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Abstract
For progressive diseases, it is often not so straightforward to define an onset time of certain
disease condition due to disease fluctuation and clinical measurement variation. When a disease
onset is claimed through the first presence of some clinical event which is subject to large
measurement error, such onset time could be difficult to interpret if patients can often be seen to
“recover” from the disease condition automatically. We generalize the traditional event onset time
concept to control the recovery probability through the use of a stochastic process model. A
simulation algorithm is provided to evaluate the recovery probability numerically. Bayesian latent
residuals are developed for model assessment. This methodology is applied to define a new
postural instability onset time measure using data from a Parkinson’s disease clinical trial. We
show that our latent model not only captures the essential clinical features of a postural instability
process, but also outperforms independent probit model and random effects model. A table of
estimated recovery probabilities is provided for patients under various baseline disease conditions.
This table can help physicians to determine the new postural instability onset time when different
thresholds of estimated recovery probability are used in clinical practice.
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1. INTRODUCTION
Many chronic diseases are progressive. For example, the progression of Parkinson’s disease
(PD) is caused by a continuous and irreversible brain neuronal cell death. The onset time to
a milestone event, which is biologically difficult to recover without medical treatment, is
often used by physicians to assess a patient’s disease condition and to determine when
certain intervention should be initiated. There are many such examples. The onset of a
prespecified glomerular filtration rate for the end-stage renal disease is an indicator of
kidney function failure and often requires the initiation of certain kidney treatment. In
Parkinson’s disease, the onset of postural instability is an indicator of impaired body balance
and often requires special care to prevent patients from falling that can cause serious injury
or death. If the presence or absence of an event is subject to large measurement errors, the
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traditional onset time, defined as the first time when this event is seen, could become
difficult to interpret and less valuable to physicians in medical decision making.

The onset of postural instability (PI) or impaired body balance and coordination in PD is one
of the most serious indicators of disease progression that is associated with high risk of
falling (resulting in fractured ankles, hips, shoulders, and skulls), dementia, and death
(Kieburtz, 2003). Currently, PI status is primarily determined by the postural stability score
which is evaluated through a pull test. The pull test is performed by pulling a patient’s
shoulders from behind briskly and scoring how well the patient could recover from falling.
Although patients with PI are, in principle, difficult to recover to normal PI absence through
PD medications (Bloem, 1992; Rogers, 1996), examiner’s inadequate evaluation (even from
a well trained examiner) makes more than 90% of the examinations incorrectly measured
(Munhoz et al., 2004). Many factors contribute to measurement errors, for example, the
examiner’s force of pull and the patient’s effort to recover body balance when pulled. As
pointed out by Fahn (2006) and Hauser (2006), large measurement errors can still be seen
even if examinations are performed by the same examiner, on the same patient, and at the
same clinical visit. Large measurement errors lead to high false positive rate of PI presence,
particularly for early PD patients. That is, patients without PI have a high chance to be
misclassified as having PI. This is frequently seen in clinical trials and clinical practices. For
example, in the multicenter controlled clinical trial of deprenyl and tocopherol antioxidative
therapy of Parkinsonism (DATATOP, The Parkinson Study Group, 1989, 1990), more than
50% of treatment naive patients “recovered” to normal PI absence within 3 months of their
previous PI presence without receiving any anti-PD medication. Although limitations of pull
test were well documented in the literature, such a way of measuring PI onset time continues
to serve as one of the most critical measures of PD disability because there is no other
commonly accepted clinical measure that could replace it. As a consequence, an early PD
patient not treated with PD medication can be seen to have frequently alternated PI presence
and absence observations before the patient has become seriously paralyzed. This makes
inference drawn from the traditional PI onset time difficult to interpret (Section 5).

We extend the traditional onset time measure to a more general setting when the presence of
an event is subject to a high false positive rate. Let {Y (t), t ≥ 0} be a binary process taking
value 0 or 1. For the above PD example, Y (t) = 1 (or Y (t) = 0) represents PI presence (or
absence) at time t. Section 2 proposes a latent model that characterizes important clinical
and biological features of longitudinal PI process. Whenever a Y (t) = 1 is observed at time t
= c, we use the latent model to compute the recovery probability that an Y (u) = 0 is
observed within time interval u ∈ [c, c + d] for some clinically meaningful choice of interval
width d > 0. The new PI onset time defined in Section 3 is the first time c such that the
corresponding recovery probability is lower than some prespecified clinically meaningful
threshold η. Theoretical properties of the new PI onset time are investigated. A simulation
algorithm is provided to compute the recovery probability. Section 4 gives a model
assessment method. Section 5 applies the proposed latent model and the new PI onset time
measure to DATATOP trial data. A table of recovery probabilities for patients with different
disease conditions is provided. Proofs of all relevant theorems are given in the Appendix.

