
MULTI-AUTHOR REVIEW

Functions of disordered regions in mammalian early base excision
repair proteins

Muralidhar L. Hegde • Tapas K. Hazra •

Sankar Mitra

Received: 28 July 2010 / Accepted: 28 July 2010 / Published online: 17 August 2010

� Springer Basel AG 2010

Abstract Reactive oxygen species, generated endoge-

nously and induced as a toxic response, produce several

dozen oxidized or modified bases and/or single-strand

breaks in mammalian and other genomes. These lesions are

predominantly repaired via the conserved base excision

repair (BER) pathway. BER is initiated with excision of

oxidized or modified bases by DNA glycosylases leading to

formation of abasic (AP) site or strand break at the lesion

site. Structural analysis by experimental and modeling

approaches shows the presence of a disordered segment

commonly localized at the N- or C-terminus as a charac-

teristic signature of mammalian DNA glycosylases which

is absent in their bacterial prototypes. Recent studies on

unstructured regions in DNA metabolizing proteins have

indicated their essential role in interaction with other pro-

teins and target DNA recognition. In this review, we have

discussed the unique presence of disordered segments in

human DNA glycosylases, and AP endonuclease involved

in the processing of glycosylase products, and their critical

role in regulating repair functions. These disordered seg-

ments also include sites for posttranslational modifications

and nuclear localization signal. The teleological basis for

their structural flexibility is discussed.

Keywords Base excision repair � DNA glycosylases �
End processing proteins � Disordered terminal segments �
Single strand breaks � Reactive oxygen species �
Repair complex � Protein–protein and protein–DNA

interactions

Abbreviations

BER Base excision repair

SSBR Single-strand break repair

AP Abasic

APE AP endonuclease

ROS Reactive oxygen species

RNS Reactive nitrogen species

SSB Single-strand break

PONDR Prediction of naturally disordered regions in

proteins

Introduction

Damage to mammalian genomes, induced by a variety of

reactive oxygen species (ROS) and reactive nitrogen species

(RNS), that are generated either endogenously or by radia-

tion and in response to other genotoxic and inflammatory

agents, include a plethora of oxidatively damaged bases,

abasic (AP) sites and DNA single-strand breaks (SSBs) that

are often mutagenic and have etiological linkage to sporadic

cancers and a variety of other pathophysiologies as well as

aging [1, 2]. It is generally estimated that more than 104 base

lesions and SSBs are induced daily in a mammalian cell

genome [3]. These base lesions and SSBs are typically

repaired via the evolutionarily conserved DNA base excision

repair (BER) pathway. BER is initiated with excision of an

oxidized, alkylated or aberrant base by a lesion-specific
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DNA glycosylase, generating an AP site. In the case of

oxidized bases, the AP sites are further cleaved by the

intrinsic AP lyase activity of DNA glycosylases, while in

other cases, the AP sites are cleaved by an AP endonuclease

(APE). The resulting DNA strand breaks have blocking

groups either at the 30 or 50 end which need to be removed in

order to generate a single-stranded gap that could then be

filled in by a DNA polymerase followed by the sealing of the

nick by a DNA ligase [4]. The SSBs with blocked ends

are also generated directly by ROS that could include

30-phosphate (30-P), 30-deoxyribosephosphate (30-dRP) or

50-deoxyriobosephosphate (50-dRP) and oxidized sugar

fragments such as 30-phosphoglycolate [5, 6]. While 50-dRP

is processed by the dRP lyase activity of DNA polymerase b
(Polb) in mammalian cells, 30-P and 30-dRP are removed by

polynucleotide kinase (PNK) and APE1, respectively [7].

Thus, the early step in repair of modified/oxidized bases and

SSBs involves DNA glycosylases and nick-end processing

enzymes.

Recent studies have suggested that BER is highly

complex, involving a network of integrated pathways

which are likely to be genome sequence-specific as well as

cell cycle-specific [8, 9]. Several studies by us and others

have shown that the early BER proteins form a complex to

initiate repair and binarily interact with most if not all of

the downstream proteins presumably for efficient co-ordi-

nation and sequential handover [7, 10–13].

The major challenge for the early BER proteins in

mammalian cells is lesion recognition via efficient scan-

ning of the gigabase size genome. Furthermore, a unique

issue in BER, in contrast to nucleotide or mismatch exci-

sion repair pathways, is that the substrate lesion does not

significantly distort the DNA helix and could retain near

normal base pairing. These lesions do not block tran-

scription or replication and are invariably bypassed. Thus,

lesion recognition, particularly in highly condensed chro-

matin, poses a serious challenge which has not been

extensively addressed. Interestingly, most early BER pro-

teins have a stretch of disordered peptide segment

invariably at one of the termini or which could serve

sometimes as a linker bridging two domains, suggesting

that such a common structural feature could be important

for their functions. The focus of this review is to address

the complexity of early BER activity in mammals and

explore the common and unique structural features among

these proteins that enable them to perform such an exigent

function proficiently.

