oxidative Stress

Oxidative injury plays a critical role in several cardiovascular diseases including myocardial
infarction, myocardial ischemia/reperfusion (MI/R) injury, atherosclerosis, endothelial
dysfunction, restenosis, hypertension and cardiomyopathies and heart failure [85–89].
Reactive oxygen species (ROS) formed during I/R injury not only cause lipid peroxidation
and protein oxidation but also affect several calcium handling proteins such as ryanodine
receptors (RyR), SR Ca –ATPase (SERCa) and Inositol 1,4,5-triphosphate (IP3)-induced Ca
release channel thus increasing calcium entry into cardiomyocytes and triggering
widespread cellular injury [90]. Gene expression of most antioxidant enzymes, such as
superoxide dismutase (SOD), glutathione peroxidase (Gpx), catalase or hemeoxygenase-1
(HO-1) is inducible under inflammation, or other stressful conditions as a protective
mechanism to clear ROS. There are three SOD isoforms that catalyze the dismutation of
superoxide anion O2 thereby attenuating oxidative stress in various cellular compartments
[91].

Antioxidant gene therapy offers promise in combating MI/R injury in the heart [91] and has
been primarily utilized prior to the MI/R insult to increase levels of tissue anti oxidants so
that they are available for cardioprotection at the time of MI/R. Gene therapy to induce
overexpression of extracellular superoxide dismutase (Ec SOD) leads to decreased stunning
[92] and decreased infarct size following MI/R injury [93,94]. The intracellular counterparts
(Mn-SOD and Cu/Zn-SOD) have been proven to decrease apoptosis, decrease infarct size
and to delay induction of NF-kappaB [95]. Mn-SOD and eNOS genes when delivered
together lead to decreased infarct size following MI/R as well [96]. Human hemoxygenase-1
(hHO-1) gene therapy administered 6–8 weeks prior to MI/R leads to decreased mortality at
one year [97], decreased lipid peroxidation [98] and reduction in ventricular thinning [99].
HO-1 has also been suggested to induce formation of VEGF [100]. Hypoxia-regulated gene
therapies have been designed to circumvent the problem of excess expression under
normoxic conditions. One such therapy involves plasmid mediated hHO-1 gene transfer.
Gene therapy in this case pre-emptively administered results in gene expression following
hypoxia and subsequent decrease in infarct size, lipid peroxidation and attenuated
remodeling [101].

Thioredoxins (Trx) are proteins that act as potent antioxidants in mammalian cells and
provide protection against oxidative stress by decreased p38MAPK signaling [102] and
decreased superoxide anion generation [103]. Trx-1 gene therapy administered post MI
leads to angiogenesis, decreased apoptosis, reduced ventricular remodeling, and improved
ejection fraction in diabetic rats [104]. Most gene therapy using anti-oxidant genes has been
in the form of preemptive therapies where protein expression has been enhanced by the time
MI occurred. In reality this therapy may not be practical in an acute MI setting but may be
beneficial as a preventive strategy in patients who have known coronary artery disease and
other cardiovascular disease states to protect them from future ischemic events.

Endothelial Nitric Oxide Synthase (eNOS) Gene Therapy
Nitric oxide (NO) is a signaling molecule with multiple protective functions in the heart
especially during I/R injury [105]. It is synthesized from L-arginine by the action of three
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isoforms of nitric oxide synthase in mammals of which endothelial nitric oxide synthase
(eNOS) is primarily responsible for cardioprotection. Adenovirus mediated human eNOS
gene therapy administered in animals four days before MI leads to decreased infarct size,
increased capillary density, improved contractility and decreased MAPK phosphorylation
[106,107]. Gene transfer of eNOS after MI in rats leads to decreased fibrosis, lower levels of
TGF-β1, p27 and NF-kappaB protein levels and lesser apoptosis [108]. eNOS S1177D (an
activated form of eNOS) has been utilized in liposome based gene delivery and results in
decreased NF-kappaB activation and decreased polymorphonuclear cell infiltrate after MI
[109]. In the same study the authors concluded that VEGF gene transfection affords
cardioprotection in MI/R via phosphorylation of eNOS. Inducible nitric oxide synthase
(iNOS), viewed traditionally as a deleterious enzyme, given pre-emptively before MI/R
leads to decrease in infarct size [110], induction of COX-2 [111], and upregulation of HO-1
mRNA [112]. Thus NOS gene therapy has the capability of inducing angiogenesis, reducing
apoptosis and decreasing inflammation after an ischemic insult to the heart.