2. A LATENT PROCESS MODEL
For a typical PI process {Y (t), t ≥ 0}, the marginal variance of Y (t) initially increases in
time, representing a gradual increased variation in the function of body balance. Later, the
variance decreases in time, representing the progression toward final paralyzation. A
dynamic latent process model is a useful and popular tool to model a correlated binary
process. Latent process models for independent binary response data proposed by Albert and
Chib (1993, 1995), Chen, Dey, and Shao (1999) and others are not applicable to this
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problem because they cannot account for within-subject association of Y (t). Although Chen
and Dey (1998) developed a unified approach to model correlated binary and ordinal
response data using scale mixture of multivariate normal links, and Dunson (2003) proposed
a dynamic model for multidimensional longitudinal data, their approaches essentially require
observation times of Y (t) to be evenly-spaced and equal for all patients. To ensure a good
quality of the new PI onset time measure, this section presents a latent model that
satisfactorily characterizes important clinical and biological features of PI process.
Transitions between Y (t) = 1 status and Y (t′) = 0 status are modeled longitudinally,
accommodating within-subject association of the observed longitudinal process and
potential confounding covariates.

Suppose a study has n subjects. Let Yi(t) be the observable binary PI status from subject i at
time t measured by examiner δi, δi ∈ {1, 2, …, C}, (s) = {Yi(t), t ≤ s} be all available
information up to time s from subject i (i = 1, …, n), and (s) = ( (s), …, (s))′. We
consider the point process whose follow up times are independent of the treatment
assignment and (t). The unobservable trajectory of disease biomarker Wi(t) from the ith
patient is modeled through a latent process

(1)

where

(2)

bi ~ iid N (0, 1); b(δi) ~ iid N (0, 1); nonnegative continuous function g(t) is used to capture
the variation of the latent process; {εi} = {εi(t), t ≥ 0} is a standard Brownian motion with
drift zero and origin εi(0) ≡ 0. Process {εi}, bi, b(δi), and εi0 are independent. Since
var[Wi(t)] = σ2 + τ2 + t/g(t) for t > 0 and var[Wi(0)] = σ2 + τ2 + 1, it is natural to assume that
limt→0 t/g(t) = 1 to ensure continuity of variance function at t = 0. Vector zi contains all
covariates from subject i. The h(t, β2) is a known continuous function of the follow up time t
and unknown parameter β2. Parameters β1 and β2 measure the fixed effects of the treatment
and other risk factors on the patient-specific latent disease trajectory Wi(t). Random
variables bi and b(δi) capture patient-specific and examiner-specific random effects
respectively. The indicator function I[E] is defined as I[E] = 1 if event E is true and 0
otherwise. Random variable εi0 ~ N (0, 1) takes unit variance to ensure the identifiability of
the latent process model. Variable εi0 captures a possible lack of predictability of the
baseline status Yi(0) for the status Yi(t) at time t > 0. The reason to include εi0 is to adjust for
the expected discontinuation of the latent disease trajectory at t = 0.

The motivation of this model is to capture the desired clinical and biological features of the
postural instability process. First, the marginal expectation  depends
on t only through h(t, β2). When the disease is progressive and the patients do not receive
any treatment that could effectively stop the disease progression, h(t, β2) is a monotone
increasing function in t. Second, since

, the marginal variation of Yi(t) is
increasing in t when  and h(t, β2) is increasing in t. This is true for early PD
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patients who are not on anti-PI treatment. However, after a patient has progressed to a
certain advanced level such that  for some ti0 > 0, the patient is more likely
to have sustained Yi(t) = 1 observations. This feature is further captured by the decreasing
marginal variation of Yi(t) in t. Third, marginal probability P {Yi(0) = 1} is the same as the
binary regression model with probit link. This property is important since the primary role of
the latent Brownian process is to capture the dependency among repeated measures of Yi(t),
and, at the same time, to preserve the marginal model of Yi(t) as a binary regression model
under the probit link. Fourth, for any 0 ≤ t1 < t2, correlation of two latent values from the
same subject is

It goes to zero as (t2 − t1) increases to infinity while keeping t1 fixed; and increases to 1 as
both t1 and t2 go to infinity while keeping (t2 − t1) fixed. This captures an essential PD
feature that a PD patient will eventually completely lose the postural reflexes and becomes
“frozen” if the PD progression was not stopped or reversed.

The proposed model does not require regularly spaced and common follow up visit times for
all patients. Although Wi(t) is Markovian, the resulting binary process Yi(t) is not. When the
Markov assumption on the observable binary process Yi(t) is violated, our proposed latent
process model is useful to model a dynamic binary process measured at irregular time
points. In this sense, our proposed model is quite different from transition models discussed
in Diggle, Liang, and Zeger (1994, Chapter 10).