Basic BER mechanism

BER, first elucidated in E. coli and subsequently found to

be universally conserved, is initiated with the recognition

and excision of altered base lesions by about a dozen of

distinct DNA glycosylases, each of which acts on a limited

number of damaged bases [14, 15]. Uracil DNA glycosy-

lase (Udg) was the first DNA glycosylase to be discovered

in E. coli, which removes the U from DNA. U is generated

due to deamination of cytosine and is mutagenic [14].

Subsequently, similar enzyme activities were discovered

in mammalian cells and nuclear (UNG2)-specific and

mitochondria (UNG1)-specific UDG variants were char-

acterized [16]. Thymine-(T�G)–DNA glycosylase (TDG) is

another mammalian DNA glycosylase that excises T and U

paired with G [17]. DNA glycosylases specific for repair of

alkylated bases have been characterized. The methylated

bases generated by chemical reactions with endogenous

5-adenosylmethionine and exogenous alkylating agents,

including many chemotherapeutic drugs and N-methylni-

trosamine, are repaired either by direct reversal without

DNA repair synthesis or via the BER pathway [18]. Ada in

E. coli was the first repair protein discovered that carries

out direct reversal of O6-alkylguanine [18, 19]. Its mam-

malian ortholog O6-methylguanine methyltransferase

(MGMT) was subsequently cloned [20]. AlkB (E. coli) and

its mammalian ortholog ABH are the other direct reversal

enzymes for several alkylbase adducts [21]. N-methylpu-

rine-DNA glycosylase (MPG, also named MAG) and its

E. coli ortholog AlkA repair N-alkylpurines via the con-

ventional BER pathway [22]. While DNA glycosylases in

general recognize only abnormal bases in DNA, MutY, a

mismatch-specific glycosylase discovered in E. coli and its

mammalian homolog MYH excise normal base A from

A�G and A�8-oxoG mispairs [23, 24]. The glycosylases for

the repair of U, alkyl base adducts or base mispairs are

monofunctional as they excise the base lesion, leaving an

AP site without generating a strand break.

Oxidized base-specific DNA glycosylases in mamma-

lian cells have been categorized in two families based on

their tertiary structure and AP lyase reaction and named

after their bacterial prototypes, Nth (endonuclease III) and

Nei (endonuclease VIII) [25, 26]. OGG1 and NTH1

belonging to Nth family were the first to be discovered.

Subsequently, we and others discovered NEIL1 and NEIL2

which belong to Nei family that also includes bacterial Fpg

(formamidopyrimidine–DNA glycosylase) [1, 26–30].

NEIL3 was recently added to the list of oxidized base-

specific glycosylases [31]; however, its biological activity

is not well characterized. The Nth family glycosylases

perform b-elimination at the AP site generating a

30-phospho-ab-unsaturated aldehyde, a dehydration prod-

uct of deoxyribosephospate (30-PUA also named as 30-dRP)

at the strand break. The members of Nei family catalyze

bd-elimination at the AP site to produce 30-P [7, 32]. Thus,

contrary to the APE-cleaved product of an AP site which

contains 50-dRP, and is removed by dRP lyase activity of
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Polb, the oxidized base-specific DNA glycosylase-medi-

ated strand breaks (BER intermediate) generate 30 blocking

groups, which need to be cleaned by specific end-pro-

cessing enzymes in the subsequent BER step.

Processing of blocked termini: common step

in the repair of altered bases and SSBs

Single-strand interruption processing, the second step in

the repair of oxidized bases and AP sites, is also required

for repairing direct ROS-induced SSBs which invariably

contain an unligatable blocking group, either 30 or 50 or

both ends at the strand break [33]. Gap filling by a DNA

polymerase and nick sealing by a ligase require 30-OH and

50-P at the break site. End processing is thus an obligatory

step involving multiple essential enzymes, specific for the

50 or 30 blocking groups as well as their type.

50 end processing at a strand break

APE cleavage of the AP site generates 30-OH and 50-dRP

termini. DNA polymerase b in mammalian cells removes

the unmodified 50-dRP moiety via its lyase activity [34,

35]. However, Polb cannot process 50 blocking groups

generated by the cleavage of oxidized AP site by APE, and

such dirty ends are processed via the long-patch BER

pathway which involves removal of displaced 2–8 nts

along with the 50 blocking group by FEN-1, as discussed

later. A unique type of 50 blocking groups are formed

as intermediates during abortive DNA ligation, such as

adenylate groups covalently linked to the 50 P terminus at

strand break, and such groups are processed by a protein

named aprataxin [36, 37]. Aprataxin releases the adenylate

moiety to form ligatable 50-P.