Gene Therapy and Proteins Involved in Apoptosis
Heat shock proteins (HSPs) function as molecular chaperones responsible for protein
folding, intracellular trafficking of proteins, and modification of proteins denatured by heat
or other stresses. HSP 70 gene delivered in myocardium of rabbits prior to MI decreases
infarct size following MI [113]. HSP 20 also given prior to MI/R injury reduces apoptosis,
improves LV end systolic and end diastolic pressures and decreases infarct size [114]. HSP
72 gene transfer during rat MI/R decreases apoptosis, improves respiratory index, increases
Mn SOD activity, increases Bcl-2 level and inhibits upregulation of caspase-3 [115]. Hence
gene therapy of the ischemic heart with HSPs reduces apoptosis and has proven to be
cardioprotective after MI in animal models.

Mitogen-activated protein kinase (MAPK) cascade consists of extracellular signal-regulated
protein kinase (ERK), p38 kinase and c-jun N-terminal protein kinase (JNK). MAPK is a
critical regulator of cell survival and death. Adverse postinfarction remodeling is associated
with reduced p38 signaling. Transfection of wild-type (WT) p38 kinase combined with that
of active MAP kinase kinase 3b (which is an upstream activator of p38 kinase) during rat
MI/R results in reduction in infarct size, lesser apoptosis, increased capillary density,
decreased fibrosis and improvement in ejection fraction [116].

Protein kinases are important regulators of angiogenesis [117]. Troponin I type 3 interacting
kinase (TNNI3K) is a mitogen activated protein (MAP) kinase, which apart from being
angiogenic, is also myogenic. Gene transfection of P19CL6 pluripotent progenitor cells with
TNNI3K gene and administration in mice after MI leads to reduced MI induced injury,
inhibits remodeling and induces myogenesis in the ischemic heart [118]. Thus targeting the
MAPK/p38 signaling cascade by gene therapy of ischemic heart leads to reduced apoptosis
and promotes angiogenesis as well.

Insulin like growth factor -1 (IGF-1) is produced primarily by liver as an endocrine hormone
but is produced in target tissues in a paracrine/autocrine fashion. Production is stimulated by
action of growth hormone and inhibited by malnutrition and growth hormone insensitivity.
IGF-1 while inhibiting programmed cell death, activates AKT signaling pathway and
stimulates growth and proliferation of cells. IGF-1 overexpressing mesenchymal stem cells
help accelerate bone marrow stem cell mobilization via activation of SDF-1alpha/CXCR4
signaling which leads to growth and proliferation of cells and decreased apoptosis thereby
promoting myocardial repair and improving fractional shortening and ejection fraction in a
rat MI model [119]. Hence gene therapy with IGF-1 and SDF-1alpha reduces adverse
remodeling and is cardioprotective.
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Gene Therapy for other proteins involved in Apoptosis
Tumor Necrosis Factor (TNF) is a cytokine produced by activated macrophages and acts via
the TNF receptor triggering apoptosis, inflammation and suppression of tumorigenesis.
Soluble TNF-alpha receptor 1 (sTNFR1) has the ability to act as an antagonist to TNF.
sTNFR1 gene therapy after MI in mice reduces infract size and improves cardiac function
[120].

Leukemia inhibitory factor (LIF) is an interleukin 6-related cytokine that regulates
differentiation, growth and regeneration, both during embryogenesis and in adult tissues
[121,122] including the myocardium [123,124]. Gene delivery of LIF and subsequent
overexpression leads to decreased fibrosis, increased LV thickness, fewer apoptotic nuclei in
the border zone of ischemia, decreased ventricular dilatation and hence preservation of rat
myocardium post MI [125].

Sonic hedgehog homolog (Shh) is a protein involved in mammalian hedgehog signaling
pathway that plays a key role in organogenesis. Gene transfer of naked DNA encoding the
human Shh gene in myocardial ischemia has been shown to preserve ventricular function by
enhancing neovascularization, reducing apoptosis and reducing fibrosis [79,126].

The kallikrein-kinin system is a system of proteins that controls blood pressure and induces
pain and inflammation. The system is mediated through bradykinin and kallidin that are
liberated from their precursor kininogens by the protease action of kallikreins. Kallikrein
gene delivery has been shown to increase capillary density, decrease apoptosis, decrease
endothelial dysfunction and preserve cardiac output post MI in rats [127].

Cluster of Differentiation 151 (CD151) is a gene encoding for a cell surface protein that
plays a role in cell development, growth, activation and cell motility. CD151 gene delivery
after myocardial infarction promotes neovascularization and improves cardiac function in
pigs [128] and rats[129].

The Akt family of protein kinases is involved in cell survival pathways and its members
inhibit apoptosis. Akt1 has also been implicated in angiogenesis. Adenovirus-mediated Akt
gene transfer pre emptively in rat hearts limits infarct size following ischemia-reperfusion
injury [130]. Adenoviral gene transfer of Akt in wild-type rat hearts enhances myocardial
contractility and intracellular calcium handling [131]. Hence, Akt gene therapy has potential
to be used in heart failure as well.

