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ABSTRACT

Ineffective treatment and poor patient management con-
tinue to plague the arena of clinical oncology. The crucial
issues include inadequate treatment efficacy due to ineffec-
tive targeting of cancer deposits, systemic toxicities, subop-
timal cancer detection and disease monitoring. This has
led to the quest for clinically relevant, innovative multifac-
eted solutions such as development of targeted and trace-
able therapies. Mesenchymal stem cells (MSCs) have the
intrinsic ability to ‘‘home’’ to growing tumors and are
hypoimmunogenic. Therefore, these can be used as (a)
‘‘Trojan Horses’’ to deliver gene therapy directly into the
tumors and (b) carriers of nanoparticles to allow cell
tracking and simultaneous cancer detection. The camou-
flage of MSC carriers can potentially tackle the issues of

safety, vector, and/or transgene immunogenicity as well as
nanoparticle clearance and toxicity. The versatility of the
nanotechnology platform could allow cellular tracking
using single or multimodal imaging modalities. Toward
that end, noninvasive magnetic resonance imaging (MRI)
is fast becoming a clinical favorite, though there is scope
for improvement in its accuracy and sensitivity. In
that, use of superparamagnetic iron-oxide nanoparticles
(SPION) as MRI contrast enhancers may be the best
option for tracking therapeutic MSC. The prospects and
consequences of synergistic approaches using MSC car-
riers, gene therapy, and SPION in developing cancer diag-
nostics and therapeutics are discussed. STEM CELLS
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CURRENT ISSUES IN CANCER

IMAGING AND THERAPY

Approximately 25 million people live with cancer [1] and
�13% of all deaths are attributed to this disease [2] world-
wide. As specific molecular technologies improve, cancer is
increasingly recognized as a highly heterogeneous disease.
Despite improvements in anticancer therapies, the lack of tu-
mor-specificity results in significant treatment-associated mor-
bidity, ultimately limiting efficacy due to dosage limitations.
Research priorities must now seek to refine the specificity and
accuracy of cancer detection and treatment as well as develop
strategies that target a wider repertoire of cancer cells. An im-
portant aim should be to achieve optimal patient management
and improved quality of life through early detection of cancer
and metastases, improved treatment delivery, and monitoring
of outcomes through accurate and sensitive imaging techni-
ques. Although magnetic resonance imaging (MRI) and com-

puted tomography (CT) are currently integral to patient
assessment and management, lesions <1 cm are still difficult
to detect owing to the subjective nature of interpretation that
may lead to inaccurate assessment [3, 4].

Recent developments in real-time in vivo imaging tech-
nologies using image contrast enhancers offer tangible options
to better guide treatment delivery and monitor outcome. Fur-
thermore, improved treatment specificity may be achieved
through gene therapy-based approaches. Using viral and non-
viral vectors, genetic material can be specifically targeted to
cancer cells, for example, to compensate for mutations in tu-
mor suppressor genes, to potentiate anticancer immune
responses, or to cause oncolysis [5]. However, obstacles to
effective delivery of both contrast agents and gene vectors
remain. Immune and reticuloendothelial sequestration or non-
specific vector uptake by nontarget organs dramatically
reduces treatment efficacy. No single agent has offered a solu-
tion, but recent developments in cancer targeting using stem
cell (SC) carriers and nanotechnology have led to innovative
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possibilities. We discuss the prospects of using SCs as gene
therapy carriers and review strategies combining these with
nanocarriers to facilitate monitoring and therapy.

SCS AS CARRIERS OF CANCER THERAPY

The ability of SCs to migrate to pathological sites including
wounds, ischemia, and cancer (including micrometastases) [6–
13] underpins their development as carriers of therapy, thus,
providing an exciting paradigm for targeted cancer therapeu-
tics. The importance of the microenvironment in tumorigenesis
was first recognized in Paget’s seminal (1889) ‘‘seed and soil’’
hypothesis [14]. Stroma provides the architectural framework
for tumor development while facilitating molecular crosstalk
via cytokines and growth factors to promote cellular turnover
and angiogenesis. Thus, tumorigenesis closely resembles
wound healing, leading to description of tumors as ‘‘wounds
that do not heal’’ [15]. Further, extracellular matrix (ECM)
remodeling is mediated by SC and tumor cells [16–18].

SCs from different sources have been explored for bio-
medical applications: embryonic SC; fetal multipotent SC;
induced pluripotent SC; adult multipotent SC comprising neu-
ronal SC (NSC), hematopoietic SC (HSC), and mesenchymal
SC (MSC) (reviewed in [11]; Fig. 1 summarizes their proper-
ties, potential applications, and drawbacks). Overall, by virtue
of their lineage plasticity and tumor tropism, adult SCs dis-
play the best attributes for targeting cancer. Both HSC and
NSC have been explored with variable success, however, their
application is limited either due to issues with production or
inadequate characterization (Fig. 1; reviewed in [19–25]).
MSCs are currently under intense investigation as potential
clinical therapeutic carriers due to their high lineage plasticity
[26] and minimal ethical concerns associated with their isola-

tion and use [11]. This review will focus on the potential of
MSC as cellular carriers in oncology.

MSCS AND CANCER

MSCs are multipotent stromal cells with the ability to self-
renew, differentiate into cells of diverse lineage [27], and
migrate to sites of pathology [28]. First isolated as an adher-
ent mononuclear cell fraction of bone marrow (BM) [29],
MSCs are present virtually in all postnatal tissues [30]. The
following MSCs properties make them ideal therapeutic cellu-
lar carriers (Table 1): ease of isolation and expansion in vitro;
ease of ex vivo genetic modification; autologous transplanta-
tion in patients (overcome issues of host immune responses);
and finally, hypoimmunogenicity (suitable for allogeneic
transplantations). Indeed, approval of �107 clinical trials
employing MSCs for regenerative medicine, stroke, and myo-
cardial infarction (http://clinicaltrials.gov/ct2/results?term¼
Mesenchymalþstemþcells&show_flds ¼ Y) [47] suggests the
clinical feasibility of their use for cancer targeting.

