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Abstract

Background—Mitochondrial DNA (mtDNA) influences metabolic diseases and perhaps
antiretroviral therapy (ART) complications. We explored associations between European mtDNA
haplogroups and metabolic changes among A5142 participants.

Methods—757 ART-naive subjects were randomized to one of three class-sparing ART
regimens including efavirenz and/or lopinavir/ritonavir with or without nucleoside reverse
transcriptase inhibitors (NRTIs). Non-randomized NRTIs included stavudine, tenofovir, or
zidovudine, each with lamivudine. Fasting lipid profiles and whole-body dual-energy X-ray
absorptiometry (DEXA) were performed. Nine European mtDNA haplogroups were determined
for 231 self-identified non-Hispanic white subjects. Metabolic changes from baseline to 96 weeks
were analyzed by haplogroup.

Results—Median age was 39 years, 9% were female, and 37%, 32%, and 30% were randomized
to NRTI-containing regimens with either efavirenz or lopinavir/ritonavir, and an NRTI-sparing
regimen respectively. Among NRTI-containing regimens, 51% included zidovudine, 28%
tenofovir, and 21% stavudine. Compared with other haplogroups, mtDNA haplogroup I (N=10)
had higher baseline non-HDL cholesterol (160 mg/dL [interquartile range 137-171] vs. 120 mg/
dL [104-136]; p=0.005), a decrease in non-HDL cholesterol over 96 weeks (—14% [—20-+6] vs.
+25% [+8-+51]; p<0.001), tended to have more baseline extremity fat, and had more extremity fat
loss by DEXA (—13% [—31-+12] vs. +9% [—13-+26]; p=0.08) and lipoatrophy (50% vs. 20%;
p=0.04). Haplogroup W (N=5; all randomized to NRTI-sparing regimens) had the greatest
increase in extremity fat (+35.5% [+26.8 - +54.9]; P=0.02).

Conclusions—Lipids and extremity fat were associated with European mtDNA haplogroups in
this HIV-infected population. These preliminary results suggest that mitochondrial genomics may
influence metabolic parameters before and during ART.

Keywords
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Introduction

Methods

Mitochondrial DNA (mtDNA) is distinct from nuclear DNA, encodes thirteen subunits of
the electron transport chain, and exhibits abundant genetic variation across >16,000 base
pairs. Human mtDNA sequences have diverged over approximately the last 150,000 years
due to natural selection and human migration, resulting in distinct patterns of single
nucleotide polymorphisms (SNPs), called haplogroups.[1] Evidence for functional
differences among mtDNA haplogroups has been demonstrated in studies of human
longevity,[2] neurodegenerative disorders,[3] and metabolic disease and cardiovascular risk.
[4-7]

Antiretroviral therapy (ART) improves HIV morbidity and mortality. Unfortunately ART
also has treatment-limiting metabolic complications such as dyslipidemia, insulin resistance,
abnormal fat accumulation, and peripheral fat loss (lipoatrophy). Inhibition of mtDNA
replication by some nucleoside reverse transcriptase inhibitors (NRTISs) is believed to lead to
a cascade of mitochondrial dysfunction with impaired oxidative phosphorylation,
overproduction of free radicals, tissue injury, and ultimately symptomatic toxicity.[8,9]
There is wide variation in the clinical manifestations of NRTI toxicities. This phenotypic
variation together with their putative mechanism(s) suggests a role for host mtDNA
variation in determining susceptibility. Our group has examined the role of mtDNA
variation in susceptibility to NRTI-associated peripheral neuropathy, identifying preliminary
associations with mtDNA haplogroups in U.S. clinical trial participants of both
European[10] and African[11] descent. We[12] and others[13,14] have also explored
European mtDNA haplogroups and ART-associated metabolic effects, primarily
lipoatrophy.