Let yi0 = {Yi(t) : t = ti0 = 0, ti1, …, timi} be the collection of all observed PI values from

patient i. Write  where Wi0 = Wi(0) and Wi = (Wi(ti1), Wi(ti2), …,

Wi(timi))′. Let , and T = (tij, j = 1, 2, …, mi, i = 1, 2, …, n).
We use D = (Y, z, T, W) to denote the complete data and use θ = (β1, β2, σ2, τ2) to denote
the collection of all model parameters. The complete data likelihood function is given by

where Jmi is a mi × 1 vector whose components are all equal to 1, ti0 = 0, Hi(β2) = (h(ti1, β2),

h(ti2, β2), …, h(timi)), β2))′, , and
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(3)

The following theorem can be used to simplify expression

 in likelihood
function L(θ |D):

Theorem 1
For any vector x = (x1, …, xm)′, the following identity holds

To estimate parameter θ, one can use a noninformative prior π(θ) = π1(β1) π2(β2) π3(σ) π4(τ)
∝ π3(σ)π4(τ) for θ, where distributions of π3(σ) and π4(τ) are obtained by truncating
Normal(0, λ2) (for large λ) distributions to the range of (0, +∞). Given W, bi’s, b(k)’s, β1, β2,
and τ, the conditional posterior distribution of σ is a truncated normal. Similarly, given W,
bi’s, b(k)’s, β1, β2, and σ, the conditional posterior distribution of τ is also a truncated normal.
Gibbs sampling algorithm can be used to sample (θ, W) from the joint posterior distribution
π(θ, W|Dobs). The implementation of the Gibbs algorithm is straightforward due to the result
established in Theorem 1 as well as the conjugate priors for σ and τ.

3. A NEW MEASURE OF PI ONSET TIME
Applying the latent process model described in Section 2, this section develops a new
measure of PI onset time that is more consistent with characteristics of PD and also
incorporates measurement errors. When a PI is observed at time c, we compute the
conditional probability P {min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, τ, z}, where d is a pre-
specified time interval width, and θ = (β1, β2, σ2, τ2). More specifically, for a chosen critical
value η (0 < η < 0.5) and a pre-specified width d, we define the PI onset time of a patient
with covariate vector zi by inf{c > 0, P [min(c≤t≤c+d) Yi(t) = 0 | Yi(c) = 1, θ, Zi] ≤ η}. In other
words, our new PI onset time is defined as the first time when a patient has little chance to
recover from PI in a given length of time interval. Since PD is progressive and the loss of
postural reflexes is difficult to recover, the new PI onset time measure is more robust than
the traditional one in the sense that it not only reflects the steadily degenerative feature of
PD, but also incorporates the variation from the examiner. The use of a threshold value η to
the conditional probability P {min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, τ, z} makes the new PI
onset time more clinically meaningful to physicians in defining patient’s disease status.

Write Wi(t) as , where {εi(t), t ≥ 0} is a standard
Brownian motion with zero drift, εi(0) = 0, and . In the
following discussion about the computation of P {min(c≤t≤c+d) Yi(t) = 0 | Yi(c) = 1, θ, Zi, bi,
b(δi)}, we focus on the computation for a fixed subject. We thus omit subscript i to simplify
our notation and use b to denote (bi, b(δi)). The density function of W (c) at W (c) = w, given
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(θ, Z, b), is f(c, w) = φ (a0(c) − w), where  is the density function of
the standard normal distribution. For w > 0, define continuous function

 and the stopping time T = inf{t : t ≥ 0, ε (t) =
a(t, c, w)}. We are led to the following Theorem.

Theorem 2
Suppose a(t, c, w) is continuous and left differentiable in 0 < t ≤ d, P {W (c) > 0|θ, b, Z} =
pc, and f(c, w) = φ{a0(c) − w}. For the process {Y (t)} defined above and two positive
constants c and d, we have P {min(c≤t≤c+d) Y (t) = 0 | W (c) = w, θ, b, Z} = P {T ≤ d|θ, b, z}.
Furthermore,

This theorem shows that the new PI onset time can be computed through the integration of a
weighted boundary cross probability of a standard Brownian motion to hit stopping
boundary a(t, c, w) in a given time interval. The computation can be quite involved.
However, if we note that P {T ≤ d|θ, b, z} = P {ε (t) crossing over a(t, c, w) in 0 ≤ t ≤ d|θ, b,
z}, we can use the following simulation algorithm to estimate probabilities P {min(c≤t≤c+d) Y
(t) = 0 | W (c) = w, θ, Z, b} and P {min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, Z, b}:

Step 1Generate a random value of b from the standard normal distribution N(0, 1);

Step 2Compute ;

Step 3Generate w from a truncated normal distribution N(a0(c), 1) with w ≥ 0. Let
;

Step 4Choose an integer n and generate a random sample x1, …, xn from the normal
distribution N (0, d/n). Compute the cumulative sum s(i) = x1 + ··· + xi, i = 1, …, n
for i = 1, … n;

Step 5Compute δ = max1≤i≤n{s(i) − a(id/n, c, w)};

Step 6Repeat Steps 4 and 5 for N1 times and record the proportion of times when a δ > 0
is observed. Denote this proportion by p(w, θ, b). This gives a Monte Carlo
estimate of P {min(c≤t≤c+d) Y (t) = 0 | W (c) = w, θ, Z, b};

Step 7Repeat Steps 3 through 6 for N2 times and average p(w, θ, b) over w. This gives a
Monte Carlo estimate of P [min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, Z, b];

Step 8Repeat Steps 1 through 7 for N3 times and average P {min(c≤t≤c+d) Y (t) = 0 | Y (c)
= 1, θ, Z, b} over b. This gives a Monte Carlo estimate of P {min(c≤t≤c+d) Y (t) = 0
| Y (c) = 1, θ, Z}.