MSCS AND TUMOR TROPISM

MSCs show preferential migration toward sites of inflamma-
tion, injury, and cancer [6]. Typically, these are attracted to
lesions where they engraft into the stroma and persist: in xen-
ograft experiments, 40% of intratumoral fibroblasts in pancre-
atic lesions in mice were of BM origin [44]. Although, dis-
tributed throughout the tumor mass, both this and subsequent
studies have shown a greater concentration of BM-derived
cells toward the tumor periphery, indicative of the role of

Figure 1. A schematic summarizing the properties, applications, and limitations of different stem cells for the treatment of biomedical condi-
tions including cancer. Abbreviations: BM, bone marrow; EnSC, Endothelial Stem Cells; HSC, hematopoietic stem cell; MSC, mesenchymal
stem cell; NSC, neuronal stem cell.
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MSCs in the later stages of stromal induction as regulators of
desmoplastic reactions [48]. Thus far, the tropism of MSCs
for gliomas [42, 49], pulmonary metastases [50–52], breast
cancer metastases [53] ovarian carcinoma [54], and melanoma
[55] has been demonstrated in several animal models.

Although not completely understood, MSCs ‘‘homing’’ to
cancer may involve recruitment of resident fibroblasts and cir-
culating MSCs into the tumor microenvironment through the
release of growth factors and chemokines, where they prolifer-
ate and subsequently differentiate into tumor stroma forming
fibrocytes, myofibroblasts, and neovascular pericytes [48]. Che-
mokine-receptor pairs including stromal-derived growth factor
SDF-1/CXC chemokine Receptor-4 (CXCR4) [56], monocyte
chemotactic protein-1/chemokine (C-C motif) receptor 2 [53],
hepatocyte growth factor/c-met [57], and Vascular Endothelial
Growth Factor (VEGF)/VEGF receptor [58] together with
ECM proteins have been implicated [59] (reviewed in [60]). A
clear understanding of these processes is crucial to improve
MSCs ‘‘homing’’ to tumors in vivo. Characteristics unique to
their migratory phenotype including the chemokine receptor
status and triggering events such as cytokine release and matrix
metalloproteinase (MMP) production at tumor site need to be
identified to determine the optimal biological window for thera-
peutic MSCs targeting of tumors. For example, postresection
production of cytokines that recruit MSCs to gliomas [61] could
provide a window to target gliomas with therapeutic MSCs to
remove residual disease. Further, to achieve optimal tumor tar-
geting, specific identification of nonquiescent SC populations,
which can migrate, target, and integrate into tumor tissue, is
essential. This would require an assessment of relevant recep-
tors on these cells and their responses to biological triggers
using molecular imaging and appropriate ex vivo or in vitro
three-dimensional models [62].

MSCS AND CANCER GENE THERAPY

Overall, the recognition that MSCs ‘‘home’’ toward tumors
while evading immune clearance has led to extensive research
into their use for cancer-specific gene delivery [11, 48, 50,
55]. A primary consideration for such applications is to ensure
their in situ efficacy and survival with the retention of their
fundamental properties of migration, differentiation, and
hypoimmunogenicity, after modification.

Cancer gene therapy delivered using MSC has been based
on suicide-, apoptosis-, anti-angiogenesis-, immuno-stimula-
tory genes, or oncolytic viral vectors (reviewed in [63]) pri-
marily, using the viral vectors. The use of MSCs as carriers
for these vectors [5] can address the drawbacks associated
with their direct use including: safety (e.g., insertional muta-
genesis when integrating viral vectors [retroviruses] are used)
[64]; inadequate tumor targeting; inefficient gene delivery
resulting from vector and/or transgene immunogenicity; lim-
ited availability of virus-specific ‘‘receptors’’ on cancer cells
or inefficient transduction of nondividing cells. Furthermore,
ex vivo MSCs manipulation maximize transduction efficiency
by allowing for the selection of cells carrying the desired
gene before in vivo delivery.

Viral Vectors and MSC

Transduction of MSCs by integrating retroviral vectors is effi-
cient, but their random genomic integration can lead to
unwanted transformation, significantly increasing the risk of
secondary malignancies. Despite continuing efforts toward the
assessment and accurate mapping of safe insertion sites, cur-
rently, the risks may outweigh the advantages. Hence, nonin-
tegrating vectors, such as adenoviruses (Ad), are appealing

Table 1. Properties of MSCs relevant to applications in cancer imaging and therapy

MSC property Key references Findings

Ease of isolation and expansion 31, 32 Bone marrow MSC can differentiate into fibroblasts when cultured in vitro;
MSC display self-renewal and multipotency

33 Significant subset (20%) of BM MSC remain in quiescent G0 phase;
self renewal of this subset may correlate with their ex vivo expansion potential

34 Demonstrated rapid expansion of hMSC even when plated at low densities
Multipotency 35, 36 Can differentiate into adipocyte, chrondrocyte, and osteocyte lineages;
Osteogenic Increased passaging may cause loss of multilineage potential.
Adipogenic 37, 38 hfMSCs maintain transgene expression after lentiviral transduction;
Chrondrogenic Lentivirally modified cells maintain multipotency over 20 population doublings

Maintain differentiation potential
following gene transfer

Hypoimmunogenicity 39 MSC express MHC-I;
Avoid clearance by NK cells;
MHC-II and co-stimulatory molecules are absent, thus evading

allorecognition by CD4þ T-lymphocytes
40 Hypoimmunogenicity persists following tri-lineage differentiation

Migration to tumors 41 hMSC injected into the carotid artery migrated to glioma xenografts
in mice with intracranial xenografts

42 Primary MSC from rats migrated from the contralateral hemisphere to 9L
glioma through the corpus callosum

Engraftment of tumors 43 BM myofibroblasts contribute to cancer desmoplastic reaction;
Contribute particularly to the late phase of tumor development

44 BM contributes to the fibroblast population in murine pancreatic insulinoma model;
Donor-derived BM stromal cells mainly concentrate to the periphery of tumors

Potential for ex vivo gene transfer
and secretion of therapeutic proteins

45 Genetically modified cMSC express high levels of human growth
hormone when reintroduced to dogs

Expression of amphotropic receptors
that potentiate easy transduction

46 hMSC transduced with retroviral vector can continuously secrete biologically active
hFIX from subcutaneous sites in vivo

Abbreviations: BM, bone marrow; cMSC, canine MSC; hFIX, human factor; hfMSC, human fibroblastic MSC; hMSC, Human MSC 8;
MSC, mesenchymal stem cells.
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and are the most widely explored for cancer gene therapy. Ad
can be grown to high titer (�1012 virus particles per millili-
ter), yield high gene expression and importantly, transduce
dividing and nondividing cells [64]. However, systemically
administered Ad can be rapidly cleared by the immune system
and hepatic Kupffer cells [64] and inactivated by Ad-neutral-
izing antibodies in humans [65]. This substantially compro-
mises the efficiency of Ad gene delivery [66–69]. Because of
their hypoimmunogenicity, MSCs may act as a ‘‘Trojan
Horse’’ for the delivering Ad-mediated gene therapy directly
into tumor lesions. This concept has generated significant in-
terest and is the focus of the following section.