AIDS Clinical Trials Group (ACTG) study A5142 was a trial designed to determine
virologic efficacy and adverse metabolic effects of three class-sparing ART regimens.[15]
The important metabolic effects which have been attributed to various ART classes,
including lipoatrophy, were key secondary study outcomes and have been presented
elsewhere.[16] Briefly, A5142 confirmed that lipoatrophy was greatest in participants
treated with thymidine analogue NRTIs, and, more surprisingly, in those randomized to
receive the non-NRTI (NNRTI), efavirenz. Lipid effects were greatest in the NRTI-sparing
arm. We hypothesize that mtDNA variation as represented in haplogroups confers subtle
differences in oxidative phosphorylation, mtDNA replication, and/or apoptotic regulation,
and thus is a marker for relative susceptibility to ART complications. In the
pharmacogenomic analyses reported herein we explore associations between European
mtDNA haplogroups and metabolic changes during ART in non-Hispanic whites who
participated in A5142.

Study subjects

This exploratory analysis included participants from ACTG study A5142 (NCT# 00050895),
a phase 111, multicenter, randomized, open-label trial that enrolled HIV-1-infected, ART-
naive volunteers in the United States with plasma HIV-1 RNA of at least 2000 copies/mL.
[15] Participants used self-identified categories for race/ethnicity. Due to the relative ease in
genotyping and defining European mtDNA haplogroups compared with other racial/ethnic
groups, this initial analysis focused on those self-identified as “white, non-Hispanic.”

Study design

Ab5142 participants were randomized to one of three ART regimens: lopinavir/ritonavir plus
efavirenz (lopinavir-efavirenz arm) or two NRTIs plus either lopinavir/ritonavir (lopinavir
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arm) or efavirenz (efavirenz arm). As described in detail elsewhere,[15,16] investigators
selected NRTIs (zidovudine, stavudine extended release [XR], or tenofovir) to be given with
lamivudine if the subject was randomized to the NRTI-containing arms. Randomization was
stratified by NRTI choice. Subjects were followed for 96 weeks after the last subject was
enrolled. Changes in randomized regimen or NRTI were allowed for toxicity or intolerance
and were considered endpoints in the efficacy analysis. Body composition was determined
by whole-body dual-energy X-ray absorptiometry (DEXA) at entry, 48 weeks, and 96
weeks. Scan results were determined at a central reading site (Tufts University, Boston, MA,
USA) by readers blinded to treatment assignments. Fasting serum lipids were measured at
each site by commercial laboratories at entry, weeks 12, 24, and every 24 weeks.

The present study was a retrospective analysis of non-Hispanic white participants with DNA
available under ACTG protocol A5128[17]. Both retrospective cohort (for changes in lipids
and extremity fat) and case-control (for lipoatrophy) study designs were utilized. A5142 and
Ab128 protocols were approved by institutional review boards at each study site, and
participants provided written informed consent. The Vanderbilt Committee for the
Protection of Human Subjects and the ACTG approved the use of DNA.

DNA sequencing and mitochondrial haplogroup determination

DNA was isolated from whole blood using PUREGENE® (Gentra Systems Inc.,
Minneaplois, MN). Genotyping was performed with the ABI PRISM® 7900HT Sequence
Detection System (Applied Biosystems Inc., Foster City, CA) using the 5° nuclease allelic
discrimination Tagman assay. Based on the work of Torroni, et al.[18], we characterized
single nucleotide polymorphisms at positions 1719, 4580, 7028, 8251, 9055, 10398, 12308,
13368, 13708, and 16391. Probes and primers were based on previously reported
genotyping[3] and have been presented in detail elsewhere.[12] Raw genotypic data were
analyzed using ABI Sequence Detection System version 2.0 software and genotype calls
were confirmed by manual inspection of the plots.

Statistical analysis

Results

Simple proportions are used to describe demographic and genetic data. Medians and
interquartile ranges (IQR) are presented for continuous data. Fisher’s exact or Pearson Chi-
squared tests and Wilcoxon rank-sum (Mann-Whitney U) test were used for comparisons of
categorical and continuous covariates, respectively. Univariate and multivariate logistic
regression were used to determine exact odds ratios (OR) and 95% confidence intervals (CI)
for haplogroup associations with lipoatrophy. In the multivariate model, ART exposure was
included as intent-to-treat based on randomization. In the primary metabolic study, results
did not differ substantially in intent-to-treat versus as-treated analyses.[16] Analyses were
not corrected for multiple comparisons in this exploratory study. Stata SE version 10 (Stata
Corp., College Station, TX, USA) was used for statistical analyses.