Bcl-2 protein, functioning in the mitochondria is anti-apoptotic by counteracting Bax and
Bak and inhibiting cytochrome c release. Overexpression of Bcl-2 promotes cell survival
and inhibits cell death [132]. Overexpression of human Bcl-2 in ischemia/reperfusion injury
in a transgenic mouse model over expressing the Bcl2 cDNA led to reduction in infarct size
and improvement in ejection fraction over wild type controls [133]. Gene therapy with Bcl2
gene in rabbits after MI/R shows reduced apoptosis, lesser ventricular dilatation and
decreased wall thinning [134].

Apoptosis repressor is another protein utilized as anti apoptotic therapy in ischemic heart
disease. Post ischemic cardiomyopathy and remodeling following MI/R injury in rabbits is
delayed with viral gene transfer of an apoptosis repressor with caspase recruitment domain,
which results in inhibition of apoptosis, lesser LV dilatation, preserved EF [135].

Cardiotrophin-1 (CT-1), a member of the interluekin-6 family of cytokines protects the heart
against ischemia/reperfusion injury and plays a substantial role in cardiac repair and
hypertrophy [136,137]. Gene therapy of CT-1 in mouse hearts after MI results in decreased
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apoptosis, decreased infarct size, decreased caspase-3 activation and improved ventricular
pressure indices [138].

Sphingosine kinase (SPHK) is a lipid kinase involved in sphingolipid metabolism. SPHK 1
leads to formation of sphingosine-1-phosphate (S1P), which, acting through its receptor
S1P1 activates eNOS, induces endothelial cell chemotaxis and maintains vascular integrity
[139]. SPHK1 gene therapy in rats after MI preserves systolic and diastolic functions of the
heart and leads to improved peak contraction velocity [140].

Thus gene therapy overexpressing TNF, LIF, Shh protein, Kallikrein, CD151, Akt, Bcl-2,
apoptosis repressor gene, CT-1 and SPHK improve various aspects of pathophysiology
associated with ischemic heart disease.

Clinical Trials on Gene Therapy for Ischemic Heart Disease
Controlled clinical trials for gene therapy in ischemic heart disease that have been published
include: VEGF-165, VEGF-121, VEGF-C and FGF-4. Gene therapy with VEGF-165 has
been proven successful in the Kuopio Angiogenesis Trial (KAT trial) and encouraging in the
EUROINJECT trial. In the KAT trial, adenovirus mediated VEGF-A165 gene therapy when
administered by intracoronary injection in patients with class 2–3 angina undergoing PTCA
showed improvement in coronary perfusion with no difference in the rates of vascular
stenosis [141]. The study followed patients for 8 years and demonstrated its safety and
efficacy in patients with coronary artery disease [142]. VEGF-A165 gene therapy
administered intramyocardially in plasmid form in patients with Canadian class 3–4 angina
with no other therapeutic options showed little improvement in perfusion defects after 3
months in the EUROINJECT trial [143]. However, subsequent analysis revealed
improvement in wall motion and LV function suggesting that these benefits may be
mediated by factors others than an increase in angiogenesis [144]. VEGF-165 plasmid
mediated gene therapy followed by injection of G-CSF to mobilize stem cells has been tried
in 16 patients who failed conventional therapeutic strategies [145]. Gene therapy in this
small trial showed no improvements in myocardial stress perfusion and may have been due
to inadequate homing of stem cells at zones of infarction. Other factors responsible for the
lack of response may have been poor timing of G-CGF injections or inadequacy of SPECT
scanning in demonstrating minor changes in regional perfusion. Similarly, the NORTHERN
trial, involving VEGF-A165 gene therapy through transfection with naked plasmid DNA did
not show any improvement in perfusion and exercise time in class 3–4 chronic angina [146].
Interestingly, both the EUROINJECT and NORTHERN trials clearly demonstrated that
gene therapy was safe and despite the lack of clear benefit was not detrimental and did not
worsen clinical outcomes. Since naked plasmid DNA was used in both these studies, low
gene transfection could be one of the reasons why these trials did not lead to significant
clinical improvement and future trials may require the use of viral vector mediated gene
transfer.