When a patient’s disease condition is worsening over time, h(t, β2) will be a monotone
function in t. This is the case when the onset time of a milestone event onset is informative
to physicians in determining treatment options. The monotonicity established in the
following Theorem 3 provides a theoretical support that the new PI onset time measure not
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only provides a meaningful measure of disease status but also reflects the stable
degenerating nature of the disease as well. Time c discussed above represents the potential
time that PI can occur. Let c0(> 0) be a lower bound of c. The value of c0 depends on patient
population and is generally known to physicians. For example, c0 ≥ 1 day is always true for
all PD patients who does not have PI at baseline (t = 0) since PD is a slow progressive
disease. We now establish some sufficient conditions when the probability function P
{min(c≤t≤c+d) W (t) ≤ 0 | W (c) = w, θ, Z, b} is monotone in c (≥ c0) and w (> 0).

Theorem 3
(i) For any fixed c, θ, and Z, the probability function P [min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ,
Z, b] is monotone increasing in d for d > 0. (ii) If g(t) = t and function

 is monotone increasing in c, then P [min(c≤t≤c+d) W (t) ≤ 0 | W
(c) = w, θ, Z, b] is monotone decreasing in c. (iii) If a0(t) is linear in t such as a0(t) = γ 0 +
γ1t and g(t) = t, then the sufficient conditions that P [min(c≤t≤c+d) W (t) ≤ 0 | W (c) = w, θ, Z,
b] is monotone decreasing in c in interval c ≥ c0 are γ1 > 0 and γ0 ≤ 3c0γ1.

The sufficient conditions (iii) in Theorem 3 have a nice clinical interpretation. When h(t, β2)
is monotone increasing in t, we must have γ1 > 0. Quantities γ1 and γ0 characterize the
disease progression rate and patient’s baseline disease condition. If the patient’s condition is
worsening over time, and the disease progression rate is fast enough compared to the
patient’s baseline condition (malignant PD) such that γ1 > 0 and γ0 ≤ 3c0γ1 hold, then the
patient’s probability to become PI in a time interval with fixed interval width is increasing
over time.

4. MODEL ASSESSMENT
Since repeated measures from binary process Yi(t) are correlated, classical residuals such as
Pearson residuals and deviance residuals (McCullagh and Nelder, 1989) are difficult to
calibrate because they have unknown sampling distributions. We propose to use Bayesian
residuals with continuous posterior distributions. These residuals can be plotted to check
model fitting and to identify outliers. Albert and Chib (1995) proposed Bayesian latent
residuals for independent binary response regression models. Chen and Dey (2000)
generalized the univariate Bayesian residuals of Albert and Chib (1995) for correlated
ordinal data.

For the latent model defined by (1) and (2), we propose a simple approach based on subject-
specific latent residuals for assessing the goodness-of-fit of the proposed model. The
subject-specific latent residuals are defined as

where ξi is an mi-dimensional latent vector. It is easy to see that ξi ~ N (0, Imi) apriori. Also,

 apriori. One common approach of using latent residuals in model
assessment is to compare the posterior distributions of ξi’s. However, this approach does not
work here because mi’s are subject-dependent and posterior distributions of ξi’s are not
directly comparable between any two subjects with different mi’s. To circumvent this

problem, we calculate the posterior probability  and plot pi versus

E(||ξ i||2|Dobs), where  denotes the (1 − α)th quantile of the  distribution, and the

expectation is taken with respect to the posterior distribution π (θ, W |Dobs). As ,
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apriori, it is expected that pi’s should be roughly around α. Many large pi’s cast doubt upon
the model. In addition, an extreme large value of pi reveals a possible outlier. For our
application, α = 0.05 may be sufficient although some other values of α can be tried. The
subject-specific residuals are quite attractive as they account for the dependency of the
repeated longitudinal measurements of Yi(t). All posterior quantities involved in the subject-
specific latent residuals can be easily computed using Gibbs outputs. Thus, our method of
using Bayesian latent residuals clearly has an advantage of computational simplicity.