MSCs as Hypoimmunogenic Cellular Vehicles for
Adenoviral Vectors

MSCs express major histocompatibility class (MHC)-I anti-
gens, thereby avoiding clearance by natural killer cells,
whereas the absence of MHC-II and costimulatory molecules
permit immune evasion from CD4þ T-lymphocytes [39]. In
vitro studies have demonstrated that MSCs do not cause the
proliferation of allogeneic T-cells following interferon (IFN)-c
stimulation [70] and this hypoimmunogenicity persists even
after tri-lineage differentiation [40]. Studies in several animal
models (rodents, dogs, pigs) have shown that allogeneic-mis-
matched MSCs can engraft in vivo [71]. Importantly, recent
studies have shown that MSC-Ad produce therapeutic trans-
genes even in the presence of physiological concentrations of
sera that would otherwise neutralize adenovirus alone in vitro
[52]. Thus, the dual benefits of MSCs homing and their poten-
tial for allogeneic transplantation without extensive immuno-
suppression can be exploited to increase Ad-gene delivery
specifically to tumor sites.

Efficacy of MSCs Carrying Therapeutic Genes
Against Cancer

High metabolic activity of MSC permits high-level transgene
expression [72]. The use of MSC carriers to deliver Ad-vec-
tors expressing therapeutic genes has been assessed in several
preclinical models of cancer (Table 2). Specific delivery of
cytokine transgenes to tumor sites has been attempted to miti-
gate the toxicities associated with systemic administration of
the corresponding recombinant proteins. Unlike systemically
administered IFN-b, systemically delivered MSC-expressing
IFN-b suppressed tumor growth and prolonged survival in a
lung melanoma model [50]. The antitumor effects were attrib-
uted to the local production of IFN-b within the tumor, thus,
highlighting the importance of MSC engraftment for cancer-
targeted delivery [34]. Similar benefits have been achieved
using MSC-expressing interleukin-2 [42], fractalkine [74], and
tumor necrosis factor-related apoptosis inducing ligand [52]
against intracranial glioma, lung metastases, and lung carci-
noma, respectively. The localized production of cytotoxic
drug metabolites was also achieved using MSC-expressing cy-
tosine-deaminase; local conversion of the prodrug, 5-fluorocy-
tosine to 5-fluorouracil, resulted in inhibition of growth of
colorectal cancer [76] and melanoma [77] xenografts.

MSCs have also been used to carry and support the repli-
cation of oncolytic viruses, which infect tumor cells when
released into the tumor mass. This strategy relies on the opti-
mal balance between minimizing cytotoxicity to the cellular
carriers and maximizing cytopathic effects on cancer cells.
Thus, systemically delivered MSC-bearing oncolytic viruses
have been successful against lung metastases [51] and ortho-
topic breast and lung tumors [75] displaying cytopathic effects
against cancer cells with minimal toxicity to the MSC them-
selves. Similarly, extended host survival and delayed tumor

growth was seen following intraperitoneal delivery of MSC-
bearing oncolytic Ad against ovarian cancer [54]. In compari-
son, the same doses of virus injected systemically showed
only liver accumulation [75], validating the MSC cell-carrier
approach to more efficiently target cancer. However, the low
transduction efficiency of MSC with Ad vectors due to the
low expression of Ad-receptor Coxsackie-adenovirus receptor
(CAR) is a limiting factor [78]. This could not be improved
by increasing the multiplicity of infection or time of exposure
to the Ad [79]. However, alteration of the Ad tropism with
genetic modification of Ad-fiber-knob to contain poly-L-lysine
or addition of the Ad35 fiber improved MSC transduction
by16- to 460-fold [80]. Cumulatively, these studies indicate
the superiority of Ad-modified MSC over the use of Ad alone,
although, their therapeutic success is conditional on the effi-
ciency at which MSC are transduced and their subsequent
engraftment and persistence within the tumors.

Limitations of MSC Carriers for Cancer Gene
Therapy

Despite tremendous interest in MSC, the unpredictability of
their in vivo biological properties such as migration and
potential for contribution to the neoplastic phenotype poses a
serious obstacle. Some studies have raised concerns that
proangiogenic and immunomodulatory properties of MSC
may potentiate growth and metastatic capacity of epithelial
cancer cells particularly when MSCs are mixed with the can-
cer cells prior to implantation [81]. Others have shown no
apparent effect of exogenous MSC on tumor progression with
proven MSC migration but lack of proliferation and differen-
tiation [82, 83]. Thus, exhaustive investigative studies are
essential prior to any clinical application [63], for example,
an assessment of the time required to generate pathology free
cells, genetic modification, expansion and phenotypic and
genotypic characterization, and then certification for human
use needs to be established. The investment in time and
resources to produce clinical grade MSC showing acceptable
levels of genetic modification and expansion to a therapeutic
dose for use in patients is considerable. A timely completion
of such characterizations is particularly challenging when
dealing with primary cells prior to transplantation. Further-
more, MSC from different sources show different properties
[84, 85]. For example, MSC from BM proliferate less effi-
ciently than those from umbilical chord or adipose tissue.
Some of these constraints can be addressed by development
of immortalized, clonal MSC lines that after exhaustive char-
acterization, especially, with respect to their tumorigenicity
(e.g., based on type of immortalization gene, its insertion
site), may be optimal for clinical use [63].