Several other clinical trials have demonstrated symptomatic improvements with gene
therapy. Preliminary results with VEGF-121 and VEGF-2 have been promising. In the
REVASC trial, VEGF-121 gene therapy through adenoviruses, administered via
intramyocardial injection following a mini-thoracotomy in patients with severe refractory
angina not amenable to standard medical therapy resulted in improved exercise time before
electrocardiographic changes of ischemia, increased total exercise time and improved
anginal symptoms at 26 weeks of follow up [147]. Plasmid VEGF-2 (VEGF-C) therapy in
patients with chronic class 3–4 angina was safe and resulted in improvement of symptoms in
initial pilot studies [148] and in long term follow up [149].
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In the AGENT (Angiogenic GENe Therapy) [150] and AGENT 2 trials [151], FGF-4 gene
therapy administered to patients with class 2–3 angina resulted in improvement in exercise
time at 4 weeks. But larger trials the AGENT -3 and -4, trials of a low and high dose of
Ad5FGF-4 for chronic angina involving 532 patients in a randomized, double-blind,
placebo-controlled fashion in multiple countries were halted when an interim analysis of the
AGENT-3 trial indicated that the primary end point change from baseline in total ETT time
at 12 weeks did not reach significance. Sub-group analysis in these trials have however
shown significantly improved exercise time in women and may have been due to increased
severity of CAD in women compared to men. Therefore gender based differences in
response to gene therapy is an important factor which may need to be investigated further to
appropriately identify target populations that would benefit from these therapies [152].
There is an ongoing bFGF gene therapy clinical trial in women with ischemic heart disease
(AWARE trial), for the same reason. A gene therapy trial with VEGF-165/bFGF bicistronic
plasmid been completed but the results are unavailable. This therapy might prove superior
since a double treatment strategy with the use of two angiogenic factors is being employed.
If successful this approach would demonstrate a change in myocardial perfusion on SPECT
scans as the primary outcome measure.

Current Problems Limiting Application of Gene Therapy
As with most experimental therapies, safety of gene therapy for ischemic heart disease is of
paramount importance. Though clinical trials have shown short-term safety, long-term
surveillance over a period of decades is lacking. The question still remains as to which
therapy benefits what subpopulation of patients. Inclusion of a wide selection of patients in
studies over time may lead to improvement in subgroups of patients if not the entire
population. Confounding factors such as use of concurrent medications and concurrent
medical conditions lead to difficulty in standardizing groups of patients. Objective end
points of assessment need to be used uniformly as exercise testing may be subjective and is
victim to high variability in the same patient on different days. Frequency of testing for
objective improvements may need to be ramped up as the effects of therapeutic gene may
have abated at the time of a single test. Another surprising factor that confounded results of
clinical trails was a strong placebo effect. This might be minimized when objective and not
subjective end points are used when assessing outcomes. Drug related issues such as the
dose, gene transfection efficiency, pharmacokinetics and pharmacodynamics of individual
therapies are valid as these may differ in different populations of patients. Also cost-
effectiveness analysis has to be considered, as production of gene therapy vectors itself is
cumbersome requiring specialized equipment and personnel and administration of gene
therapy is invasive in nature. Besides, specific gene therapy may not compare favorably to
available pharmacological agents in use to treat ischemic heart disease in terms of cost:
benefit ratio. It is possible that extensive use of small animals for preclinical research may
have led to excessive enthusiasm too early. Gene therapy testing on larger animals may
provide a better insight into the true efficacy of specific therapies.

Conclusion and Future Directions
The vast amount of preclinical research attests to the enormous interest currently shown by
researchers and clinicians in developing gene therapies for ischemic heart disease. Several
improvements in gene therapy technology have improved efficacy and led to marked
success in animal models of ischemic heart disease. Importantly, these improvements will
likely augment the successes of clinical trials on gene therapy that have already
demonstrated an excellent safety profile in this setting.
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One such improvement is the design of novel gene constructs used to regulate gene
expression that lead to controllable protein levels in target tissues [153] [154]. Another
improvement is the inclusion of tissue specific promoters in some gene constructs which
promotes therapeutic gene expression restricted to target tissues and limits gene expression
in non target tissues [155] [156].

Use of specialized catheters (such as the NOGA catheter) and improved gene transfection
techniques are making gene therapy more efficacious. Ultrasound-targeted microbubble
destruction is one such technique that employs myocardial contrast echocardiography to
deliver therapeutic plasmids to the myocardium. Plasmids bind to microbubbles, which are
then delivered to the myocardium possibly after endothelial injury induced by the
microbubbles [157]. Novel bubble liposomes which are smaller than conventional
microbubbles have been developed, and could prove better than microbubbles for gene
transfection [158].

In a few patients, understandably, infusion of viral vectors may be of concern due to fear of
infectious disease from infused viral vectors or to insertional mutagenesis. Several non-viral
vectors with good transfection efficiency such as biodegradable lipid modified polymers
[159] and nanoparticles [160] have been developed in the recent years. Despite the
promising results seen in clinical trials and good initial safety profile there are several
challenges that need to be overcome before gene therapy becomes a mainstream therapy for
ischemic heart disease. With the current pace of rigorous preclinical research to delineate
various targets in the diseased pathways, constantly improving gene transfer techniques,
design of novel regulated gene expression mechanisms and, improving safety profiles, gene
therapy may soon become an accepted treatment for ischemic heart disease in man.
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