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Abstract
With MRI possibly becoming a modality of choice for detection and staging of prostate cancer,
fast and accurate outlining of the prostate is required in the volume of clinical interest. We present
a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final
prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices.
Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm
makes only minimum assumptions about the prostate shape. A statistical shape model of prostate
contour in polar transform space is employed to narrow search space. Further, shape guidance is
implicitly imposed by allowing only plausible edge orientations using template matching. The
algorithm does not require region-homogeneity, discriminative edge force, or any particular edge
profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is
robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert
segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and
dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per
slice.

Keywords
Prostate biopsy; prostate; segmentation; MRI

1. INTRODUCTION
With an approximate annual incidence of 220,000 new cases and 33,000 deaths, prostate
cancer continues to be the most common cancer in men in western hemisphere. The
definitive diagnostic method of prostate cancer is core needle biopsy. While TRUS imaging
has been the gold standard for guiding prostate biopsy, but MRI may also become an
attractive choice, owing to its high sensitivity and excellent soft tissue contrast [1]. The
biopsy workflow involves fusion of pre-operative and intra-operative MRI acquired in
different body positions and with different endorectal coils and pulse sequences. Owing to
such unfavorable conditions, outlining the clinical target volume (i.e. the prostate gland)
becomes a prerequisite step. Currently, researchers perform the tedious task of manually
outlining cross-sectional MRI slices before registering the two datasets [2,3], which is
suboptimal for routine clinical use. Hence the focus of our work is outlining of prostate in
intra-operative MRI while accommodating for the variability of conditions and parameters.

Current literature on prostate segmentation focuses on ultrasound [4–11], but works also
cater to MRI [12–15]. Pathak et al. [4] presented an edge-guided delineation of prostate in
2D ultrasound images. Abolmaesumi et al. [5] and later, Badiei et al. [6] used spatial
Kalman filter with Interacting Multiple Modes Probabilistic Data Association (IMMPDA)
filters to detect closed contours of prostate. Deformable models like snakes, level-sets,
deformable mesh were proposed [7,8] to overcome some limitations of purely edge-based
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algorithms. To further improve and constrain the curve or model evolution, deformable
models with shape guidance were introduced [9–12]. These methods are computationally
expensive [9]; require considerable user interaction [10]; rely on region or texture
homogeneity [11,12]. Among the works done on MRI, Zwiggelaar et al. [13] presented
contouring from 2D MRI slices in polar-transform space using ridge extraction and non-
maximal suppression techniques. Zhu et al. [14] employed 2D active shape model in
combination with 3D statistical shape modeling to achieve segmentation. Allen et al. [15]
combined 3D shape modeling and voxel classification.

With such a significant body of research available, we first attempted to adapt existing
techniques to solve our problem. However, they had little success due to: 1) Lack of
discriminative image force to drive the model to lock onto true contour as too many contours
are present near the true boundary; 2) Absence of reliable region homogeneity and texture;
3) Missing boundary segments in regions of low contrast, particularly in the end slices,
where the boundaries of the prostate gland blend into surrounding tissues; 4) Variable edge
profile within slice and across slices. To add to an already exigent task, we needed an
algorithm that can cope with great variability of imaging parameters across datasets,
primarily caused by different endorectal coils and pulse sequences used pre- and intra-
operatively. The algorithm sought should meet critical intra-operative requirements: fast,
accurate, needs minimal user intervention at initialization, and allows for flexible correction
of the results.

The prostate gland, for practical biopsy purpose, consists of the apex, midsection, and base.
The midsection encompasses about 90 percent of the prostate. The apex and base, that cap
the gland from the bottom and top, respectively, have practically no features or gradients to
be seen in MRI. Although some existing segmentation methods attempt to propagate
contours from midsection using some statistical shape model, in the absence of
discriminating gray level gradient they are always erroneous to some extent and thus need
significant manual correction by the clinician. The extent of manual corrections varies
among the different methods, but there is always some manual labor at the console. As the
apex and base are quite small and in most imaging protocols do not run over more than 2 or
3 anatomically relevant transverse slices, we are not particularly concerned about
automatically contouring them and fixing the contour lines manually. We thus concentrated
our efforts on contouring the midsection of the gland which, under the aforementioned harsh
clinical conditions, is a very challenging task in itself.