Additionally, variations in persistence, survival, and inter-
actions of MSC in the tumor microenvironment can affect the
duration and level of gene expression at the tumor site [63].
Chemotherapy or the immunogenicity of the transgene and/or
vector may impact on MSC survival in situ. Overall,
adequately long systemic survival of these carriers is man-
dated to ensure therapeutic efficacy against cancer. This could
in part be supported by the production of immunosuppressive
chemokines or cytokines, such as VEGF, Interleukin 10
(IL10), or immunosuppression of T effector-, antigen-present-
ing- or regulatory T-cells. A better understanding of MSC
biology can be exploited to prolong their systemic survival,
for example, recognition that CD47 marker expression can
prevent SC phagocytosis by macrophages [86, 87]. Ulti-
mately, all new approaches must be assessed using human
data to evaluate safety and efficacy. Toward that end, a rapid
translation of the findings will be greatly facilitated by
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monitoring SC survival and behavior in vivo through use of
longitudinal, noninvasive imaging technology [4, 82, 88–91].

MSCS AND IMAGING

To translate MSCs benefits to the clinic, their accurate detec-
tion and localization in real time using clinically relevant
imaging techniques is essential. An ideal imaging modality
should be noninvasive, sensitive, and provide objective infor-
mation on cell survival, function, and location. In context of
cancer, MRI, CT, positron emission tomography (PET), and
single photon emission computed tomography (SPECT) are
the most explored (specific features of different imaging
modalities are reviewed in [3, 91–95]. Overall, while nuclear
imaging by PET or SPECT leads to greater sensitivity (>5 �
103 cells; [96]), these are primarily limited by lack of anatom-
ical context [97]. MRI provides accurate anatomical detail but
does not yield information about cell viability and show poor
sensitivity (>105 cells; [98]). Although, none of these modal-
ities is ideal, MRI is the most preferred for cellular tracking
(comprehensively reviewed in [95, 99–102]). Through detec-
tion of proton relaxations in the presence of magnetic field
(1.5 Tesla [T]–3 T for clinical imaging), it provides tomo-
graphic images with excellent soft tissue contrast and can
locate the cells of interest in context of the surrounding milieu
(edema or inflammation) [103–105] without the use of harm-
ful ionizing radiations (as with CT, PET, SPECT). In addi-
tion, MRI offers a greater tracking window in comparison to
PET and SPECT that are limited by the decay of short-lived
radioactive isotopes.

During MRI, the intrinsic tissue contrast is affected by
local microenvironment including magnetic inhomogeneities
of the contrast agents, usually measured as changes in two
relaxation time constants T1 (brightening) and T2 (darkening)
times [106]. In this context, nanotechnology-based contrast
agents have rapidly come to the forefront to improve SC
detection in situ. In the following sections, after a brief intro-
duction of the nanotechnology platform as it applies to cancer
targeting its potential synergistic applications involving the
MSCs carriers are discussed.

Nanotechnology and Cancer: Potential for Synergies
with Cellular Carriers for Targeting Cancer

Initiated by the discovery that particles of �50–100 nm ‘‘pas-
sively’’ accumulate in cancer deposits, nanotechnology has
fast emerged as a tool for imaging and/or delivery of thera-
pies in oncology. This passive uptake occurs via an
‘‘enhanced permeability and retention effect’’ where inherently
leaky tumor vasculature coupled with poor intratumoral lym-
phatic drainage allows extravasation and entrapment of the
nanoparticles [107, 108]. Further, nanoparticle surfaces can be
modified with cancer-specific antibodies or peptides for the
‘‘active’’ targeting of tumor cells [109]. Thus, nanotechnology
platforms offer flexibility and versatility. Not only can nano-
particles deliver targeted therapeutic payloads (drugs or
genes), their intrinsic components can simultaneously serve as
enhancers for imaging [110]. For optimal targeting and effi-
cacy in vivo, these particles should be biocompatible (based
on their size, shape, surface coatings, and chemical or immu-
notoxicity [111, 112]), easily targeted (through surface inter-
actions with cancer targeting antibodies, peptides or ligands),
and easily tracked by virtue of their composition to allow
clinical imaging [110].

Of the ever expanding catalogue of nanoparticles includ-
ing polymers, dendrimers, liposomes, carbon nanotubes, nano-

shells, and magnetic nanoparticles [110], several have gained
Food and Drugs (FDA) approval for cancer therapeutics
(Doxil, DaunoXome) and imaging (Resovist) [107, 110, 113].
However, their first clinical application may be as imaging
agents [114–116] and in that the best developed are superpar-
amagnetic iron-oxide nanoparticles (SPION).

SPION comprise a crystalline iron-oxide core coated with
biocompatible materials such as, dextran, starch, or polyol
derivatives, that confer stability in vivo and can be conjugated
with cancer-targeting ligands or gene-vectors for active target-
ing. These display magnetism only under the influence of an
external magnetic field [117], which also avoids self-aggrega-
tion. Importantly, SPION are biocompatible and are elimi-
nated through the body’s normal iron metabolism. SPION
have been studied for cancer therapy (hyperthermia), mag-
netic field-assisted targeting, and as contrast enhancers for
MRI and targeted molecular imaging [118, 119]. The promise
shown in such studies have initiated clinical evaluation of
SPION for the detection and management of liver metastases
with enhanced sensitivity of up to 95% [120] to nodal metas-
tases in both head and neck [121] and genitourinary cancers
[122, 123]. Although these studies have shown SPION usage
to be safe [124], some issues associated with their use need to
be addressed.

Issues with Use of Iron-Oxide-Based Nanoparticles. Major
limitations of SPION beyond MRI of the Reticuloendothelial
system (RES), include their uptake by phagocytic cells lead-
ing to their rapid clearance from the blood [125], in vivo tox-
icity resulting from the coating materials, and surface chemis-
try together with unwanted cellular or tissue distribution [118,
126]. SPION can also cross the blood-brain barrier and accu-
mulate in the liver (80%–90%), spleen (5%–8%), and BM
(1%–2%) [127]. Their ability to agglomerate in the presence
of a magnetic field can cause embolization [126, 128]. Exces-
sive iron-oxide could also lead to an imbalance in its homeo-
stasis and may lead to toxicity [129]. Therefore, toxicity of
any new formulations of SPIONs has to be established and
would require extensive characterization terms in terms of
SPION composition, coatings, size, and dosing regimens in
vivo. Thus, the use of the nanoparticles under the ‘‘camou-
flage’’ of MSCs may resolve some of these issues. Particularly
for cellular tracking, the delivery of nanoparticle-labeled
MSCs directly into tumor deposits will not only allow the
tracking of the labeled cells but also the targeted tumor
deposits.

