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The inference of population dynamics from molecular sequence data is becoming an important new method for the surveillance
of infectious diseases. Here, we examine how heterogeneity in contact shapes the genealogies of parasitic agents. Using
extensive simulations, we find that contact heterogeneity can have a strong effect on how the structure of genealogies reflects
epidemiologically relevant quantities such as the proportion of a population that is infected. Comparing the simulations to BEAST
reconstructions, we also find that contact heterogeneity can increase the number of sequence isolates required to estimate these
quantities over the course of an epidemic. Our results suggest that data about contact-network structure will be required in addition
to sequence data for accurate estimation of a parasitic agent’s genealogy. We conclude that network models will be important for

progress in this area.

1. Introduction

Epidemiology is a data-driven field, and it is currently being
infused at an increasing rate with molecular sequence data.
This new and growing data source has led to a call for multi-
level models of the relationship between sequence data and
infectious disease dynamics [1, 2], dubbed phylodynamic
models.

By allowing for additional data to be used and integrated,
phylodynamic modeling may lead to improvements in the
accuracy and quality of the surveillance of infectious diseases.
For example, the number of norovirus outbreaks reported
increased in 2002. It was not clear, however, whether the
higher reported numbers were a sign of more outbreaks
or more frequent reporting of outbreaks. Case-reporting
bias does not affect molecular data, however. So coalescent
analysis of molecular data [3] provided a valuable and largely
independent line of evidence that the increase in outbreaks
was real. Of course, coalescent analysis will have its own

biases, and here we examine those that result from host
heterogeneity in contact.

To model heterogeneity in contact, we represent indi-
viduals in a population as nodes, and we represent the
potential for two hosts to infect each other as an edge that
links two nodes. Researchers call the resulting networks
contact networks. Contact-network structure necessarily
affects the genealogy of any replicating infectious agent
that is spreading through a host population. In this paper,
we use the term parasite to refer to all such infectious
agents, including bacteria and viruses. The genealogy of
these parasites must fit inside the tree of infections that
forms as the parasite spreads from host to host, and
this tree of infections must fit inside the host popula-
tion’s contact network. While more elaborate elements of
contact-network structure may be important, we here focus
simply on variation in the number of edges coming out
of nodes, which corresponds to heterogeneity in contact
rates.



Contact heterogeneity has often not been discussed as a
possible bias in coalescent analyses (e.g., [4—6]). Researchers
performing coalescent analyses have considered contact
heterogeneity in a variety of other ways. Hughes et al. [7]
linked it to the phylogenetic clustering of sequence isolates.
Biek et al. [8] mentioned that it may have contributed to
changes in an estimation of Ry (the expected number of new
cases that a single case produces in a susceptible population).
Nakano et al. [9] discussed how iatrogenic transmission
may have been an important type of transmission in the
spread of hepatitis C. Bennett et al. [10] pointed out that
population-size estimates from coalescent analyses are more
accurately interpreted as ratios of population size to repro-
ductive variance. But researchers have rarely quantitatively
considered how contact heterogeneity might be directly
influencing the results of their coalescent analyses. Volz et al.
[11] did account for contact heterogeneity in their coalescent
model with a saturation parameter, but this application does
not provide a general illustration of how contact-network
structure can affect genealogies.

Our primary goal here is to assess how contact hetero-
geneity affects the relationship between coalescent recon-
structions and the reality of parasite population dynamics.
First, we build contact networks with different levels of het-
erogeneity. Then, we simulate the spread of parasites through
the networks, generating epidemic dynamics and a genealogy
of the parasite with each simulation. Then, we use the
BEAST software package [12] to produce Bayesian skyride
[13] reconstructions of parasite population dynamics based
on the simulated genealogies. We also use the framework
of Volz et al. [11] to predict the skyride reconstructions
based on the simulated epidemic dynamics. We explain
how the contact-network structure affects the epidemic
dynamics that, in turn, affect the predicted reconstructions.
The close agreement between the predicted skyrides and
the skyride reconstructions validates this explanation. We
also examine how much of the simulated genealogy the
skyride reconstruction requires as input in order to produce
a reconstruction that agrees with the theoretical predic-
tion.

2. Materials and Methods

We simulated infectious disease progression on networks.
The nodes of the networks represented hosts and had states
of being susceptible, infectious, or recovered. The edges of
the network determined the set of possible transmission
events; infectious hosts transmitted infection across edges
shared with susceptible hosts until the infectious hosts
recovered. The number of nodes in the network was kept
at 10,000, and the mean degree (degree is the number of
edges coming out of a node) was kept at 4. The networks
were built to be either regular, meaning that all nodes have
the same degree, or with degree distributions sampled from
Poisson, exponential, or Pareto distributions. The minimum
degree in the Pareto networks was 1. The regular networks
served as models with zero heterogeneity, Poisson networks
as models with heterogeneity similar to a Poisson process,
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exponential networks as models with heterogeneity similar
to a variety of social networks [14], and Pareto networks
(scale-free networks) as models with the extreme levels of
heterogeneity that might be found in sexual contact networks
[15]. We used the Erdos-Rényi algorithm [16] to generate
Poisson networks and an edge-shuffling algorithm [17] to
generate the regular, exponential, and Pareto networks.