Study population demographics and baseline HIV disease parameters

A total of 245 self-identified white, non-Hispanic A5142 participants (32% of all study
participants; 89% of white, non-Hispanic participants) had DNA available for analysis. Of
these, 231 (94%) were classified into one of nine major European mtDNA haplogroups and
included in subsequent analyses. Fourteen participants (6%) were excluded due to non-
European mtDNA haplogroup classification (N=11) or genotyping no-calls at haplogroup-
defining base positions (N=3). The 231 included 20 (9%) females, and had a median (IQR)
baseline age of 39 (17-73) years, CD4+ T cell count of 248 (83-357) cells/mms3, and logy
plasma HIV-1 RNA of 4.9 (4.5-5.5) copies/mL.
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Mitochondrial DNA haplogroups

European mtDNA haplogroup distributions were similar to those reported in other U.S.
populations. The majority (48%) belonged to haplogroup H, followed in frequency by
haplogroups U (15%), T (11%), and J (7%). The remainder comprised haplogroups I, K (5%
each), W, X (3% each), and V (<1%).

Baseline metabolic characteristics

Of the 231 participants evaluable for mtDNA haplogroups, 218 (94%) and 220 (95%) had
baseline DEXA and fasting lipid data available, respectively. Baseline metabolic parameters
and prescribed NRTIs are shown for the overall group and by randomized treatment arms in
Table 1, and are similar to those in the primary study population.[16] Median baseline body
mass index (BM1) was 25 kg/m2, extremity and trunk fat mass by DEXA were 7.1 and 9.2
kg, respectively, and non-HDL cholesterol was 121 mg/dL. None of the participant
demographics, baseline HIV disease or metabolic parameters differed significantly by
treatment arm. Among the study participants receiving NRTIs, 50% received zidovuding,
29% tenofovir, and 21% stavudine. There were no significant differences in NRTIs selected
by randomized treatment arm.

Baseline metabolic parameters by mtDNA haplogroups are shown in Table 2 (haplogroup V
is not shown due to only 2 individuals in this group). The only significant differences from
the overall group were among persons belonging to haplogroup I who had significantly
greater median total (195 vs. 152 mg/dL), non-HDL (160 vs. 120 mg/dL), and LDL (127 vs.
91 mg/dL) cholesterol (P<0.01 for each), and tended to have greater baseline extremity (9.9
vs. 7.1 kg; P=0.09) and trunk fat (12.3 vs. 8.8 kg; P=0.05) than those belonging to non-I
haplogroups. Median baseline fasting triglycerides were elevated among persons belonging
to haplogroup I (169 vs. 126 mg/dL among other haplogroups), but this difference was not
statistically significant (P=0.4). There were no statistically significant differences across
haplogroups with respect to age, sex, baseline HIV-1 RNA level or CD4+ T cells (data not
shown), baseline BMI, HDL cholesterol, or, among those randomized to NRTI-containing
treatment arms, NRTIs selected (Table 2).

DEXA changes and lipoatrophy

Of 218 persons with baseline DEXA data, 178 (82%) had paired 96-week data. Overall,
there was a median (IQR) percent increase in extremity fat of +7.5% (—15.4 - +23.7),
corresponding to a median absolute increase of +0.6 kg (—1.6 - +1.7) from baseline to 96
weeks (Table 3). This change was consistent with that seen in the primary study population.
[16] Median week 48 and 96 changes in DEXA extremity fat stratified by mtDNA
haplogroups are shown in Figure 1a. The only statistically significant difference in percent
extremity fat change was in subjects belonging to haplogroup W (N=5; median [IQR]
change +35.5% [+26.8 - +54.9]; P=0.02). Only haplogroup | demonstrated a trend toward an
overall percent decrease in extremity fat (N=10; median change —13.2% [-31.2 - +11.6];
P=0.08).