30 end processing at a strand break

The Nth family glycosylases with intrinsic b lyase activity

generate 30-dRP (30-PUA) and 50-P at the strand break as

already mentioned. The 30dRP is removed by the intrinsic

phosphodiesterase activity of mammalian APE1 to generate

the 30-OH terminus. On the other hand, the bd lyase activity of

Nei family DNA glycosylases would generate the 30-P. We

had shown that 30-P is a poor substrate of APE1 but is effi-

ciently removed by PNK in mammalian cells [7]. In addition,

the 30 blocks at the ROS-induced SSBs, mainly 30-phospho-

glycolate and 30-phosphoglycoladehyde, are processed

by APE1 [38–40]. Tyrosylphosphodiesterase 1 (TDP1) is

another 30 end processing enzyme discovered in yeast and

human cells, which removes the product of abortive topoiso-

merase 1 (Top1) reaction, namely Top1(Tyr)-linked 30 termini

to form 30-P, a substrate for PNK [41–44].

While there are multiple APEs in prokaryotes and lower

eukaryotes, APE1 is the predominant contributor of APE

activity in mammalian cells. Its prototype in E. coli is

exonuclease III (Xth). As AP sites and strand breaks are

continuously generated in the genome, it is not surprising

that multiple enzymatic processes involving APEs are

evolved. We have recently reviewed the functions of

multiple APEs in BER in Hegde et al. [1].

Furthermore, TREX1 and TREX2 DNA 30 exonucleases

are ubiquitous in mammalian tissues, whose primary

function may be editing during replication by Polb or Pola
lacking constitutive 30 exonuclease activity [45]. In addi-

tion, TREX1 has also been proposed to play a role in

SSBR, and its deficiency has been linked to a severe brain

disease [46].

XRCC1 and PARP are two other key proteins which

play a role in early BER activity. While XRCC1 acts as a

scaffold for recruiting BER proteins for excision or strand

break repair, PARP acts a SSB sensor protein. We showed

that XRCC1 physically interacts with NEILs suggesting its

role in oxidized base repair [7, 47]. XRCC1 also interacts

with end processing enzymes PNK and APE1, and other

BER proteins, Polb and LigIIIa [48]. Moreover, processing

of 50-OH and 30-P termini at SSBs is reduced in XRCC1-

deficient cells suggesting its role in end processing [49].

PARP present in mammalian cells and absent in E. coli is

activated by SSBs and transfers ADP-ribose moiety from

NAD to a variety of proteins including itself. PARP-1 and

PARP-2, the two proteins of the PARP superfamily, have

been shown to be important players in the repair of SSBs

both as sensors and for recruiting other repair proteins to

the strand break [50]. Thus, XRCC1 and PARP play an

indirect but vital role in both base excision and end

cleaning repair steps.

The early BER reactions for repair of modified bases

and SSBs are schematically represented in Fig. 1.

Complexities in BER and SSBR: multiple repair

subpathways

Until recently, BER was believed to be the simplest among

the DNA repair pathways involving four or five reaction

steps. However, recent studies reveal that BER is much

more complex, involving a network of distinct cell cycle-

dependent as well as genome region-specific repair sub-

pathways and could also involve non-BER proteins.

Short-patch versus long-patch repair pathways

In the simple mammalian BER model, excision of the

lesion leaves a 1-nt gap at the damage site, which is sub-

sequently filled by Polb and the resulting nick sealed by
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DNA ligase IIIa (LigIIIa) to complete single-nucleotide

repair (SN-BER), also called short-patch repair (SP-BER)

[51].

In contrast to this simple model, recent discoveries

document several BER subpathways involving at least a

dozen more proteins. The second mode of BER, charac-

terized by Matsumuto, Dogliotti and coworkers [34, 52,

53], involves a repair patch size of 2–8 nucleotides at the

lesion site and was named long-patch repair (LP-BER). LP-

BER was first observed during repair of an AP site analog

lacking the aldehyde group. An upstream segment con-

taining 2–8 nts including the 50-blocking group is displaced

as a single-strand flap during repair synthesis which is

subsequently cleaved by flap endonuclease 1 (FEN-1).

FEN-1’s normal function is to remove the 50 RNA primers

of Okazaki fragments during discontinuous replication of

the lagging strand [54–56]. LP-BER is believed to utilize

DNA replication proteins including DNA polymerase d
(Pold), the sliding clamp PCNA, clamp loader replication

factor-C (RF-C) and DNA ligase I (LigI) in addition to

FEN-1 [57, 58]. However, Polb has also been shown to

participate in LP-BER via strand displacement, in collab-

oration with FEN-1 [59]. The choice of SN-BER versus

LP-BER is a complex issue that is yet to be completely

understood. Initial studies suggested that the nature of the

50-phosphoribose terminus (normal vs oxidized) would be

the deciding factor [60, 61]. However involvement of DNA

replication proteins with LP-BER strongly suggests that

LP-BER could be preferred in BER during DNA replica-

tion, irrespective of the 50 terminal group.