2. METHODS
We chose to build upon the ideas of Pathak et al. [4], further automating it, for
determination of initial outline of a midsection slice and then proceed in 3D similarly to
Wang et al. [8] by iteratively propagating the middlemost slice to the adjacent slices and
then repeating the same process toward the base and apex. Pathak et al. [4] requires manual
delineation from a set of probable edges on each 2D image, resulting in excessive user
intervention. The two approaches [4] and [8] do not suffice alone independently for the
reasons mentioned. We, therefore, combined the merits of both, implicitly imposing shape
guidance and thus obtaining a significantly more automated process with less user
interaction in the end. The complete algorithm is as follows.

The segmentation is initiated with clicking at the approximate center of the prostate in the
approximately middlemost slice. We then integrate this information with a priori knowledge
of prostate shape in several steps to arrive at the final contour. Then the contour of the
middlemost slice is used as the initial estimate for the neighboring slices, where the same
steps are repeated all over, as described below.
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2.1 A-priori knowledge: Shape model
We incorporate the prostate shape information in a systematic manner by representing
contour in polar transform space. Since the prostate is walnut shaped closed object, each
point on contour can be represented in terms of radial distance r from the prostate center (xc,
yc) and angle θ ranging in interval [0°–360°. Instead of capturing contour radial statistics in
four quadrants as in [4], we use angular sections of 9 degrees resulting in statistics for 40
angular sections for each prostate contour. The small angular section was chosen to capture
the variation of prostate shape under varying deformations. A mean midsection prostate
contour in polar representation is calculated from 54 manually contoured midsection slices,
by recording the average radii (ravg(θ)) and its standard deviation (σ(θ)).

2.2 Contrast enhancement and edge enhancement
In our MRI datasets, speckle-like grainy noise arises due to motion artifacts of image
acquisition. Conventional edge-detection algorithms on these images result in an excessive
number of false edges. Using line segments (called “sticks”) in different angular orientations
as templates and selecting the orientation at each point that is most likely to represent a line
in the image, it is possible to significantly reduce speckle-like noise and improve edge
information, making them more suitable for edge detection [4]. Figure 1b illustrates the
effect of noise suppression and contrast enhancement with `sticks'.

2.3 Initialization
To initiate segmentation, user clicks prostate center in roughly the central slice of prostate.
The bounding slices of the prostate are determined using a-priori available information
about average prostate volume. The center of average shape model (described earlier) is
aligned with user's input. The central slice is set to be the first slice to be segmented using
the average shape model as initial estimate. In the next step, a canny edge filter is used to
obtain edge-feature image (Figure 1c).

2.4 A-priori knowledge based removal of false contours
entails the following three consecutive steps:

2.4.1 Narrow contour search—In this step, starting from prostate center, a radial search
in polar transform space is carried out. The pixels falling at the radial distance from prostate
center in the range of [ravg(θ) + 2*σ(θ), ravg(θ) − 2*σ(θ) are kept, and the rest are eliminated.
The values for ravg(θ) and σ(θ), which represent average radius of prostate contour from
prostate center and corresponding standard deviation at specific angular section determined
by θ respectively, are given by the polar representation of the initial estimate. This leaves us
with a region of interest with possible prostate candidate edges (Figure 1d).

2.4.2 Enforce edge orientation constraints using templates—After narrowing
down to region of interest, further a priori information is incorporated into the algorithm
about the expected edge orientation of the prostate contour at different angular sections. The
intuition behind this step is that the prostate contour has specific orientation at specific
angles from the center. For example, consider angular section in first quadrant; in this
section, prostate contour is rising and towards left. Similarly, each angular zone has specific
allowed orientation templates. Therefore, to enforce edge-orientation constraint, an angular
sweep is made from 0 to 360 degrees, and only those pixels are kept, which are in allowed
orientations for that angle. This step results in getting rid of many false contours and
breaking connectivity of prostate contour with ill-oriented contours (Figure 1e).
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2.4.3 Enforce continuity constraints—The intuition behind this step is that the
prostate contour should be continuous and hence cover more angular extent. Thus, when
there is more than one contour in a particular angular region overlapping each other, the
contour that covers greater angular extent is more likely to be true prostate contour and the
smaller overlapping edge fragments are discarded. Also, a contour that does not cover a
significant angular extent is likely to be noise and is discarded. After this step, we are left
with edge fragments that are strong candidates to be part of true prostate contour (Figure 1f).