Magnetic Nanoparticles and Tracking of SCs
In Vivo

Several paramagnetic and magnetic nanoparticles have been
evaluated for labeling SCs to enhance their tracking by MRI.
Paramagnetic gadolinium (Gd)- and Mn-based nanoparticles
lead to image brightening (T1-based) while those based on
SPIONS (50–200 nm), ultraSPION (�35 nm), and micron-
sized (MPION) lead to image darkening (T2 and T2*-based)
[114, 130]. Of these, only SPION are approved for clinical
imaging and are the general focus of this review.

SPION and MRI of SCs. SPION display greater magnetic
susceptibility in comparison to conventional Gd and engender
significant signal loss to delineate areas of interest. Thus,
SPION-labeled cells display a ‘‘blooming’’ artifact’ that
extends beyond the size of particles making the cells more
visible for detection. Clinically, about 1–30 pg Fe per cell is
adequate for detection of labeled cells by MRI without altera-
tions in the proliferation, migration, differentiation, reactive
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oxygen species formation, and apoptosis rates [118, 131].
Hence, with the increasing use of MSCs for therapy of tissue
injury [132, 133], MRI tracking protocols have gained promi-
nence generating crucial information about their migration
and survival. MRI signals from intramyocardial implanted
SPION-labeled MSC could be detected for up to 16 weeks
(Fig. 2A) [132–134] and specific migration of intravenously
given SPION-labeled MSCs to the infarct area and not to the
healthy surrounding viable myocardium was shown [136].
Further, through MRI of SPION-labeled porcine MSC,
improved survival in the infarct zone than in healthy myocar-
dium was shown [137]. Similarly, in models of brain injury
and stroke, injury-specific migration of SPION-labeled MSCs
(injected contralateral to the area of injury or infused intrave-
nously) could be tracked by MRI (Fig. 2B) [8, 28, 138, 139].
Thus, MRI-based demonstration of retention of injury-specific
migration and improved survival of labeled MSCs at the site

of injury suggests the feasibility of this approach in clinical
oncology.

Targeting Cancer and Cellular MRI. In cancer, to date,
cellular MRI has primarily been explored in glioma models
with most studies employing EnSC or NSC. MRI of SPION-
labeled endothelial progenitor cells demonstrated their tumor
tropic migration and differentiation into neovasculature within
intracranial glioma (Fig. 2C) [135, 140]. Given their neuronal
bias, NSC carriers are the most explored for targeting glioma,
(NSC literature for reference: [9, 35, 25, 63, 99, 141–143]).
Indeed, through MRI of magnetically labeled NSC, their seed-
ing, migration, homing to invading tumor cells has been eval-
uated successfully clearly indicating the promise of such com-
binational approaches [9, 144–151] for tracking cellular carriers
to cancer lesions. In that, MSCs have generated recent interest
as unlike NSCs, these are readily expandable with minimal

Figure 2. MRI of superparamagnetic iron-oxide nanoparticles (SPION)-labeled stem cells showing their persistence, migration, and tumor hom-
ing in vivo. (A): Demonstrates long-term mesenchymal stem cell (MSC) traceability using SPION. Rat MSCs labeled with iron particles injected
into the infracted heart could be detected as hypointense regions from 1 week and detected for up to 16 weeks. Volume of the signal void
reduced to lesser extent in severely infarcted hearts in comparison with milder infarcts. VCAlphaMedPress, April 20th, 2006; Reprinted from
[134], with permission from Wiley-Liss, Inc. a subsidiary of John Wiley & Sons, Inc. (B): Migration of MSCs to site of pathology: Endoderm
(SPION)-labeled rat MSCs migrate toward the lesion of brain (A0) could be detected by MR up to 7 weeks after implantation (C0 and D0) in the
contralateral hemisphere MSCs (B0). Reprinted from [7], with permission from Macmillan Publishers Ltd., VC 2007 Nature Publishing Group. (C):
Tumor homing and engraftment by Sca-1 positive bone marrow (BM) cells (target the tumor vasculature) by MRI: Serial MRI in tumor bearing
mice that received magnetically labeled Sca-1þ BM cells. (A0): Three-dimensional (3D) RARE images show dark regions developing within and
around tumors due to incorporation of labeled cells into the vasculature and parenchyma of tumor, images are acquired on day 4, 9, and 11. By
day 11, a dark rim appear on the tumor periphery. (B0): Corresponding ex vivo gradient images of the same mouse on day 11. MR evidence of
labeled cell incorporation demonstrates that neovascularization occurs primarily at the tumor periphery in the later stages of tumor development.
Reproduced from [135], with permission from (This research was originally published in Blood) VC 2007 The American Society of Hematology.
(D): Tumor homing by SPION-labeled MSCs: The pattern of MSCs distribution, their incorporation and migration could be tracked using 1.5-T
MR imaging following i.v. injection of SPION/green fluorescent protein-labeled cells. MSCs distribution throughout the tumor on day 7 (B0) was
shown by a well-defined dark hypointense region. After 14 days, most MSCs were found at the tumor border (hypointense region in [D0]), (C0,
F0). 3D reconstructions show the SPION-labeled MSCs as yellow structures indicated by the yellow arrows. This study demonstrates that systemi-
cally transplanted MSCs migrated toward glioma with high specificity in a temporal–spatial pattern. Reproduced from [49], with permission from
VC 1944-2009 by the American Association of Neurosurgeons. Abbreviations: MRI. magnetic resonance imaging.
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ethical issues. MRI of intravenously infused SPION-labeled
MSCs demonstrated specific migration toward glioma MRI
[49] in a temporal-spatial pattern showing initial distribution
throughout the tumor with subsequent concentration at the pe-
riphery (Fig. 2D) [49]. MRI at 1.5 T could detect the signal for
over a week with ensuing decay after 14 days, but could be
improved by MRI at higher magnetic field strengths. As glioma
has a diffuse distribution and spreads beyond the original site
[152], the ability of MSCs to home toward metastatic glioma
highlights their potential to ‘‘track’’ the migration of cancer.
The translation of such noninvasive imaging techniques toward
a broader repertoire of cancers is now being explored.