DNA replication/transcription-specific BER

subpathways

The mammalian genome at the replication fork or tran-

scription bubble is relatively unfolded or nonchromatinized

rendering it more prone to oxidative damage than non-

replicating chromatin. Replication of unrepaired oxidized

base lesions which do not block replication could be

mutagenic. Thus, there is an urgency to repair these lesions

prior to replication (pre-replicative repair) in order to

maintain genome integrity. Furthermore, incorporation of

abnormal or oxidized bases (e.g., uracil or 8-oxoG) from

the nucleotide pool into nascent DNA could be mutagenic

as well, which also warrants urgent repair. Such repair was

earlier described as post-replicative repair [62].

Recent studies by us and others have suggested that

there are distinct BER subpathways for transcriptionally

active versus inactive genomes as well as for quiescent

versus replicating genome. Our initial studies with human

Fig. 1 Schematic representation of base excision (a) and single-

strand break (b) repair steps in mammalian cells. Monofunctional

DNA glycosylases (UDG, MPG) excise alkylated and modified bases

from DNA to generate AP sites that are then cleaved by APE1. The 50

blocking group at the break site is removed by Polb to generate a

single-nucleotide gap that is filled in by Polb (and sealed by DNA

ligase IIIa). Oxidized bases are excised by OGG1/NTH1 and NEILs

which also cleave the DNA strand to generate 30 blocking groups.

DNA is directly cleaved by ROS/radiation and topoisomerases to

generate 30 or 50 blocking groups (30D* and 50D*) which are removed

by several end cleaning enzymes. Other details are described in the

text
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NEIL1 and NEIL2 showed that both NEILs are active on

bubble and fork-structured DNA substrates that mimic

DNA replication or transcription intermediates [8]. At the

same time, only NEIL1 is upregulated during the S-phase,

based on which we had proposed that NEIL1 is preferen-

tially involved in replication-associated repair (RA-BER)

and NEIL2 in transcription-coupled BER (TC-BER) [8, 27,

28, 63]. Subsequently, our recent studies have shown

NEIL1’s preferential association with DNA replication

proteins including PCNA [11], Replication protein A

(RPA; [13]), FEN-1 [10], and Werner’s helicase (WRN;

[12]) that strongly support this hypothesis. Similarly, sev-

eral other DNA glycosylases such as MYH and UNG

(which are described later in this article) interact with

replication proteins PCNA and RPA [64, 65]. Like NEIL1,

UNG and MYH expression increases during the S-phase,

and the UNG-PCNA-RPA complex co-localizes with rep-

lication foci suggesting preferential repair of nascent DNA

[62, 66]. In contrast, our studies with NEIL2 which has cell

cycle-independent expression suggested its association

with transcription-associated BER. Although more studies

are required to further characterize the genome region and

cell-state-specific BER pathways, it is clear that additional

complexities are associated with these distinct BER sub-

pathways. For example, we have shown stable interaction

between NEIL1 and 9-1-1 complex, a stress-activated

sliding clamp implying a linkage between NEIL1-initiated

BER and damage signaling pathways [67].

Involvement of non-BER proteins in the repair

of base lesions/SSBs

While several non-BER proteins have been shown to be

involved in BER, adding another dimension to the BER

complexity, their precise in vivo role in repair has yet to be

unraveled. We showed that NEIL2 interacts with YB-1, a

Y-box binding protein, and it was suggested that YB-1 may

be required for the fine-tuning of repair [68]. NTH1 was

also shown to interact with and is stimulated by YB-1 [69].

The list of non-BER proteins interacting with BER proteins

is still growing, which underscores the paradigm that the in

vivo repair process is far more complex than in vitro repair

demonstrated with minimal components.

Recent discoveries in BER

DNA glycosylases as hub proteins: binary interaction

of DNA glycosylases with downstream proteins

Our initial characterization of NEIL1 and NEIL2 showed

their similarity in in vitro repair of 5-OHU via SN-BER in

a reconstituted system containing PNK, Polb, LigIIIa and

XRCC1. XRCC1 acts as a scaffold for recruiting BER

proteins for excision or strand break repair. Both the NEIL

immunoprecipitates from human cells contain these BER

proteins [7, 47]. Furthermore, NEILs binarily interact in the

absence of DNA with Polb, LigIIIa and XRCC1, although

not PNK. Direct interaction of NEILs with LigIIIa, the last

enzyme in SN-BER, indicated that the repair is controlled

or regulated by the initiating DNA glycosylase which acts

as a hub protein. Similarly, as already discussed, NEIL1

binarily interacts with PCNA, RPA, FEN-1, and WRN in

the absence of DNA, presumably for preferential BER

during DNA replication. The stoichiometry of proteins in

the repair complex and whether NEILs are present in dis-

tinct complexes or in a single complex are currently being

investigated in our laboratories.