2.5 Fill missing information and fit closed spline to data
A final angular sweep is made to see if there is huge angular chunk missing; in which case,
the missing information is filled by putting pixels at ravg (θ) from the initial estimate (Figure
1g). The rationale behind this step is to model human way of segmenting who uses the
estimate from average shape in places where the information is not so strong or is
completely missing. Finally, a closed spline is approximated out of the remaining fragments
(Figure 1h).

2.6 Propagation to 3D
The contour estimate obtained of the central slice thus obtained is taken as initial estimate
for the next 2D slice in the series. This process (steps 2.4–2.5) is then moved iteratively in
both forward and backward directions, using the calculated contour from each slice as initial
estimate for the next slice, until all the slices containing prostate are contoured.

2.7 User Interaction
The contour estimates are overlaid on original slices and presented to user for editing. The
user is given the ability to quickly snap the contour into exact location through an intuitive
interface. We provide intelligent and efficient user interaction in the following manner. If a
user corrects the contour in one slice, the correction is iteratively propagated to adjacent
slices to calculate new corrected contour estimates. In this way, correction in one slice may
in turn, correct many slices. Once the user is satisfied, he approves the contours.

2.8. Stack slices to form volume
In the final step after user approval, the contoured slices are stacked to form the prostate
volume.

3. RESULTS AND DISCUSSION
The algorithm was developed in VC++ and executed on Intel Pentium PC running at 1.4
GHz with 1024 MB RAM. Three 3D axial MRI prostate datasets (patient positions: two
prone and one supine) acquired using different endorectal coils (coil diameter = 13 mm for
two datasets, coil diameter = 26 mm for third) were used for algorithm evaluation. The scans
were performed on Philips Intera 3T MRI system; T2-weighted images acquired using Spin
Echo (SE) sequence with following parameters: SENSE protocol with acceleration factor of
1; TE/TR = 180 / 7155 ms for two datasets, TE/TR = 120 / 7155 ms for third; matrix 256 ×
256; field of view 140 × 140 mm; voxel size 0.55 × 0.55 mm; slice thickness 3 mm; 26
slices. It should be noted that not all 26 slices contain prostate, typically prostate showed up
in 13 slices. SENSE technique was used only as a means of obtaining intensity corrected
images. Algorithm's performance is compared against the manual segmentations of these
datasets by two experts agreeing on the ground truth contour. The results are presented as
the output of the algorithm without user correction.

Figure 2 shows the comparison of algorithm-based contouring (solid contour) with manual
segmentation (dashed contour) for one of the datasets. Here the algorithm took about 23
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seconds to run, of which 10 sec were spent on contrast improvement and then the
segmentation of each slice took about 1 sec. Figure 3 shows another dataset with overlaid
contours generated by algorithm (solid) and manual (dashed) segmentation.

Distance and area based metrics [16] were used to quantitatively assess the accuracy of the
algorithm-based segmentation. Distance based metrics measure the difference between two
contours, specified as a set of points, calculating Euclidean distances between corresponding
points. We used Mean Absolute Distance (MAD) which estimates disagreement averaged
over two contours. We used Dice Similarity Coefficient (DSC) as area-based metric, which
measures the amount of overlap between the two segmentations (manual and algorithmic).
The DSC is appropriate in comparison-of-agreement studies. The results are summarized in
box plots of Figure 4. To generate the box plots, the 39 slices over three patients (13×3)
were divided into three categories: mid (27), apex (6), and base (6). The average
disagreement (MAD) in midsection slices is 2.0 ± 0.6 mm, in apex slices is 3.8 ± 0.9 mm,
and in base slices is 3.9 ± 1.8 mm. The overall agreement of expert segmentation with
algorithmic is DSC value of 0.93 ± 0.03 in midsection, 0.80 ± 0.05 in apex and 0.86 ± 0.08
in base slices (DSC > 0.7 represents excellent agreement [17]). The results obtained indicate
that some user correction will be further required on algorithm's results mostly on apex/base
slices to get satisfactory outlines. On the whole, the new algorithm was able to outline the
prostate in clinical MRI with sufficient veracity, although there was significant variability of
imaging parameters, patient position across the datasets.