Approaches to Improve MRI Sensitivity and
Duration

Magnetic-nanoparticle-labeled cells face limitations typical of
exogenously labeled cells such as the dilution of signal with
cell division limits the duration of MRI tracking; attenuation
of signal down to 42% of the original after 8 weeks was
observed [153]. Further, asymmetric sequestration of label
during cell division may compromise detection accuracy
[154]. The accuracy of MRI data is also compromised by the
inability to distinguish viable and nonviable cells and the gen-
eration of false signals from dead cells or those engulfed by
macrophages [155]. This has initiated interactive research to
improve cellular MRI sensitivity and accuracy; a discussion
of some of the approaches follows.

Efficient labeling of MSCs can improve detection by mag-
nifying MRI signals [102, 156]. Given that spontaneous
SPION uptake is minimal in virtually all cell types apart from
those of the RES [157], attempts have been made to increase
iron loading into cells through SPION derivatization with pep-
tides [158], dendrimer coatings [159], combination with trans-
fection agents (TAs) [131, 160–162], and electroporation
[163] with variable success (Table 3). Currently, the most
widely accepted protocols involve combining SPION with
TAs such as poly-L-lysine and protamine-sulfate, achieving
high labeling efficiency approaching 100% [161, 162]. How-
ever, the narrow therapeutic index for titration of these TAs
raises the chance of cytotoxicity, changes in the gene expres-
sion or their migratory ability [168, 180, 181]. Furthermore,
while SPION-TA-transduced MSCs display unaltered adipo-
genic and osteogenic differentiation, there is continued debate
regarding their deleterious effects on chondrogenesis [131,
170]. Thus, a special emphasis on new ways to maximize iron
internalization in MSCs while limiting toxicity and impact on
normal MSCs properties is needed (Table 3).

Use of Other Nanolabels Can Improve MRI Detection of
SCs. Given that signal gain (T1 contrast) is more specific
and easier to interpret than signal loss (T2 contrast), paramag-
netic manganese-oxide- or gadolinium-oxide-based nanopar-
ticles (T1 contrast enhancers) may provide an attractive alter-
native [99, 101, 182]. Gd-oxide nanoparticles have appeal
because Gd-chelates are approved for clinical MRI and have
been used to trace human NSC or MSC [183]. However,
potential mitochondrial toxicity [184, 185] compounded by a
requirement of greater molar quantities for optimal imaging
has limited the interest in their use for MRI. Novel paramag-
netic fluorinated nanoparticles have recently been shown to
display high specificity with both clinical and high field MRI.
Given the absence of endogenous fluorine (F) in the body, hot
spot 19F MRI images of labeled cells were generated with
negligible background. Ahrens et al., tracked 19F-nanopar-
ticle-labeled dendritic cells (using cationic perfluoropolyether)
to the regional lymph-node after injections into the foot pad

of mice [186]. For a complete picture, though, the hot spot
image requires overlaying with a simultaneous proton image
(standard1H MRI) [150, 187] (Fig. 3B). Despite the benefit of
quantifying the labeled cells [191], sensitivity is low as the
signal comes only from the labeled cells, while the proton
signal draws from a much larger pool within the body and
hence, is currently the preferred choice.

Other Approaches. One approach is to utilize gene technol-
ogy to introduce magnetic susceptibility enhancing genes
[192], efficient transduction of these cells would be key to suc-
cess of such an approach. Toward that end, the magnetic prop-
erties of virus or plasmid DNA-conjugated SPION have been
harnessed through ‘‘magnetofection’’ to provide superior trans-
duction (up to 500-fold increase) of ‘‘hard to transduce’’ cells
with shorter incubation periods [193–195]. We have shown
that Ad-conjugated SPION and magnetofection markedly
improves the transduction of MSCs (low CAR expression) ex
vivo while minimizing vector toxicity through a reduction in
vector dose and incubation time (unpublished data).

Additionally, notable success of approaches employing
modification of hardware and imaging protocols as well as
synergizing different imaging modalities has pioneered new
innovations for future research [105, 114, 196–202]. Some of
these approaches are summarized in Table 4 and Figure 3.

Thus, recent developments in SC, gene technology, and
nanotechnology platforms against cancer have reached a junc-
tion where there is enormous potential to synergize their indi-
vidual advantages to achieve concomitant tumor-targeted ther-
apy and imaging.

CONCLUSIONS AND PERSPECTIVES

The potential synergism between MSCs, gene-therapy, and
magnetic nanoparticles offers an exciting innovation that may
offer cancer patients greater treatment and disease manage-
ment options and ultimately better quality of life. The advan-
ces in nanotechnology may be combined with MSCs to facili-
tate their tracking and provide accurate details about their
location, viability and survival. For effective cellular therapy
of cancer, the carriers need to target cancer deposits irrespec-
tive of their size and location, should be traceable and should
survive long enough to deliver the therapeutic payload. This
will require real-time imaging ability with high spatial and
temporal resolution as well as stringent target specificity.

Current clinical probes generally cater to a single imaging
modality, however, it is now clear that combining the attrib-
utes of multiple modalities will be required to provide a com-
prehensive assessment of events as they occur [114]. Indeed,
this concept, now explored by various research groups will
soon be a preferred choice for clinical application. Again, the
flexibility of nanotechnology platforms may be a great ally in
imaging cell-based therapies. For example, the imaging poten-
tial of MSCs labeled with magnetic nanoparticles conjugated
with radionuclides will allow the combined advantages of
short-term PET sensitivity and the long-term signal persist-
ence of MRI. Further, development of multimodal smart
nanoparticles that can simultaneously image and treat cancer
with real time monitoring of associated events [114, 188] is
now feasible through the versatility of nanotechnology. How-
ever, these particles need to be exhaustively assessed for their
biocompatibility and intracellular or in vivo toxicity before
they achieve widespread applicability in the clinic.