As in the primary metabolic analysis, lipoatrophy was defined as >20% decrease in
extremity fat from baseline at 96 weeks. Overall, 39 of 178 persons (22%) with 96 week
DEXA data met this definition. This proportion was 32% of persons randomized to the
efavirenz arm; 21% of those randomized to the lopinavir arm; and 11% of those randomized
to the NRTI-sparing lopinavir-efavirenz arm (P=0.02 for three-arm comparison). Not
surprisingly, 96-week lipoatrophy rates were 50%, 26%, and 9% for persons receiving
stavudine, zidovudine, and tenofovir, respectively (P=0.002) and were similar to those in the
primary study population.[16] When compared across mtDNA haplogroups, persons
belonging to haplogroup | were more likely to have met the definition of lipoatrophy than
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those belonging to non-I haplogroups (50% vs. 20%; P=0.04; Figure 2a). No other
haplogroup differed significantly with respect to lipoatrophy. In a subgroup analysis limited
to persons receiving the thymidine analogue NRTIs zidovudine or stavudine (N=91; 30
[33%] developed lipoatrophy), haplogroup I remained significantly over-represented
compared with non-1 haplogroups (71% vs. 30%; P=0.04; Figure 2b).

Logistic regression was used to determine ORs of baseline demographic, immunologic, and
ART-related factors for lipoatrophy, and to adjust for possible confounding (Table 4). In
unadjusted models, randomization to the NRTI-containing efavirenz arm was associated
with lipoatrophy (OR=2.4 [95% CI 1.2-5.4]; P=0.02), and randomization to the NRTI-
sparing arm was protective (0.3 [0.1-0.9]; P=0.03), consistent with the primary metabolic
analyses.[16] Among the selected NRTIs, stavudine use was associated with development of
lipoatrophy (4.8 [2.0-11.6]; P<0.001), and tenofovir use tended to be protective (0.3 [0.1-
1.1]; P=0.06). Of mtDNA haplogroups, only haplogroup | was significantly associated with
lipoatrophy (3.9 [1.1-14.4]; P=0.04). In a model adjusted for randomization to the NRTI-
sparing regimen, baseline extremity fat mass, and mtDNA haplogroup I, NRTI-sparing
treatment remained protective of lipoatrophy (0.3 [0.1-0.9]; P=0.03), and the effect size of
haplogroup | decreased and the P-value no longer demonstrated statistical significance (3.0
[0.8-11.4]; P=0.11). In separate models adjusting for individual thymidine analogue NRTI
use, stavudine remained significantly associated with lipoatrophy (5.2 [2.1-12.9]; P<0.001),
zidovudine was not (1.4 [0.7-3.0]; P=0.3), and although haplogroup I retained similar OR
(3.7 [0.9-14.6]; P=0.06 and 3.5 [0.9-12.9]; P=0.07, respectively; Table 4), these
associations were no longer statistically significant. Baseline extremity fat was not
associated with lipoatrophy in unadjusted or adjusted analyses.

Fasting serum lipid changes

Of 220 persons with any baseline fasting lipid data, 174 (79%) had paired 96 week data.
These sample sizes were 219 and 171 (78%), respectively for non-HDL cholesterol. Overall,
median percent changes from baseline to 96 weeks for fasting total, LDL, non-HDL, HDL
cholesterol, and triglycerides of +22.5%, +19.5%, +21.8%, +27.6%, and +50.4%,
respectively. Changes from baseline in the primary lipid outcome of non-HDL cholesterol
stratified by mtDNA haplogroups are shown in Figure 1b. Only haplogroup | demonstrating
a percent decrease in non-HDL cholesterol at 96 weeks (median —14.0% [IQR —19.9 - +6.2]
vs. +25.5% [+8.1 - +51.1] among combined non-1 haplogroups; P<0.001). This change
corresponded to a median decrease from baseline of 20 mg/dL to an absolute 96 week value
of 132 mg/dL for haplogroup | compared to a median increase from baseline of 30 mg/dL to
152 mg/dL for non-I haplogroups. Both comparisons were statistically significant (P=0.001
for absolute change and 0.05 for absolute 96 week values) despite the higher baseline non-
HDL cholesterol among persons belonging to haplogroup 1. In addition, persons belonging
to haplogroup I had significantly less median percent increases in total (+3% vs. +23%;
P=0.005) and LDL (—5% vs. +21%; P=0.01) cholesterol, and triglycerides (—4% vs. +55%;
P=0.04) over 96 weeks than those belonging to other haplogroups.