Repair complex versus sequential repair hand-off

The initial BER mechanism was proposed, based on co-

crystal structure analysis of substrate-bound BER proteins,

to involve ‘hand-off’ or ‘passing the baton’ process,

wherein the repair product of each enzyme in the BER

pathway is handed over to the next enzyme, primarily

based on differential bending of DNA in each intermediate

step [70, 71]. However, characterization of the BER in-

teractome involving multiprotein interactions including

stable complex of DNA glycosylase with DNA ligase, and

the presence of multiprotein complexes has led to a new

paradigm where complete repair occurs in the BER com-

plex (BERosome). Although in vivo role of hand-off versus

interactome modes of repair is not yet clear, we propose

that preformed BER complexes predominantly repair

endogenous base lesions, while repair via hand-off mech-

anism by sequential recruitment could occur with induced

DNA damage. Further characterization of the dynamics of

BERosomes is required to unravel the repair processes.

Common interaction interface of early BER proteins

For several years, our laboratory has focused on charac-

terizing collaborations and mapping interactions among

BER proteins. As already mentioned, NEIL1’s stable

interaction with downstream repair proteins utilizes a

common interaction interface located near its C-terminus

(residues 289–349) [7, 10–13]. The segment is absent in

NEIL1’s prototype Nei, and might have been acquired

during evolution as a terminal addition [1]. We similarly

identified the nonconserved N-terminal segment (65 resi-

dues) in APE1 which is involved in all its protein–protein

interactions [72–74]. Although it is intriguing how NEIL1

or any other protein could simultaneously bind to so

many proteins with high specificity via a small common

Disordered regions in early BER proteins 3577



interface, recent studies have indicated that it is not

uncommon for the mammalian hub proteins to have such

an interaction surface, which invariably have a disordered

structure. The flexibility of the disordered domain may

facilitate interaction with diverse partners [75, 76].

Disordered structure of the interaction interface

The C-terminal region of human NEIL1 (hNEIL1) spanning

about 100 residues contains the common interaction inter-

face whose disordered conformation was first suggested

from the fact that NEIL1’s crystallization required deletion

of 56 residues, while the proximal 44 residues did not form a

defined structure [77]. We verified this conclusion using

various protein structure prediction softwares.

Prediction of disordered structure: various softwares

Contrary to the concept about spontaneous formation of

secondary and tertiary structure in properly folded proteins

that prevailed before the turn of this century, recent

experimental evidence as well as genome-wide prediction

of intrinsic disorder in eukaryotic proteomes have indicated

that a large percentage of proteins have long disordered

(unfolded) segments under physiological conditions. Fur-

ther, these disordered regions are essential for their

biological functions. Recent advancement in the softwares

for accurate prediction of protein secondary structure and

their predisposition to remain intrinsically disordered has

furthered our understanding of the role of disordered

structures in functional hierarchy. Commonly used disorder

prediction tools include PONDR [78–80], PrDOS [81, 82],

RONN [82], FoldIndex [83], GlobPlot [84], IUPred [85,

86], FoldUnFold [87], etc. in the public domain, which

evaluate intrinsic disorder on per residue basis. Among

these, PONDR is most widely used, an advanced version of

which contains a reference collection set of VSL predictors

(trained on variously characterized, short and long disor-

dered regions). The PONDR developers point out that short

and long disordered regions might have differences in their

amino acid characteristics because predictors based on

short regions of disorder fare poorly for long regions of

disorder and vice versa [88–90]. The VSL predictors in

PONDR take advantage of such differences to yield more

accurate predictions. We used PONDR, PrDOS and RONN

software, which generated similar disorder prediction in

early BER proteins.

The commonly used approaches to characterize protein

disorder are NMR and circular dichroism spectroscopy,

and also small angle X-ray scattering, while the structural

information thus generated is often based on the crystal

structure of truncated proteins [91].

Signature sequences of intrinsic disorder

A major sequence characteristic of intrinsic disorder is the

low content of bulky hydrophobic amino acid residues such

as Val, Leu, Ile, Met, Phe, Trp and Tyr, which would

normally form the core of a folded globular protein. In

contrast, a high proportion of polar and charged residues

such as Gln, Ser, Pro, Glu, Lys, and Gly, and sometimes

also Ala, are characteristically present in disordered

regions [78, 92]. The presence of such charged residue-rich

sequences was first discovered in transcriptional regulatory

proteins about three decades ago, which are often classified

based on their amino acid composition, for example Glu-

rich, Pro-rich and acidic activation domains [93]. Later,

NMR spectroscopy and other biophysical studies con-

firmed intrinsically disordered nature of such sequences

[91, 94].