As we expected, the output of the algorithm and the manual ground truth differ in the apex
and base. The algorithm (that we specifically designed for the contouring the midsection)
performs less accurately in the apex and base, which is apparent from Figure 2, Figure 3 and
from the MAD/DSC values in Figure 4. This is consistent with common practice and
confirms our initial observation: towards the apex and base, prostatic tissues blend
seamlessly into surrounding tissues, causing deterioration and finally complete
disappearance of any discriminative grey level information. But again, lack of fidelity in
auto-contouring the apex and base is of a lesser concern, because the clinician must always
check and modify the contours, which is an unavoidably subjective task. Nonetheless, a
stronger shape model could undoubtedly propagate the contours from midgland to apex/base
somewhat better. This, in fact, is an issue under current investigation, with the aim of
finding a good balance for the strictness of the shape model.

Our algorithm implicitly imposes shape guidance at two steps: 1) Looking at statistically
probable radial distance from prostate center at corresponding angles 2) Correction of edge
orientation by template matching. The method of propagation of result of a 2D slice into
three dimensions by using calculated contour as initial estimate is able to capture large end-
to-end variability in prostate shape by capturing smaller slice-to-slice incremental
variability. However, there is a flip side of this step: it will also propagate the error to the
adjacent slices if the contour on the current slice is incorrect. Also, canny edge detection
may not be reliable in some circumstances, and could be replaced by more robust and scale-
independent feature extraction filters like Gabor filter bank [9] or dyadic wavelet transform.

4. CONCLUSIONS AND FUTURE WORK
We presented an algorithm for outlining the prostate in MRI volumes acquired with
potentially different endorectal coils and imaging parameters. The algorithm requires a
single mouse click input of prostate center from the user at initialization. The algorithm has
performed sufficiently fast for intra-operative use. Performance on clinical data indicates
that minimal user correction is required, mostly in the apex and also in the base, which has
been of no particular concern in actual practice. Importantly, the algorithm has been robust
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to variations of signal quality due to the use of different endorectal coils, field strengths,
imaging sequences, and patient poses.

Various exciting future directions emerge from here and are being evaluated. One possible
direction is use of 3D shape models, not compromising on time performance. A multi-
segment 3D prostate shape model consisting of base, midsection and apex as segments that
can vary independently, is under consideration to more effectively capture the shape
variability of prostate. Another possibility is incorporating edge-profile information inside
the 3D shape model, as in our case, we have variable edge profile in mid-section, base and
apex regions. This also opens up a new challenge of finding metrics for model-to-image
registration/segmentation.

We presently are processing a more extensive set of MRI studies with multiple expert
segmentations for ground truth. Upon completing this data preparation step, inter-observer
disagreements could be calculated and multiple observer studies will support more
conclusive statements about curacy claims in regions where no apparent ground truth exists.
In this regard, Warfield's definitive work on validation of image segmentation and expert
quality should be followed [18].

Another, highly relevant study is currently underway to quantify the actual effects of
miscontouring on the clinical targeting accuracy when contour-based data fusion is used.
The overall objective here is to derive upper limits for the targeting inaccuracy in the
presence of contour errors in the pre-operative and intra-operative datasets.
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Figure 1.
Algorithm steps for processing single slice: contrast enhancement; forming canny edge
image; narrowing contour search space using shape model; enforcing edge orientation
constraints; clearing overlaps to enforce continuity; filling missing information from shape
model; fitting closed spline to get final contour for the slice.

Vikal et al. Page 8

Proc SPIE. Author manuscript; available in PMC 2010 December 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Comparison by visual overlay of expert segmentation (dashed) with algorithmic outlining
(solid contour) on contrast enhanced slices. The images are consecutive transverse slices
ordered from apex (first slice) through midgland, to base (last slice).
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Figure 3.
Comparison by visual overlay of expert segmentation (dashed) with algorithmic outlining
(solid contour) on contrast enhanced slices. The images are consecutive transverse slices
ordered from apex (first slice) through midgland, to base (last slice).
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Figure 4.
Box plots of Mean Absolute Distance (left) and Dice Similarity Coefficient (right),
comparing each for midsection, apex, and base slices. The plots clearly indicate better
performance for mid-section slices.
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