Discussion

Metabolic complications of ART have become prominent treatment-limiting adverse effects
that increase the complexity of management of HIV infection and likely contribute to excess
morbidity and mortality due to cardiovascular disease. Accurately predicting persons at
greatest risk of these complications is not possible at present, and though several studies
have reported genetic predictors of ART-associated metabolic complications,[19-24] none
have been well-validated or incorporated into prospective clinical trials. As the HIV-
infected, ART-treated population ages, metabolic complications of ART are likely to
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become more prominent. Better strategies to prevent these complications are needed,
including expanded studies of the role of pharmacogenomics in these drug toxicities.

The present study is the largest to explore associations between mtDNA haplogroups and
changes in metabolic parameters among HIV-infected persons starting ART. We found
differences in baseline serum lipids among persons belonging to mtDNA haplogroup I, with
these persons having higher total, LDL-, and combined non-HDL-cholesterol than persons
from other haplogroups. Differences in baseline median body fat measurements by DEXA
were also substantial (>2.5 kg more extremity fat and >3 kg more trunk fat), but marginally
statistically significant. Persons belonging to haplogroup W demonstrated extremity fat gain
and no cases of lipoatrophy. These observations should be interpreted cautiously, however,
given that only five individuals had 96 week DEXA data available for analyses, and five
were randomized to NRTI-sparing treatment. To our knowledge, these metabolic parameters
have not been reported based on mtDNA haplogroups in the general population, and reasons
for these pre-ART differences are unknown. There are data demonstrating associations
between a specific mtDNA SNP and lipid parameters in Asians.[4,5] Based on our
hypothesis that mtDNA variation represented by haplogroups confers differences in
oxidative phosphorylation, mtDNA replication, and/or apoptotic regulation, it is plausible
that these differences may affect baseline lipid and fat metabolism prior to initiating ART.

Persons belonging to haplogroup | had more baseline fat by DEXA, but in contrast to the
overall group and all other haplogroups, lost extremity fat over 96 weeks of ART. A
significantly greater proportion of haplogroup I lost at least 20% of extremity fat during the
study, meeting the pre-specified definition of lipoatrophy. However, due at least in part to
excess baseline extremity fat, the absolute extremity fat mass in I and non-I haplogroups did
not differ at 96 weeks. In multivariate models, baseline extremity fat was not associated with
lipoatrophy, and did not fully attenuate the association between haplogroup I and
lipoatrophy, nor did adjustment for use of thymidine analogue NRTIs. However (and
perhaps not surprisingly), adjustment for randomization to NRTI-sparing treatment
attenuated the association between haplogroup I and lipoatrophy, suggesting that the
absence of NRTI-containing ART limited the influence of mtDNA variation on this
outcome. Also of note was that despite baseline differences in serum lipids, persons
belonging to haplogroup I still demonstrated significant differences in non-HDL cholesterol
change from baseline. This led to a statistically and clinically significant difference in
absolute week 96 values, with persons from haplogroup I having a median non-HDL
cholesterol of 132 mg/dL, 20 mg/dL lower than non-I haplogroups.

These results did not confirm previous studies that had explored mtDNA haplogroups and
metabolic changes in ART-treated persons of European descent. In ACTG study A5005s,
the metabolic substudy of ACTG 384, individuals belonging to haplogroup J had increases
in extremity fat when compared to other haplogroups (+26% vs. —8%; P=0.07).[12] In the
present study the increases in fat for haplogroup J did not reach statistical significance.
There were only two persons with paired DEXA data available belonging to haplogroup I in
the previous study. A cross-sectional study of more than 340 Italian HIV-infected patients
referred to a metabolic clinic did not identify any associations between European mtDNA
haplogroups and several metabolic outcomes.[14] Only four subjects (1.2%) in this
population belonged to haplogroup I, and they were excluded from analyses. More recently,
data from more than 400 self-reported white participants in the Multicenter AIDS Cohort
Study (MACS) underwent mtDNA haplogrouping and were analyzed for changes in
peripheral lipoatrophy across three body regions (buttocks, legs, arms) determined by
standardized physical exam assessment.[13] Persons belonging to haplogroup H had greater
lipoatrophy severity in the arms and legs than persons from other haplogoups. The
investigators noted that haplogroup J was associated with less severe lipoatrophy in all three
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regions, but these associations were not statistically significant. Haplogroup | was only
analyzed as part of a combined IWX group, which was not statistically associated with
lipoatrophy.