While disordered regions have been variously described

as intrinsically disordered, intrinsically unstructured,

natively unfolded, natively disordered and highly flexible

[91], we believe that the term ‘intrinsically disordered’

would be more appropriate than ‘unstructured’ because

many disordered regions have been shown to contain par-

tial or transient secondary and/or tertiary structural

organization [95]. Dunker and Obradovic [96] proposed

that intrinsically disordered regions may exist in two dif-

ferent structural forms: molten globule-like (collapsed) and

random coil-like (extended), whereas Uversky and co-

workers suggested existence of another extended form, the

pre-molten globule, which is distinguishable from fully

extended and molten globular conformations by the pres-

ence of an unstable secondary structure [97]. The recently

proposed protein quartet hypothesis suggests that the pro-

tein functions in eukaryotes could depend on any of the

three disordered forms along with the ordered form or on

transitions between them [97].

Disorder predictions have been extensively utilized by

protein crystallographers to design crystallization targets

after deletion of disordered segments. One first application

of the disorder predictor was in crystallization of Xero-

derma pigmentosum group A (XPA) protein involved in

DNA repair [98]. Extended disordered regions at the

N- and C-termini of XPA with ordered central core as

predicted was confirmed with partial proteolysis and NMR

spectroscopy [99].

The recently created databank of protein intrinsic dis-

order (http://www.disprot.org) suggests that proteins with

long terminal extensions containing no or limited structure

are common in eukaryotes and are involved in many key

functions including cell cycle control, regulation, and sig-

naling [99]. Such disordered tails were also shown to be

more common in DNA binding proteins than in other

proteins, particularly in the ones that are involved in target

3578 M. L. Hegde et al.
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sequence binding that include early repair proteins and

transcription factors [100, 101]. It is likely that their

structural flexibility and plasticity provides major func-

tional advantage.

Predictions of disorder using accurate bioinformatic

tools are in fact helping design experiments to characterize

their biological functions, and this is one of the fastest

growing topics of protein studies, humorously dubbed as

‘the protein unfoldomics decade’. Although the number of

proteins with experimentally determined disordered struc-

ture is still small, the behavior of the experimentally

verified ones are highly consistent with the predictions

[102].

Comparison of E. coli versus mammalian early BER

proteins to identify disordered structures

We used PONDR (prediction of natively disordered

regions) and PrDOS (prediction of disordered structures)

softwares to compare the secondary structure of human and

bacterial early BER proteins and correlated them with their

available structural information. As already mentioned,

hNEIL1 contains an extended disordered region spanning

about 100 residues in the C-terminus which is absent in

E. coli Nei protein (Fig. 2). Comparison of predicted

structures of human DNA glycosylases NTH1, MYH and

their E. coli prototypes endonuclease III and MutY,

respectively, indicates that both hNTH1 and hMYH have

extended disordered tails at the N-terminus that are absent

in the E. coli enzymes. Similarly, the N-terminal disor-

dered region present in hAPE1 is absent in Xth, its E. coli

prototype (Fig. 3). PONDR modeling showed that such

disordered terminal sequences may also be present in other

human DNA glycosylases including UNG2 and TDG

(Fig. 4). Although the unfolded sequence generally exists

at the N- or C-terminus, this could exist internally in some

proteins, acting as a linker joining two domains. HNEIL2 is

such a protein with an internal disordered segment near the

N-terminus (residues 45–130) as indicated from the

PONDR plot (Fig. 4). The average size of disordered

extensions in early BER proteins ranges from 50 to 100

residues, with few exceptions, e.g., hOGG1 and human

Polb, which have short (*10 residues) disordered tails at

both termini, as predicted by PrDOS (Fig. 5). The early

BER proteins are generally small (30–50 kDa) and

monomeric, whereas other DNA transaction proteins such

as PCNA are multimeric and typically possess disordered

linkers bridging different subunits.

Among early BER proteins, the disordered N-terminal

sequence of hNTH1 has been extensively characterized.

HNTH1 has a lower specific activity than E. coli Nth that

lacks the N-terminal extension [103, 104], deletion of

which increases hNTH1’s activity [105]. This suggests that

this segment inhibits enzyme turnover in the absence of

other BER proteins.

Role of disordered domain in function

of early BER proteins

The presence of disordered extensions in proteins involved

in transcriptional regulation, signal transduction, cell cycle

control, DNA damage sensing and repair suggest their

involvement in diverse functions. Furthermore, such dis-

ordered regions may regulate formation of large

multiprotein complexes [106, 107]. An exhaustive discus-

sion of this topic is beyond the scope of this review,

focusing on the early BER proteins, in which these

disordered segments include sites of posttranslational

modifications, subcellular targeting, DNA scanning as well

as common interface for protein–protein interactions, as

already discussed (Fig. 6).

Posttranslational modifications in disordered segments

Posttranslational modifications of proteins such as phos-

phorylation, acetylation, ubiquitylation, ADP-ribosylation,

sumoylation and methylation play a critical role in diverse

cellular processes including DNA repair [108]. The

modification sites are invariably localized in disordered

regions, e.g., in the N-terminal segment in hAPE1 [74,

109], N- and C-terminus of p53 [110], and C-terminal

region in hNEIL1 (Bhakat et al., unpublished). Our lab-

oratory identified and characterized acetylation of hAPE1

at Lys6 or Lys7, and this modification plays an important

role in APE1’s transcriptional regulatory functions [74].