We simulated epidemics and genealogies in continuous
time using a method based on the Stochastic Simulation
Algorithm [18, 19]. Epidemics began with one node infec-
tious and the rest of the nodes being susceptible. Infectious
nodes recovered at a set rate and transmitted infection to
susceptible neighbors (nodes sharing an edge) at a set rate.
We drew the time to the next event from an exponential
distribution with a rate equal to the sum of the rates of all
possible events. We then selected an event with probability
proportional to its rate, updated the state of the network
accordingly, and drew the time until the next event. This
process was iterated until either the time evolution of the
epidemic reached a set time point or no more events were
possible.

Simulation source code is available from the authors
upon request. The code made use of the GNU scientific
library [20, version 1.13+dsfg-1] to generate random num-
bers and the igraph library [21, version 0.5.3-6] to construct
networks.

The output of a simulation included a time series of
prevalence, that is, the count of infected nodes (given
a fixed population of 10,000 nodes), and incidence, that
is, the sum of the rates of all possible transmissions.
Simulations also generated infection trees in which each
transmission was a bifurcating node, each recovery was a
terminal node, and branch lengths were equal to the time
between events. We sampled from the full infection trees
to generate the trees for input in the skyride coalescent
analyses. We sampled by selecting a set of nodes uniformly
at random from the full infection tree to become tip
branches of an infection subtree. To generate the subtree,
we cut the branches of the full infection tree at the
subset of randomly selected nodes that had no descendants
in the set of randomly selected nodes, and we pruned
off any paths that did not terminate in this subset of
nodes.

Using the sampled infection trees as genealogies, we
obtained a posterior distribution for the skyride population
sizes with the time-aware method of Minin et al. [13],
implemented in BEAST [12, version 1.5.4]. The MCMC
chain lengths were 100,000 states, and every 10th state was
written to a log file. We discarded the first 10,000 states as
burn in. In all cases, effective sample sizes were well above
200. Thus, convergence had occurred. Examples of BEAST
XML input files are available from the authors upon request.

Using the posterior skyride population-size distribu-
tions, we obtained the skyride trajectories with Tracer [22,
version 1.5]. Using the framework of Volz et al. [11], we
calculated a predicted skyride as described next in the
Results.

To plot time series from different stochastic simulations
on a common time scale, we used the time at which growth
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became nearly deterministic in each simulation as time zero
for that simulation.

3. Results

3.1. Theory. Coalescent theory is an area of population
genetics that models the structure of genealogies backward in
time from a set of lineages sampled from a large population.
A simple coalescent process turns out to be a good model for
the genealogies of a wide range of scenarios in population
genetics [23]. In the coalescent process, each pair of lineages
in the sample coalesces into a common ancestral lineage at a
constant rate. When time is measured in units of generations,
this rate is the reciprocal of the effective population size.
So the rate at which any of the pairs coalesces is equal
to the number of pairs of lineages divided by the effective
population size.

The skyride uses this simple relationship between effec-
tive population size and the expected time before coalescence
to estimate population size from the length of intracoalescent
intervals in a genealogy. The median of a skyride recon-
struction yrc at time t within an intracoalescent interval is

approximately
Ner= | 1)
rec = INeT = u,
% 2

where N, is the effective population size, 7 is the generation
time, (Z) is the average number of pairs of lineages in the
sample within the intracoalescent interval, and u is the length
of the intracoalescent interval.

Predicting a skyride from the dynamics of an epidemic
model is simply a matter of calculating the rate at which a
pair of lineages will coalesce, that is, the rate at which two
chains of infection merge into a single chain. Volz et al. [11]
have described how coalescence rates follow from prevalence
and incidence. Prevalence, given a fixed population size,
refers to the count of cases of infection, and so we denote
it by I. Incidence refers to the rate at which new cases are
occurring, and so we denote it by r;. The rate of coalescence
of a single pair of cases is

T’iP, (2)

where P is the probability that we can trace a particular pair
of cases back to a single case before the last transmission

event. We have
P = /
=1 5 3
( )

making the approximation that the last transmission event
was equally likely to have taken place between any pair of
current cases. Therefore, the predicted skyride ypreq satisfies

1 1
Ypred = ﬁ = 2 /ri- (4)