Our study has several limitations which should be noted. Although this is the largest
published sample of HIV-infected subjects with mtDNA haplogroups and longitudinal
metabolic data from a pre-ART baseline, the sample size for many haplogroups is small,
especially for subgroups of subjects randomized to and/or exposed to various ART. This
limited our power to detect associations with some haplogroups, and could explain the
borderline statistical significance seen with extremity fat changes and lipoatrophy. The lack
of replication of the possible association of haplogroup J with less extremity fat loss[12] in
the study presented here (and in the MACS analysis[13]) could be due to different ART with
higher rates of lipoatrophy (all subjects included in the ACTG 384 study were randomized
to include a thymidine analogue NRTI, and half received stavudine and didanosine in
combination), different phenotypes (longitudinal DEXA from pre-ART in a clinical trial
versus cross-sectional clinical lipoatrophy assessments during ART [13]), and/or a
combination of these factors. Aside from the extremity fat gain seen with haplogroup W,
persons belonging to haplogroup J (N=17 with 96 week DEXA data) had the most extremity
fat gain of any haplogroup (+14% [IQR —10%-+32%]). Although this difference was not
statistically significant, results from three independent populations have demonstrated either
a gain in limb fat by DEXA or less severe lipoatrophy among persons belonging to
haplogroup J. The lack of association between haplogroup H and lipoatrophy that was
reported previously[13] may also be due to the issues noted above. Given the exploratory
nature of these analyses, we did not correct for multiple comparisons, thus some associations
based on the traditional p-value threshold may be spurious. It should be noted, however, that
96 week percent changes in both total and non-HDL cholesterol among haplogroup 1 all
remain statistically significant with simple Bonferroni correction (P<0.006). Lastly, our
analyses did not include nuclear gene variants that have been associated with
lipodystrophy[21-23] and dyslipidemia[19,20,24] in ART-treated populations, or
assessments of facial lipoatrophy, and data on other non-genetic factors (e.g. diet and
exercise) that may influence lipids and body fat were not available.

There is little biological evidence to explain associations observed between haplogroup |
and metabolic phenotypes at baseline or during ART. Haplogroup I is relatively uncommon
in persons of European descent (~5%), and has not previously been associated with human
diseases. This haplogroup is characterized by synonymous SNPs at mtDNA positions:
1719G-A located in the ribosomal RNA gene; 8251G-A in the cytochrome C oxidase
subunit 11 gene; and 16391G-A in the D-loop/control region. Shared SNPs with haplogroups
W and X at positions 8251 and 1719, respectively, have provided rationale for combining
these relatively infrequent haplogroups into an IWX clade for analyses. This may in part
explain why analyses using similar phenotypes have not reported associations with
haplogroup 1.[13] Haplogroup I is also related to haplogroups J and K in the sharing of a
non-synonymous SNP at position 10398A-G. This change leads to a Thr-Ala amino acid
substitution in the NADH dehydrogenase subunit 3 gene and has been associated with
neurodegenerative diseases and cancer.[3,25] Mechanisms by which mtDNA variation may
influence baseline and/or ART-associated dyslipidemia are not known, but recent literature
highlights the role of mitochondrial function in common metabolic and cardiovascular
diseases,[26—28] with studies examining the specific influence of mtDNA variation on risk
of metabolic and cardiovascular disease in Asian[4-7,29,30] and non-Asian[31-37]
populations. Obviously, findings from these studies in HIVV-negative populations do not
directly address the influence of mtDNA variation on acquired metabolic effects of ART.

AIDS. Author manuscript; available in PMC 2012 January 2.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hulgan et al.