5. APPLICATION IN PARKINSON’S DISEASE CLINICAL TRIAL
5.1 Description of DATATOP Data

The multicenter controlled clinical trial of deprenyl and tocopherol antioxidative therapy of
Parkinsonism (DATATOP) was carried out in 1987–1989 (The Parkinson Study Group,
1989, 1990). Eight hundred early PD patients were evaluated by 34 investigators
(examiners) from 28 clinical centers. We adopted the PI definition from Elm et al. (2005) to
define Y (t) = 1 if any one of the following three conditions holds at time t: postural stability
≥ 1; or falling ≥ 1; or freezing ≥ 3, and defines Y (t) = 0 otherwise. In the DATATOP trial,
although each subject was examined by the same investigator throughout the study, the high
PI recovery probability makes the traditional PI onset time measure based on the first
transition time to Y (t) = 1 difficult to interpret and even controversial, as shown below.

Since no tocopherol effect was found in the DATATOP trial, we combined all patients who
received deprenyl in DATATOP to form a new treatment group and combined all other
patients to form a new placebo group. Let T1t and T1p be the times from baseline with Y (0)
= 0 to the first times of PI presence with Y (t) = 1 in deprenyl and placebo groups,
respectively, and let T2t = min{t − T1t : t > T1t, Y (t) = 0} and T2p = min{t − T1p : t > T1p, Y
(t) = 0} be the corresponding first recovery times from PI presence status to PI absence
status in deprenyl treatment group and placebo group respectively. Using all subjects with Y
(0) = 0 at baseline (301 subjects in placebo and 302 subjects in deprenyl treatment), and
comparing Kaplan-Meier curves of T1t and T1p using the logrank test, we find a strong
evidence of deprenyl treatment superiority over the placebo (logrank test p-value = 0.0239).
After fitting a proportional hazards model with baseline covariates gender, age, disease
duration (duration0 and du2=duration02), total UPDRS (total0), Schwab & England
activities of daily living scale (seadl0), and treatment (indicator of receiving deprenyl), the
estimated hazard ratio is exp(−0.324) = 0.723 for deprenyl with p-value equal to 0.016
(Table 1). These results suggest that deprenyl treatment improves the PI measure and
possibly even decreases the progression rate of PD. However, by comparing T2t and T2p
using proportional hazards model adjusting for covariates measured at times T1t and T1p
respectively, the hazard ratio was exp(−0.478) = 0.620 for deprenyl with p-value equal to
0.006 (Table 1). This result, contrasting to the previous result, show that deprenyl worsens
the progression of PD. Such conflicting results not only make the assessment of treatment
effect on PD progression difficult, but also make the PI onset time measure not useful to
assess a patient’s disease condition.

5.2 Posterior inference
There were 34 investigators (examiners) from all 28 centers in the DATATOP trial. Each
patient was evaluated by the same investigator throughout the study. Each investigator
examined 19 to 44 patients. We use b(δi) to denote the random effect from investigator δi and
set C = 34. To apply the latent process model described in Section 2, we choose h(t, β2) =
β20 + β21t + β22T rt + β23t × T rt because a linear fit in time is adequate for such a short two-
year study. The T rt is the binary indicator of the deprenyl treatment assignment. Covariates
in zi include baseline measures of gender (indicator of female), age (age0), disease duration
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(duration0 and du20=duration02), total UPDRS (total0), and Schwab & England activities of
daily living scale (seadl0). The follow up time t is measured in quarters (= 3 ×30.4375 days).
For a comparison, we fit data using three models: the latent process model (LPM) proposed
in Section 2, the independent probit model (IPM) that ignores dependency among repeated
measures with , and the random effects probit model
(RPM) with  and wit ~ N (0, 1), where {wit, t ≥ 0}, bi, and
bδi are independent.

Gibbs sampling algorithm is used to sample from the posterior distribution and 50,000
Gibbs samples after a burn-in of 1,000 iterations were used to obtain all posterior estimates.
The Gibbs sampling algorithm performs quite well. The autocorrelations for all model
parameters disappear at lag 10, and the Gibbs sampler converges much earlier before 1,000
iterations. The resulting posterior estimates from the 3 models are given in Table 2. All 95%
highest posterior density (HPD) intervals are computed via the Monte Carlo method
proposed by Chen and Shao (1999).

Large measurement error in PI measures was well recognized among neurologists.
Variability of the force of the pull test leads to inconsistence among examiners and even by
the same examiner (Fahn, 2006). This is described vividly by Dr. Robert Hauser:
“Sometimes the patient doesn’t quite understand the instructions, sometimes he is a little
better prepared, sometimes I may pull a little harder, sometimes he’ll lean forward just as I
pull because he knows what’s coming, sometimes he might not try as hard” (Hauser, 2006).
Such large measurement error was confirmed by the fitted latent process model. From Table
2, we see that both LPM and RPM found significant effects from patient and examiner as
both τ and σ are significantly greater than zero. IPM indicates significant effects of both
treatment and treatment-by-time interaction. It suggests that treatment has a short-term
benefit at baseline and then it accelerates disease progression during the follow up. The
positive sign of the interaction coefficient in RPM also suggests that treatment accelerates,
though not significantly, disease progression. Contrasting to IPM and RPM, the negative
sign of the treatment and the magnitude of its interaction with time in LPM suggest that
treatment slows down, though not significantly, disease progression. Comparing these three
models, results from LPM are more consistent with findings from DATATOP investigators
who reported beneficial effect of dyprenyl on PD (The Parkinson Study Group, 1989, 1990)
and also pointed out that such an effect was only symptomatic but not neuroprotective
(Shoulson, 1998).