The similarity of (4) and (1) reflects the similarity of
the coalescent process to the transmission process in a
continuous-time epidemic model. N, and 7, however, are
often considered as parameters of a discrete-time population
model that has nonoverlapping generations. The coalescent
process describes the genealogy in such a model when we
sample a small fraction of the lineages in a population. So
how do we interpret N, and 7 in the terms of a continuous-
time epidemic model that has overlapping generations?
Following Frost and Volz [24] and the general theory of
Wakeley and Sargsyan [25], we say that generation time 7
is equal to the expected time before an infected individual
transmits infection:

1
T= ?1 (5)
Then from (1) and (4) and yrec = Ypred> we have
I-1 1
= ~ =, 6
N, ) ) (6)

3.2. Simulation. To determine the effect of sampling on the
ability of the skyride to reconstruct prevalence history, we
simulated genealogies and pruned off a variable number of
branches from the genealogies. We found that small amounts
of pruning rapidly reduced the number of coalescent events
in the sampled genealogy that occurred in the peak and
late phases of the epidemic, thereby restricting accurate
reconstruction to the early phase of the epidemic (Figure 1).

To demonstrate the effect of network structure on
the reconstruction of prevalence history, epidemics were
simulated on networks with varying heterogeneity. Keeping
the extent of sampling equal and increasing heterogeneity
compressed the coalescent events in the sampled genealogy
into the beginning of the epidemic. Figure2 shows a
representative example of this general trend that holds across
intermediate levels of sampling. Consequently, increasing
heterogeneity has a similar effect to reducing the proportion
of nodes sampled: the time at which the prediction of the
skyride based on prevalence and incidence diverges from the
estimated skyride based on the genealogy occurs earlier.

Figure 3 shows how differences in the scaling of preva-
lence of the skyride follows from differences in trajectories
of prevalence and incidence. The ratio of prevalence to inci-
dence is the expected time until an infected host transmits
infection, and we here define it as the generation time (5). In
Figure 3, we see that generation times are at, or quickly reach,
a minimum after an epidemic begins and then gradually
increase until the epidemic ends. In the regular networks, the
decline in the number of susceptible hosts over the course
of the epidemic causes this increase to happen. In the other
networks, which have hosts of varying degree, infection first
moves to the high-degree hosts and then to progressively
lower- and lower-degree hosts [26-28]. Because the degree
of a host determines how much his/her infection increases
incidence, this movement of infection from high- to low-
degree hosts translates into generation times being at first
shorter and then longer in heterogeneous networks relative
to regular networks (Figure 3).
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FIGURE 1: Low levels of proportional sampling may prevent accurate reconstruction of prevalence during and after the epidemic peak. We
consider reconstruction to be accurate when the skyride and the predicted skyride match. The light-blue ribbons are the middle 95% of
the posterior density of the skyride reconstruction. The small bars on the x-axis represent the times of coalescent events in the sampled
genealogy. Labels above the Panels indicate the number of tips in the sampled genealogy. Parameters: contact-network size = 10,000, Poisson
degree distribution with mean = 4, transmission rate = 2, recovery rate = 1, proportion of nodes sampled = {0.1, 0.01, 0.001} ((a), (b), and

(©)).

4. Discussion

The effects of contact heterogeneity can be important in
relating the structure of genealogies to infectious disease
dynamics (Figure 3). The strength of the effect will vary
from system to system, and for some systems other aspects
of contact-network structure such as the frequency of short
paths [29] and the dynamics of edge formation [30-33] may
also be important. More generally, models may also require
more detailed models of the course of infection within hosts
(including incubation periods, e.g.), the effects of natural
selection [34, 35], and other additions before they can make
precise predictions in real-world systems.

But are the data requirements of these more complex
models feasible? To begin answering this question, we next
discuss the implications of obtaining the equivalent of our
simulated data from a real-world system.

We knew the true infection tree in our simulations.
In typical coalescent analyses of an infectious disease (e.g.,
[13, 36]), we do not know the true genealogy and so we must
infer it along with the dynamics of the effective population
size. Although there is a large set of methods for the inference
of trees from sequences [37-39], the variety of methods
available reflects the difficulty of the task. Additionally, as

is well known by practitioners of phylogenetics, substitution
rates set fundamental limits on the amount of phylogenetic
information that sequences may contain. Sequences with
common ancestors that are very recent may not have any
polymorphic sites that could suggest the structure of the
branching of the tree connecting them. Sequences with
common ancestors that are too distant similarly contain little
information about the true genealogy [40].