Recently, APE1 was also shown to be ubiquitynated at

N-terminal Lys residues, which regulates its degradation

as well as cellular functions [109]. Such covalent modi-

fications may have multiple physiological effects on these

proteins, including stability, interaction with DNA or other

proteins, organelle targeting, and enzymatic activity [111].

We also showed that hNEIL2 is acetylated at Lys49 and

Lys153 both in vitro and in cells [112]. Acetylation of

Lys49 located in the disordered region (Fig. 4) inactivated

NEIL2’s base excision and AP lyase activity while acet-

ylation of Lys150 had no effect on the activity. We have

proposed that acetylation of Lys49 could act as a regu-

latory switch for NEIL2’s activity [112]. TDG is

acetylated in the N-terminal segment, Lys70, 94, 95 and

98 which is within the disordered segment of 100 residues

[113]. PONDR modeling of TDG sequence indicates that

the N-terminal 100 residues are in disordered conformation

(Fig. 3). Strong acetylation sites in TDG were identified.

Acetylation of TDG by CBP/p300 does not affect its
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binding to G�T or G�U base mispairs but indirectly

deregulate TDG-coupled repair by releasing CBP/p300

from DNA bound complex leading to reduced interaction

with APE and in turn suppressing APE-dependent repair

[113]. Thus, TDG acetylation could contribute to genomic

instability and cancer susceptibility. We had earlier char-

acterized acetylation of hOGG1 at Lys338 and Lys341

within its short disordered C-terminus, which increases its

DNA glycosylase activity by reducing affinity for the

product AP site [114].

The flexibility of disordered region appears to be a

prerequisite for these modifications, presumably because

the amino acid side chains in the flexible sequence are

accessible for modifying enzymes, like kinases, phospha-

tases, acetyltransferases and deacetylases, methylases, and

ubiquitin ligases, etc. [91].

Subcellular localization

Organelle localization signals such as nuclear localization

signal (NLS) or mitochondrial transport signal (MTS) are

contained in short segments (generally \20 residues) that

mediate transport to the target organelle. Multiple types of

mammalian NLS sequences have been identified, the major

ones belonging to the classical type consisting of seven basic

residues and the bipartite NLS with two strings of basic

residues separated by a short intervening sequence [115].

Recent studies showed that almost all NLS sequences with

overall basic nature are disordered [99, 116].

We mapped the NLS of hAPE1 to the disordered

N-terminal 20 residues, the deletion of which markedly

diminishes its translocation to the nucleus [117]. Our pre-

liminary studies of GFP-fusion polypeptide of truncated

NEIL1 suggest the presence of putative NLS at the disor-

dered C-terminal region (unpublished observation).

Similarly, the disordered N-terminal tails in hNTH1,

UNG2 and TDG contain putative NLS and MTS [118–

120]. Taken together, these studies show that subcellular

distribution of many human repair proteins is mediated

through signals localized in their disordered regions.

DNA scanning

Burg et al. have shown that target DNA search by proteins

could be achieved via facilitated diffusion comprising four

mechanisms, namely, one-dimensional (1D) sliding, hop-

ping, 3D search and intersegmental transfer. An efficient

search mechanism involves combination of these different

modes [121].

Recent studies have shown that the most efficient and

rapid scanning of the DNA for the target site involves 80%

hopping and intersegmental transfer and 20% sliding by

the DNA binding proteins, which invariably contain a

disordered terminal extension, or a disordered linker for

multidomain or multisubunit proteins [101]. Bioinformat-

ics analysis has suggested that nearly 70% of DNA binding

proteins have such disordered tails compared to about 25%

for non-DNA binding proteins [100, 101]. In addition, the

disordered segments are about seven residues longer on an

average for DNA binding proteins compared to all proteins

with disordered tails [100]. Another unique characteristic

of the disordered tails in DNA binding proteins is
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clustering of positively charged residues in the distal

region, which turned out to be important for the scanning.

Mutating such residues in HOXD9 and NK-2 markedly

decreased scanning efficiency [101]. Similar results were

obtained when the N-terminal segment in these proteins

were deleted, suggesting that the initial scanning is medi-

ated by a non-specific, mostly electrostatic, transient DNA

binding via the basic disordered segment which is followed

by target DNA sequence binding by the active site.

In light of the above studies, we examined hNEIL1’s

C-terminus, which possesses most characteristics required

for DNA scanning as described above, including the clus-

tered basic residues. Our recent biochemical studies using

C-terminal deletion NEIL1 mutants showed that the

C-terminus is important for NEIL1’s substrate scanning

and efficiency of damage recognition, via its non-specific

DNA binding (Hegde et al., unpublished). Although lim-

ited studies are available on the role of disordered regions

of other early BER proteins in such activity, we expect that

all of them have similar functions.