All three models give similar conclusions regarding to effects of gender, age0, total UPDRS,
and seadl0. Both LPM and RPM suggest that patient’s PI condition was worsening over time
when other covariate levels are held fixed. But IPM fails to detect this PI progression. The
posterior mean of σ under RPM is larger than the one under LPM. This is intuitive since σ is
the only parameter in RPM to capture the longitudinal dependency. Both LPM and RPM
have identified a significant investigator (examiner) effect.

5.3 Model fit assessment
We compare the goodness-of-fit of the proposed latent structural model with the
independent probit model and the random effects probit model through the quantity

. For LPM,  which is
the subject-wise latent residual defined in Section 4; for IPM, ; and
for RPM, . Frequencies of the pis in different ranges
(pi ≤ 0.05, 0.05 < pi ≤ 0.1, 0.1 < pi ≤ 0.3, 0.3 < pi ≤ 0.5, 0.5 < pi ≤ 0.8 and 0.8 < pi ≤ 1) are
tabulated in Table 3. Although IPM has the highest proportion of pis below 0.05, it has
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16.79% of pis greater than 0.1 with 2.88% of them even greater than 0.5. The LPM is
slightly better than RPM with a higher proportion of pis below 0.05. However, LPM
provides many more attractive features than the other two models and is more suitable for
modeling the PI process.

The fit from latent process model (LPM) is further compared with the observed proportion
of Y (t) = 1 in different homogeneous patient clusters. We partition all patients into 4
mutually exclusive groups: male/treatment, male/placebo, female/treatment, and female/
placebo. In each of these 4 groups, we standardize patients’ baseline measures of seadl0,
total0, age0, and duration0 by dividing them by their sample standard deviations. We use 4-
dimensional Euclidean distance in standardized (seadl0, total0, age0, duration0) measure to
further partition patients into two clusters. For each cluster, we compute the observed
proportion of {Y (t) = 1} at each time interval (with width of 3 months), the posterior
estimate, E[P {Y (t) = 1|z ̄, θ}|Dobs], and the corresponding 95% HPD interval of P {Y (t) = 1|
z ̄, θ}. The observed proportion of {Y (t) = 1} is computed using the sample mean of all
available observations in Y (t) within that time window no matter whether it was from the
same subject or not. The expectation E[P {Y (t) = 1|z ̄, θ}|Dobs] is taken with respect to the
posterior distribution of θ = (β1, β2, σ2) and z ̄ is the average baseline covariates in that
cluster. These results show that the estimated values from LPM are quite close to the
observed values across all clusters. Figure 1 displays plots from two chosen clusters.

5.4 New measure of PI onset time
Let ν(θ|c, d, Z) = P {min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, Z}. To predict DATATOP patient’s
PI onset time using the new PI onset time measure, we compute the probability ν (θ ̂|c, d, Z)
using some typical combinations of covariate values Z, where θ ̂ is the posterior mean of θ. In
DATATOP baseline visit, 75% patients have disease duration less than 1.66 years, and the
first three quartiles of seadl0 are 90, 90, and 95, respectively. We thus fix duration0 = 1 year
and seadl0 = 90. Using the algorithm given in Section 3 with N1 = 500, N2 = 500, N3 =
2000, and n = 20, we compute Monte Carlo estimates of probability ν (θ ̂|c, d, Z) under
different combinations of baseline covariates Z and set c = 1, 1.5 years. The results are given
in Table 4 where duration0 = 1, seadl0 = 90, and d = 3 months and 6 months respectively. It
is seen that older female subjects with higher baseline total UPDRS score tend to have lower
probabilities to recover from PI in both d = 3 months and d = 6 months cases. As c
increases, the probability to recover from Y (t) = 1 decreases, representing a decreased
chance to observe Y (t) = 0 and thus an increased chance to become PI. The simulated
recovery probabilities ν (θ ̂|c, d, Z), across all covariate combinations in Table 4, are much
smaller than the corresponding observations from T2p and T2t defined in Section 5.1. In
general, the threshold value η for the recovery probability ν (θ ̂|c, d, Z) should be obtained
from clinicians or physicians, and it often depends on physician’s objective. For example, if
the goal is to detect mild impairment in postural reflexes, η can be set at a relative larger
value such as η > 30%. On the other hand, if the goal is to detect a severe postural
impairment, one can set η < 5%. In any case, providing ν (θ ̂|c, d, Z) with different
combinations of c, d, and Z will help investigators and physicians in assessing a patient’s
disease condition and designing future Parkinson’s disease studies.