Given a relatively poor understanding and ability to con-
trol MSCs in vivo behavior, their application as carriers of
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contrast agents may not be safe [227]. This may be resolved
to some extent by combining imaging with a backup suicide
gene technology to eradicate misbehaving cells. This can be
achieved through smart combinations with tools of gene ther-
apy, for example, through introduction of suicide genes with
regulatable promoters. For example, the use of Herpes Sim-
plex Virus (HSV)/tk Gene Directed Enzyme Prodrug Therapy
(GDEPT) and radioactive substrate (18F-9-(4-[18F]Fluoro-3-
Hydroxymethylbutyl) Guanine (18F-FHBG)) has been suc-
cessful in both human and animal studies for PET imaging
[228]; the presence of HSV/tk suicide gene can serve as an
additional control to eliminate the transduced cell by treat-
ment with the prodrug (Ganciclovir and Acyclovir) which is
then converted to a toxic drug by tk. Thus, magnetically la-
beled MSCs with HSV/tk GDEPT would allow MRI-PET
along with the control of cell survival as needed. Both nano-
particles and MSCs can carry gene vectors, hence, there is

scope for endogenous expression of reporter genes under tis-
sue or lineage specific promoters [229] or expression of mag-
netic susceptibility enhancing genes to enhance the accuracy
of the imaging data. Such adjuncts may allow additional
assessment of cell viability, survival and fate. Use of reporter
genes green fluorescent protein or luciferase [192] regulated
by lineage-specific promoters may help detect SCs following
differentiation, for example, use of cardiac-specific a myosin
heavy chain promoter to detect SC conversion to cardiac
myocytes [230, 231], Tyrosine kinase with immunoglobulin-
like and EGF-like domains 1 (TIE) promoter [229] to detect
endothelial differentiation, and osteopontin or osteocalcin pro-
moters to detect osteogenic changes [232].

Taking into account the limitations and attributes of dif-
ferent types of SCs, MSCs offer a feasible option in clinical
oncology. New sources of MSCs are under development,
including those from adipose tissue [30, 76, 77] and umbilical

Table 3. Potential strategies to increase MSC uptake of magnetic nanoparticles

Strategiesa
Magnetic nanoparticle type

and concentration Iron loading (pg/cell) Issues

Linking to HIV-Tat peptide
HIV-Tat peptide contains membrane translocating

signal, transports SPION into cells.
Labeled cell types:
Neural progenitor cells, hematopoietic CD34þ cells

CLIONb

100 lg/ml
10–36 Nuclear localization of

particles [158]
High potential for reactive

oxygen species damage
to nucleus [164]

Linking to mAbs
Anti-Tfr mAb linked to SPION
Bind to Tfr and internalize through receptor

mediated endocytosis
Labeled cell types:
Neural progenitor cells

SPION
25 lg Fe/ml

Not reported Interspecies differences
require different mAbs
for preclinical models

Potential for nonspecific
entry into wide range
of cells expressing
transferrin receptors
in vivo [165–167]

Regulatory issues with
use in the clinic [164]

Magnetodendrimers
SPION coated with carboxylated dendrimer
Charged coating induce membrane bending

and internalization
Labeled cell types:
HeLa, NIH3T3 fibroblast, human neural

stem cells, human MSCs

Carboxylated dendrimer
coating SPION core

1–25 lg Fe/ml

8.5–13.6 Nonspecific uptake and
large surface area of
highly charged polymers
pose safety concerns [159]

SPION-TA
Various TA used
Lipofectamine [168]
PLL [168]
Protamine sulfate [131, 169]

Labeled cell types:
Mesenchymal stem cells, human cervical carcinoma

(HeLa), lymphoblasts (LADMAC), neural stem cells

SPION
Feridexc

25–50lg Fe/ml

1.47–120 Up to 40% decrease in
viability observed at
high dose of PLL [168]

SPION-PLL may inhibit
chondrogenesis
of MSC [170]

Magnetoelectroporation
Rapid low-voltage pulses to induce SPION entry

Labeled cell types:
Rat and human MSC, mouse NSC

SPION
250–2,000 lg Fe/ml

2.5–10 Relatively high iron
concentration required
to achieve optimal
SPION uptake [163]

May lead to the formation
of hydrophilic pores
between cytoplasm
and extracellular
environment [163]

High loss of viability
if pulse conditions are
not well controlled [171]

aAdditional references for readers interested in stem cell labeling: [172–179].
bCross-linked iron oxide nanoparticles.
cFeridex, Food and Drug Administration (FDA) approved SPION coated in dextran but recently discontinued.
Abbreviations: HIV, human immunodeficiency virus; LADMAC, mAbs, monoclonal antibodies; MSC, mesenchymal stem cell; NIH3T3,
NSC, neuronal stem cell; PLL, poly-L-lysine; TA, transfection agent; SPION, superparamagnetic iron oxide nanoparticles; Tfr, transferrin receptor.
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cord blood [233, 234] and show similar tumor homing and
functional capacity as BM-derived MSCs. The wide availabil-
ity of MSCs from these sources and development of well-
characterized immortalized clonal stem cell lines may also
ease the practical application of MSCs in the clinic. In partic-
ular, the potential for MSCs to be transplanted across MHC
barriers in humans [71] can be further explored to facilitate
ease of donation in future clinical contexts. It must be noted

that the specificity of this system is highly conditional on the
tumor homing abilities of MSCs and their in vivo behavior,
making this a priority research area. Enhanced insight into the
mediators of homing will allow for active targeting of tumors
by inducing MSCs to overexpress target receptors for homing.
Also, with increasing knowledge of mechanisms or pathways
involved in SCs migration, efforts are being directed toward
developing specific ligands to target lesions, for example, to