Page 9

These results demonstrate preliminary associations between a European mtDNA haplogroup
and metabolic parameters in an HIV-infected population, both prior to and during ART
exposure as part of a clinical trial. Many genetic and non-genetic factors likely influence risk
for metabolic changes in this population; mtDNA variation may be one of these. Continued
study is needed to replicate these associations and determine mechanisms by which mtDNA
variation may be associated with different metabolic effects. More extensive mtDNA
genotyping in large, well-characterized populations is needed to identify additional
functional variants (i.e. SNPs that change amino acid sequence and/or protein function) that
may underlie this and other reported associations, and to expand these analyses to other
racial/ethnic groups with different mtDNA lineages.
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Figure 1. Median percent changes in (a) extremity fat by DEXA and (b) fasting non-HDL
cholesterol from baseline to 48 and 96 weeks after randomization, by mtDNA haplogroup
Dark horizontal line indicates no change. Individual lines represent different haplogroups.
Thick lines denote changes within haplogroup | (dashed lines) and combined non-I
haplogroups (solid lines). For Figure 1a: P=0.08 for 96-week difference in median percent
changes in extremity fat between I and non-I groups; P=0.02 for haplogroup W versus

combined non-W haplogroups. Baseline and 96-week DEXA data are also shown in Table 3.

For Figure 1b: P<0.001 for 96-week difference in median percent changes in non-HDL
cholesterol between | and non-I groups. Sample sizes with available data at each time point
are shown above the horizontal axis; individual haplogroup sample sizes with data available
at 96 weeks are shown in the haplogroup legend. Note: the total non-1 haplogroup sample
sizes shown include a single subject belonging to haplogroup V.
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Figure 2b.
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Figure 2. Proportion of subjects with lipoatrophy defined as >20% loss of extremity fat by
DEXA at 96 weeks (a) overall, and (b) among those who received thymidine analogue NRTIs
zidovudine or stavudine, by mtDNA haplogroup

Individual haplogroup sample sizes with DEXA data available at 96 weeks are shown
beneath the horizontal axis labels. Total N=178 for (a), N=91 for (b). Note: the total non-I
haplogroup sample sizes shown include a single subject belonging to haplogroup V.
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Table 1

Baseline metabolic parameters and selected NRTI, by randomized treatment arm.

Randomized treatment arm@

Total Efavirenz Lopinavir Lopinavir-efavirenz

N (for DEXA) 218 79 74 65
N (for cholesterol) 220 84 71 65
Body mass index (kg/m?) 25 (23-28) 25 (22-27) 24 (23-29) 26 (23-29)
Extremity fat (kg) 7.1(5.1-103) 7.1(4.6-10.1) 6.7 (5.0-9.7) 7.7 (5.7-11.5)
Trunk fat (kg) 9.2(6.1-12.6) 85(5.4-11.9) 9.5 (6.6-12.5) 9.5 (6.2-13.4)
Total cholesterol (mg/dL) 154 (137-173) 151 (136-173) 158 (133-177) 152 (139-172)
HDL cholesterol (mg/dL) 33 (27-39) 34 (26-40) 32 (27-39) 33(28-39)
Non-HDL cholesterol (mg/dL) 121 (104-137) 120 (103-138) 123 (103-142) 122 (105-135)
LDL cholesterol (mg/dL) 92 (76-110) 91 (79-108) 89 (75-114) 94 (77-110)
Triglycerides (mg/dL) 127 (88-185) 136 (84-203) 131 (92-173) 114 (91-165)
Lipid lowering therapyb 63 34 1@ 23
NRTI selected®

Stavudine XR 32 (21) 18 (23) 14 (19) -

Tenofovir 44 (29) 22 (28) 22 (30) -

Zidovudine 77 (50) 39 (49) 38 (51) -

Data shown are median (interquartile range) or N (%) except where noted

a . . .
All comparisons across randomized treatment arms p>0.15 by Kruskal-Wallis test

b . .
Percentages based on total with baseline cholesterol data

c - . .
Percentages based on total from NRTI-containing arms with baseline DEXA (overall total n=153)

NRTI=nucleoside reverse transcriptase inhibitor; DEXA=dual energy x-ray absorptiometry
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