We close this section with a remark that Monte Carlo estimates of probability ν (θ ̂|c, d, z)
evaluated at the posterior mean of θ are very close to the Monte Carlo estimates of
probability E[ν (θ|c, d, z) | Dobs], where the expectation is taken with respect to the posterior
distribution of θ given the observed data Dobs. For example, for all estimates with d = 3
listed in Table 4, the mean difference {ν (θ ̂|c, d, z) − E[ν (θ|c, d, z) | Dobs]} is −0.011 with a
range from −0.028 to 0.013. Similar results are obtained when d = 6. This finding suggests
that ν (θ ̂|c, d, z) provides a good approximation to E[ν (θ|c, d, z) | Dobs]. In addition, the use
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of ν (θ ̂|c, d, z) is more computationally attractive as computing E[ν (θ|c, d, z) | Dobs] takes
much longer time.

6. DISCUSSION
A good clinical outcome should be clinically relevant and accurate. Traditional onset time
can be inaccurate and clinically less useful when the event indicator is subject to large
measurement errors. For progressive diseases, an event onset time defined through a latent
model can incorporate measurement errors from both patients and examiners, and thus
provide a more clinically meaningful measure. Because a latent model can borrow strength
from different subjects and repeated measures, and can adjust for effects from other
confounding risk factors, it is nature to expect that the new onset time defined through a
latent mode will be more accurate provided the model is reasonable.

The use of η and d makes it flexible in defining an event onset time. The time interval width
d relates to the robustness of the new event onset measure, and threshold value η relates to
the severity of the disease condition. When d = η = 0, our new onset time reduces to the
traditional onset time. The algorithm in Section 3 makes the new onset time computation
feasible. This paper only illustrates its application in PI process for Parkinson’s disease, the
same methodology can be applied to develop other event onset time measures with similar
features. For example, the time to certain stage of glomerular filtration rate in end-stage
renal disease, and the time to dementia in many neurodegenerated diseases.

Acknowledgments
We thank Drs. David Oakes, David Banks, Karl Kieburtz, Stanley Fahn, Bernard Ravina, Robert A. Hauser, and
Tom Smith for helpful comments, the NET-PD and the Parkinson Study Group for providing the data. This
research was partially supported by NIH grants #U01NS43127, #AG023630-01A29002, #NS043569, #GM70335,
#CA74015, and #R01CA69222, and MCRF grant #FHA05CRF.

References
1. Albert JH, Chib S. Bayesian analysis of binary and polychotomous response data. Journal of the

American Statistical Association 1993;88:669–679.
2. Albert JH, Chib S. Bayesian residual analysis for binary response regression models. Biometrika

1995;82:747–759.
3. Bloem BR. Postural instability in Parkinson’s disease. Clinical Neurology and Neurosurgery

1992;94(Suppl):S41–S45. [PubMed: 1320515]
4. Chen M-H, Dey DK. Bayesian modeling of correlated binary responses via scale mixture of

multivariate normal link functions. Sankhyâ, Series A 1998;60:322–343.
5. Chen M-H, Dey DK. A unified Bayesian analysis for correlated ordinal data models. Brazilian

Journal of Probability and Statistics 2000;14:87–111.
6. Chen M-H, Dey DK, Shao Q-M. A new skewed link model for dichotomous quantal response data.

Journal of the American Statistical Association 1999;94:1172–1186.
7. Chen M-H, Shao Q-M. Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of

Computational and Graphical Statistics 1999;8:69–92.
8. Diggle, P.; Liang, KY.; Zeger, SL. Analysis of Longitudinal Data. Oxford: Oxford University Press;

1994.
9. Dunson DB. Dynamic latent trait models for multidimensional longitudinal data. Journal of the

American Statistical Association 2003;98:555–563.
10. Elm, et al. A responsive outcome for Parkinson’s Disease Neuroprotection Futility Studies. Annals

of Neurology 2005;57:197–203. [PubMed: 15668964]
11. Fahn, S. Personal conversation. 2006.
12. Hauser, R. Personal conversation. 2006.

Huang et al. Page 11

Stat Interface. Author manuscript; available in PMC 2010 December 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



13. Kieburtz K. Designing neuroprotection trials in Parkinson’s disease (with discussions). Annals of
Neurology 2003;53:S100–109. [PubMed: 12666102]

14. Landau W. Pyramid sale in the bucket shop: DATATOP bottoms out. Neurology 1990;40:1337–
1339. [PubMed: 2118239]

15. Munhoz, et al. Evaluation of the pull test technique in assessing postural instability in Parkinson’s
disease. Neurology 2004;62:125–127. [PubMed: 14718714]

16. Rogers MW. Disorders of posture, balance, and gait in Parkinson’s disease. Clinics in Geriatric
Medicine 1996;12(4):825–45. [PubMed: 8890118]

17. Shoulson I. Parkinson Study Group. DATATOP: a decade of neuroprotective inquiry. Annals of
Neurology 1998;44(Suppl 1):S160–S166. [PubMed: 9749589]

18. The Parkinson Study Group. DATATOP: a multiceter controlled clinical trial in early Parkinson’s
disease. Archives of Neurology 1989;46:1052–1060. [PubMed: 2508608]

19. The Parkinson Study Group. Effect of deprenyl on the progression of disability in early
Parkinson’s disease. New England Journal of Medicine 1990;332(21):1526–1528.