Figure 3. Approaches to improve stem cell tracking by MRI. (A): PET-MRI dual modality imaging using multimodal nanoparticles: (magnetic nano-
particles þ radionuclide, 124I), brachial (3 mm; A0, B0, C0) and axillary lymph nodes (D0, E0, F0) could be detected by superimposition (C0, F0) of ana-
tomical MRI images (A0, D0) with the intense red signal images obtained with PET (B0, E0). Reproduced from [188], with permission fromVCWiley-VCH
Verlag GmbH & Co. KGaA. (B): 19F Rapid imaging of labeled mononuclear cells (human umbilical cord blood) at both research (11.7 Tesla) and clini-
cal field (1.5 Tesla) strengths: Using multiple perfluorocarbon nanoparticles, green (PFOB) or red (CE), hot spot 19F images (B0: PFOB) and (C0: CE)
were generated and could be superimposed with 1HMRI (11.7 T) for anatomical localizations to the mouse legs (D0). Similar results were obtained using
1.5 T MR (E0: 19F image and F0: superimposed 19F and 1H image). The authors were able to detect as few as 2,000 CE-labeled and 10,000 PFOB-la-
beled cells with 19F MR spectroscopy and 6,000 CE-labeled cells with 19F MRI in vitro. Reproduced from [187], with permission from FEDN of AM
Societies for Expreimental Bio (FASEB) Journal via copyright clearance center, VC 2006 by FASEB. (C): Detection of Ultra Small Superparamagnetic
Iron Oxide Nanoparticles (USPION)-labeled cells using fast imaging employing steady state acquisition pulse sequence on a 1.5 T clinical MRI scanner.
(A0): Single USPION-labeled cells could be detected using a custom built gradient RF coil and optimized pulse technology. (a): fluorescent image of
Dil/superparamagnetic iron-oxide nanoparticles (SPION)-labeled cells localized between two layers of gelatin in an ELISA well, (b) MR image, (c)
fusion image, (d) Axial MR showing the localization of cells in a plane. Reprinted from [189], with permission fromVC 2003Wiley-Liss, Inc. a subsidiary
of John Wiley & Sons, Inc. (B0): In vivo MR images detecting SPION-labeled macrophages (signal voids shown by arrows) injected into the mouse brain
frontal cortex (a) and cerebellum (b). (c, d) represent the corresponding images of a control mouse. Reproduced from [190], with permission from
VC 2006 Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc. Abbreviations: CE, perfluoro15-crown-5 ether; MRI, magnetic resonance imaging;
PET, positron emission tomography; PFC, Perfluorocarbon; PFOB, perfluorooctylbromide.
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direct cells to CXCR4/SDF1 axis to facilitate MSCs tumor tro-
pism [59]. Recent evidence of increased MSCs engraftment in
tumors following irradiation (releases chemotactic signals) [235,
236] also indicates the potential of using MSC-based gene ther-
apy as an adjuvant following radiotherapy to maximize the re-
moval of residual disease. Finally, highly specific delivery and
individualized therapy may be achieved by the choice of thera-
peutic genes and manipulation of the vectors depending on the
cancer type and degree of aggressive therapy required.

Overall, it is clear that there is no single magic bullet to
overcome the complexity and heterogeneity of cancer. Multi-
faceted approaches that exploit the best attributes of MSC
biology, nanotechnology, gene-technology, and gene therapy
have the potential to overcome hurdles encountered when
each is used alone. However, the possibility that such multidi-
mensional modifications may also enhance the danger of
unwanted changes in MSCs functional phenotype such as gain
of tumorigenic potential or loss of specific migration, cannot
be ignored. A rigorous characterization of modified cells with

focus toward addressing the potential regulatory issues would
be crucial to achieve their speedy translation to the clinic.

ACKNOWLEDGMENTS

This work is supported by funds from Cancer Australia Priority-
driven Collaborative Cancer Research Scheme, Prostate Cancer
Foundation, Australia and University of New South Wales Fac-
ulty Research Grants Funding Scheme, Australia.

DISCLOSURE OF POTENTIAL CONFLICTS

OF INTEREST

The authors indicate no potential conflicts of interest.

Table 4. Approaches to improve detection of labeled stem cells by MRI

Aim Strategy Studies/outcomes References

To overcome signal dilution
or generation of false
signals with exogenously
labeled cells

Introduction of endogenous
magnetic susceptibility
genes

Genes encoding ferritin, transferrin, and
its receptor (involved in sequestering iron
in cells), tyrosinase (involved in the synthesis
of melanin, which has high affinity for Fe)
and proteins from magnetotactic bacteria (mag A)

Limitation: Threshold iron levels need to be
attained for a cell to be detected. This would
depend upon availability of enough iron stores
that in turn are heavily regulated by the body

192, 203–209

To improve MRI sensitivity
at cellular level

Development of MR
hardware and
optimized technology

Labeling with usSPION

Single cell detection in vitro and in vivo using
SPION was achieved through development of
MRI hardware and optimized pulse design
technology. (see Fig. 2C)

Multiparametric MRI (T1, T2, and T2*-w images)
was used to minimize the background and
generate better resolution images of growing
glioma using gadolinium-labeled NSC

Single cells of diameter 5–20 lm were labeled
with millions of usSPIONs and detected by
standard MRI acquired at resolution of 50–100 lm.

148, 189, 210, 211

212, 213

To improve accuracy of
detection and avoid
false signals

Combine more than
one imaging modality
to compensate for
individual shortcomings-

Develop multimodal nanoparticles
Some examples of multimodal nanoparticles that
have been developed for improving detection of MRI
Magnetic NP-optical NP(fluorescent labels

or Quantum Dots)
SPIONþGd-chelates with fluorescent labels
Radionuclide-Magnetic NP

Combination imaging (some examples)a

MRI-PET using multimodal nanoparticles
(124I conjugated serum albumin coated
Mn-nanoparticles) improved spatial and anatomical
resolution with high sensitivity and accurately
imaged 3mm sentinel lymph node (see Fig. 2A)

Significantly improved detection and monitoring of
hybrid multimodal nanoparticles-labeled MSC
(fluorophore þmagnetic particles) to the site of
myocardial injury. This enabled ready detection in the
beating heart using standard scanner

Multimodal MRI/SPECT imaging of 111In-oxine/SPION-
labeled dendritic cells in melanoma patients improved
the monitoring of DC migration through inguinal lymph
node. (MRI detection improved to 2000DC/voxel vs.
105 cells by standard MRI)

214–219

188

220

221

aOther examples of combination modality imaging, please read [96, 222–226].
Abbreviations: DC, Dendritic Cells; MRI, magnetic resonance imaging; MSC, mesenchymal stem cell; NP, Nanoparticles; NSC, neuronal
stem cell, PET, positron emission tomography; SPION, superparamagnetic iron oxide nanoparticles; usSPION, ultra small SPION.
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