Intrinsic disorder and hub proteins: dynamic repair

complexes mediated by disorder/disorder interactions

As mentioned earlier, the ‘hub’ proteins like NEIL1 with

several partners (usually [10) form a network of com-

plexes [122]. Recent studies have indicated that ‘hub’

protein complexes are widely present in higher eukaryotes,

whose formation mostly involves interaction with disor-

dered regions [123]. The crucial role of intrinsic disorder in

hub proteins was reviewed earlier [91, 124]. Bioinformatics
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analysis of known protein interactions suggested that

such interactions among disordered structures are sig-

nificantly preferred among human proteins [123].

Disorder-mediated interactions could either involve dis-

order–disorder or disorder–order types. Both modes of

interactions are prevalent in BER proteins, for example

NEIL1–FEN-1 interaction involves disorder–disorder

interfaces [10], while NEIL1–Polb could involve disor-

der–order type of contacts [7]. Specific recognition and

binding of hub proteins is achieved as a result of the

flexibility of domain itself, because it facilitates confor-

mational rearrangements and induced-fit with specific

partners [99, 107]. Although it was inconceivable a few

years ago that such specificity could be obtained via

disorder–disorder interactions, these are quite common,

particularly for hub proteins. Disorder-mediated interac-

tions in fact confer advantages over order-mediated

interactions because of the rapid and easy interconver-

sion among diverse conformers, allowing formation of

dynamic complexes [107]. The dynamics of such com-

plexes could be further regulated by posttranslational

modifications of one or more partners, as already dis-

cussed. Furthermore, disorder-mediated interactions have

kinetic benefits, because the larger capture radius of

disordered states facilitates faster on-rates for binding

[125, 126]. Finally, disorder-mediated interactions have

steric advantages by providing a large surface area for

binding interface for wrapping around partners resulting

in stronger specificity [127, 128].

Our recent studies using size fractionation chroma-

tography of human cell nuclear extract suggest that the

BER proteins indeed exist in large, stable complexes,

presumably in the absence of DNA. Characterization

of such complexes, the dynamics of their formation

and regulation as well as their stoichiometry are

warranted.

Evolutionary advantages of protein disorder

Disordered regions in proteins generally show higher rates

of mutation, presumably because changes in their protein

sequence may not affect protein stability and function as

severely as that in ordered regions [107, 129, 130].

Although such an analysis of mutation distribution and

mutation tolerance is yet to be carried out for BER pro-

teins, a similar situation is likely to exist. The unique

presence of disordered segments in eukaryotic proteins but

not in the prokaryotic counterparts, with the highest degree

of disorder in mammals, suggests its evolutionary devel-

opment [107]. The disordered regions also enable

alternative splicing in eukaryotic proteins without the risk

of perturbing structured regions [131]. In addition, the

disorder provides advantage of limiting molecular size as

complexity increases, by providing common interface for

multiprotein binding and sites of modifications. To achieve

a similar goal, folded proteins need to be considerably

larger, and thus disorder may help higher organisms to

limit protein size and to reduce intracellular crowding

[132].

Fig. 4 PONDR plot of disordered conformation at the N-terminus of

hTDG and UNG2. HNEIL2 has an internal disordered region
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Disordered extensions in early BER proteins

as potential targets of cancer therapy

The BER proteins have been explored as targets for cancer

therapy which generally involved inactivation of key BER

reactions such as ligation [133] or damage sensing proteins

such as PARP [134]. DNA glycosylases turned out to be

poor targets for such therapy, because of the nonessen-

tiality of individual glycosylases due to back up functions

of other glycosylases [1]. Although PARP inhibitors have

been proven highly successful in recent therapeutic studies,

inhibition of a key BER reaction poses the challenge of

accurate targeting and dosage regulation to prevent their

undesired effect on normal cells [134]. Based on the

emerging evidence for a disorder-mediated repair

regulatory switch in early BER hub proteins that controls

the repair pathway, we propose that the disordered regions

of early BER proteins could be targeted for cancer therapy

which would disrupt repair regulation.

Conclusions and perspectives

A combination of experimental studies and structural pre-

dictions has revealed a critical role of disordered segments

in many mammalian early BER enzyme functions includ-

ing both protein–protein and protein–DNA interactions.

Although few disordered regions have been experimentally

characterized so far, we predict that such disordered seg-

ments are ubiquitous and essential for efficient repair.

Fig. 5 PrDOS secondary

structure prediction of hOGG1

and Polb indicate short

disordered segments (sequence

in red) at both termini

Disordered segments in 
early BER proteins

Protein-protein 
Interactions

Posttranslational 
modifications

DNA scanning Organelle 
targeting

Fig. 6 Schematic of multiple

regulatory functions of

disordered regions in early BER

enzymes
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Future studies should address the role of disordered

sequences in other mammalian repair pathways and their

evolutionary significance in complex repair regulation.
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