APPENDIX: PROOFS OF THEOREMS

Proof of Theorem 1
Let A be a mi × mi matrix whose (i, j)-element aij satisfies aii = 1, ai,i−1 = −1, aij = 0 for all j
< i − 1 and j > i, i.e.,

Then AViA′ = Di = diag(ti1, ti2 − ti1, ti3 − ti2, …, tim − ti,mi−1) and . For any
vector x = (x1, …, xm)T, we have

Proof of Theorem 2
We note that

(A.1)

Define stopping time T = inf{t : t ≥ 0, ε (t) = a(t, c, w)}. Applying Durbin’s formula (1985),
we obtain
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Proof of Theorem 3
Claim in (i) is obvious.

(ii). Based on the identity (A.1) derived in the proof of Theorem 2 and the fact that the
boundary function a(t, c, w) is continuous in t ≥ 0 with , it suffices to show
that a(t, c, w) is monotone increasing in c. In fact, that  is
monotone in-creasing in c implies that  is
also monotone increasing in c for any w > 0.

(iii). When a0(t) = γ0 + γ1t, we have

This implies that a(t, c, w) is monotone increasing in c for any fixed t ≥ 0.
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Figure 1.
Comparison between observed proportion of Y (t) = 1 (symbol ◦) and posterior estimate E[P
{Y (t) = 1|z ̄, θ}|Dobs] (symbol ×)
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Table 2

Posterior Estimates for DATATOP Trial Data

Variable model Posterior Mean Posterior Standard Error 95% HPD Interval

intercept LPM −1.382 0.717 (−2.827, − 0.023)

IPM −2.037 0.331 (−2.689, − 1.396)

RPM −1.912 1.031 (−3.863, 0.183)

gender LPM 0.313 0.072 (0.174, 0.458)

IPM 0.363 0.034 (0.296, 0.428)

RPM 0.492 0.100 (0.301, 0.690)

age0 LPM 0.015 0.004 (0.007, 0.022)

IPM 0.013 0.002 (0.010, 0.017)

RPM 0.023 0.005 (0.013, 0.033)

duration0 LPM 0.085 0.088 (−0.090, 0.255)

IPM 0.240 0.044 (0.155, 0.328)

RPM 0.128 0.125 (−0.117, 0.370)

du2 LPM −0.020 0.020 (−0.059, 0.021)

IPM −0.056 0.011 (−0.077, − 0.035)

RPM −0.030 0.029 (−0.086, 0.027)

total0 LPM 0.038 0.004 (0.030, 0.047)

IPM 0.035 0.002 (0.031, 0.039)

RPM 0.055 0.006 (0.043, 0.067)

seadl0 LPM −0.020 0.007 (−0.033, − 0.008)

IPM −0.012 0.003 (−0.018, − 0.006)

RPM −0.032 0.010 (−0.050, − 0.013)

T rt LPM −0.113 0.075 (−0.259, 0.034)

IPM −0.130 0.053 (−0.233, − 0.027)

RPM −0.176 0.105 (−0.382, 0.031)

t LPM 0.064 0.010 (0.045, 0.082)

IPM 0.008 0.007 (−0.005, 0.021)

RPM 0.057 0.010 (0.038, 0.076)

t × T rt LPM 0.001 0.012 (−0.023, 0.026)

IPM 0.024 0.009 (0.006, 0.041)

RPM 0.006 0.012 (−0.018, 0.031)

σ LPM 0.346 0.109 (0.111, 0.546)

RPM 1.039 0.064 (0.920, 1.169)

τ LPM 0.414 0.069 (0.287, 0.553)

RPM 0.548 0.092 (0.380, 0.734)
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Table 3

Frequency and proportion of residuals  in different ranges

Range LPM IPM RPM

pi ≤ 0.05 490 (61.40%) 527 (66.04%) 422 (52.88%)

0.05 < pi ≤ 0.1 277 (34.71%) 137 (17.17%) 350 (43.86%)

0.1 < pi ≤ 0.3 31 (3.88%) 86 (10.78%) 26 (3.26%)

0.3 < pi ≤ 0.5 0 (0%) 25 (3.13%) 0 (0%)

0.5 < pi ≤ 0.8 0 (0%) 9 (1.13%) 0 (0%)

0.8 < pi ≤ 1 0 (0%) 14 (1.75%) 0 (0%)

Total 798 (100%) 798 (100%) 798 (100%)
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