It may be possible to work around the second problem
by collecting sequences over time such that there are no
branching points in the tree that are too far from every
pair of tips. For the first problem, there is simply no
information that the sequences alone can provide, and
additional knowledge of events in the chain of infection
is necessary to determine the infection tree. The panels
labeled “Time to coalescence” in Figure 3 show that this
additional information is most likely to be needed early in the
epidemic and when there is a large amount of variance in the
contact network. It is then perhaps fortunate that contact-
tracing methods are practiced by many health departments
for sexually transmitted diseases (STDs) [41, 42], which
are thought to have higher contact heterogeneity than
airborne diseases [15]. However, we probably need more
widespread practice of contact tracing for large genealogies
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Ficure 2: Contact heterogeneity determines the amount of time over which the skyride estimated from the genealogy is informative of
the skyride predicted by prevalence and incidence. Contact heterogeneity also affects the relationship between the skyride and prevalence
trajectories. The light-blue ribbons are the middle 95% of the posterior density of the skyride reconstruction. The small bars on the x-axis
represent the times of coalescent events in the sampled genealogy. Labels above the Panels indicate the approximate degree distribution of
the contact networks. The variance of the degree distributions increases from (a) to (d). Parameters: contact-network size = 10,000, degree
distribution mean = 4, transmission rate = 2, recovery rate = 1, proportion of nodes sampled = 0.01.

to be assembled. A recent survey of physicians in the United
States [43] found that less than one-third of physicians
routinely screen patients for STDs and many physicians
relied on patients to notify health departments and partners,
and similar surveys in other countries [42, 44, 45] likewise
indicate that contact tracing is not a routine in general
medical care of STDs.

There also may be a need for contact tracing to establish
the genealogy for airborne infections because many airborne
transmissions may occur in a single day during which a
single strain may be dominant in a host, as the super-
spreading events in the 2003 SARS-coronavirus outbreak
demonstrated [46]. Contact tracing is also practiced for
airborne diseases. It has been used to help contain the SARS-
coronavirus outbreak [47], smallpox [48], and tuberculosis
[49]. Given that contacts for airborne diseases can be quite
transient, it seems that, even with the addition of contact-
tracing data, we may generally know less about parasite
genealogies for airborne diseases compared to STDs. On the
upside, our results suggest that the ability to reconstruct early
parts of the epidemic is robust to much pruning of the full
genealogy (Figure 1). However, this robustness may depend
on our sampling scheme. Using discrete-time simulations,

Stack et al. [50] found that the difference between recon-
structed prevalence and simulated prevalence depended
largely on how the samples were distributed over the course
of the epidemic. Also, it is unclear how any of our sampling
levels might compare to realistic amounts of contact tracing
and molecular data for a specific infectious disease.

In addition to being necessary to fill gaps in molecular
data, contact tracing may be necessary because genealogies
do not always match infection trees. Such discordance is
likely to occur when there is relatively little time between
transmissions. When there is little time for a mutant to
become fixed between transmissions, the order in which
alleles at loci of a sequence appear in transmitting inocula
(or sequence isolates) need not match the order in which
the alleles appeared in the within-host population. Measures
of within-host viral load and sequence diversity may be
informative of the chance of such discordance. If populations
tend to be large and diverse, then sequence data may be
useless for reconstructing the recent details of chains of
infection but still useful in reconstructing deeper branches in
the tree. Sequence data from diverse within-host populations
could also be useful in parameter estimation for coalescent
models (e.g., [51]) that include the within-host dynamics
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of the parasite. Two properties that parasites may have that
would help increase the chance that infection trees and
genealogies match are a low level of diversity in transmitting
inocula (i.e., a strong bottleneck effect at transmission) and
reduction of diversity in an incubation period that precedes
all transmission.

In our simulations, we also knew the variance of the
degree distribution. We do have some data about the
structure of contact networks for some systems. We have
survey data about human sexual-contact networks (e.g.,
[52, 53]) and survey data about networks of close, but not
sexual, human contacts [54—56]. Researchers have used field
data to construct hypothetical contact networks for wildlife
and vector-borne diseases (e.g., [57, 58]), and researchers
have also used census data to construct hypothetical contact
networks for human diseases (e.g., [59, 60]). It seems
likely, however, that in the analysis of real sequence data
the heterogeneity of the contact network will be at least
as uncertain as disease incidence and prevalence. Thus,
estimation of contact heterogeneity may be an important
goal of the analysis. We note that previous work (e.g., [61])
has also discussed the potential use of sequence data to
estimate contact heterogeneity.

5. Conclusions

Contact heterogeneity is well known to have a strong
effect on infectious disease dynamics. We have shown how
the relationship between infectious disease dynamics and
genealogies is similarly sensitive to the contact heterogeneity
specified by a network. We have argued that direct knowledge
of the tree of infections is likely needed in addition to
sequence data for the accurate inference of prevalence
from sequence data. Thus, it seems that understanding the
structure of the contact networks for various diseases will be
important for progress in phylodynamics.
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