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Abstract
Genome-wide association studies using hundreds of thousands of single-nucleotide polymorphism
(SNP) markers have become a standard approach for identifying disease susceptibility genes. The
change in the technology poses substantial computational and statistical challenges that have been
addressed in the quality control, imputation, and population-based measure groups of the Genetic
Analysis Workshop 16. The computational challenges pertain to efficient memory management
and computational speed of the statistical procedures, and we discuss an approach for efficient
SNP storage. Accuracy and computational speed is relevant for genotype calling, and the results
from a comparison of three calling algorithms are discussed. The first statistical challenge is
related to statistical quality control, and we discuss two novel quality control procedures. These
low-level analyses have an effect on subsequent preparatory steps for high-level analyses, e.g., the
quality of genotype imputation approaches. After the conduct of a genome-wide association study
with successful replication and/or validation, measures of diagnostic accuracy including the area
under the curve are investigated. The area under the curve can be constructed from summary data
in some situations. Finally, we discuss how the population-attributable risk of a genetic variant
that is only measured in a reference data set can be determined.
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INTRODUCTION
With the availability of high-throughput genotyping technologies based on hundreds of
thousands of single-nucleotide polymorphisms (SNPs), genome-wide association (GWA)
studies have become a standard approach for unraveling the basis of complex genetic
diseases. The recent technological advances have created a series of challenges for genetic
epidemiologists. Before we describe these challenges and some solutions that have been
proposed at the Genetic Analysis Workshop 16 (GAW16), we describe the typical flow of a
GWA and subsequent studies from the perspective of a genetic epidemiologist [Fig. 1,
adapted from Ziegler et al., 2008].

Genetic epidemiological research starts at the design stage with a biological question.
Having decided on the most appropriate study design, samples are collected, and the DNA
chip is selected. The second stage of today’s genetic epidemiological research is the
laboratory stage: before chips can be hybridized, the DNA needs to be prepared. After chip
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hybridization, the chip is scanned. Now the statistical stages follow, and low-level analyses
have to be performed before high-level analyses.

Low-level analysis starts with image analysis. In some software packages the investigator
does not recognize that normalization of signal intensities and genotype calling are two
different tasks that are performed in two steps. Based on the called genotypes and/or the
signal intensities, extensive quality control is performed.

High-level statistical analysis only starts after completion of quality control. These are
followed by subsequent replication and validation studies. At the end, the effect on the
population is investigated. The power to identify new loci relies on the sample size, and
therefore there is a need to combine data for meta-analyses across multiple studies and
multiple platforms. To this end, SNPs that are not available on a specific chip are imputed,
and statistical analysis, typically a meta-analysis with subsequent replication and validation,
is conducted.

Finally, as in the path without imputation, population effect is investigated. Other aspects
that are not depicted in Fig. 1 also play a role. For example, functional or animal studies are
carried out to investigate whether the identified associations cause disease. Alternatively,
family studies are used to determine whether the disease follows a particular Mendelian
model.

New challenges emerge for genetic epidemiologists at different points in the conduct of a
GWA and subsequent studies, and in this GAW16 group several solutions to these
challenges have been proposed or evaluated. This GAW16 group only analyzed the real
data, and it consists in seven different papers.

COMPUTATIONAL CHALLENGES – MEMORY MANAGEMENT
First, important computational challenges arise. For example, the image of a typical single
Affymetrix chip requires more than 60 MB of storage. With a typical sample size of 1,000
cases and 1,000 controls, approximately 120 GB of storage are needed. After image
processing, a sample still requires 37 GB of storage as an Affymetrix cel file. Only after
normalization and genotype calling is the file size substantially reduced; it is approximately
3.5 GB for the typical case–control study with a total of 2,000 subjects. Of course, for
simple input/output operations of the data, more than 1 GB of memory is still required.
Therefore, specific data management and memory management tools have been developed
for the analysis of GWA studies, including GenABEL [Aulchenko et al., 2007],
GENOMIZER [Franke et al., 2006], GSCANDB [Taylor et al., 2007], OpenADAM [Yeung
et al., 2008], PLINK [Purcell et al., 2007], or SNPLims [Orro et al., 2008].

The fundamental idea used in some of these specific programs is to use two bits for one SNP
genotype [Aulchenko et al., 2007; Purcell, 2008] for high data compression. Specifically, a
diallelic SNP-based genotype has four possible choices: 0 (AA), 1 (AB), 2 (BB), or 3
(missing), leading to 2 bits per SNP. The theoretical compression ratio therefore is 4:1
compared with a byte storage scheme (one byte for each genotype) minus some overhead.

Chen et al. [2009] investigated the performance of their own memory management tool,
which uses the four SNPs per byte storage approach and compared it with the standard one
SNP per byte storage approach. They applied their tool to the data from the North American
Rheumatoid Arthritis Consortium (NARAC), which included 2,062 subjects and 550,000
SNPs from the Illumina Infinium HumanHap550 SNP chip [Amos et al., 2009]. In their
analysis using the simple allelic χ2 test for association, Chen et al. [2009] observed a heap
memory usage of 305 MB for the compressed data storage and more than 1 GB (1074 MB)
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for the uncompressed data storage. The differences between the two approaches in central
processing unit (CPU) time were not pronounced for the simple allelic test. However, when
haplotype blocks were to be identified, a huge discrepancy was found with CPU time of ~11
sec for compressed data storage but 169 sec for uncompressed data storage.

In conclusion, SNP data should be stored with two bits per SNP. This saves both CPU time
and storage.

ACCURACY AND COMPUTATIONAL CHALLENGES – GENOTYPE CALLING
Computational speed and memory management as well as accuracy play an important role in
the genotype calling stage of a study. In the last few years, many different genotype calling
algorithms have been proposed for both the Affymetrix and the Illumina platforms. In their
contribution, Vens et al. [2009] compared the three genotype calling algorithms BRLMM
[Affymetrix, 2007], Chiamo [The Wellcome Trust Case Control Consortium, 2007], and
JAPL [Plagnol et al., 2007] using Affymetrix GeneChip Human Mapping 500k Array Set
data from the Framingham Heart Study (FHS) as provided for GAW16 [Cupples et al.,
2009]. An important aspect of the study is that Vens et al. [2009] were not able to normalize
all subjects in one run because of a memory access error when more than approximately
2,000 subjects were used in CelQuantileNorm, the normalization procedure recommended
for JAPL and Chiamo. By investigating the concordance between the genotype calling
algorithms, Vens et al. [2009] were able to identify previously undetected errors in strand
coding. The highest number of samples with a call fraction <0.97 was observed for
BRLMM, followed by Chiamo. No subject had a call fraction <0.97 when JAPL was used.
Therefore, the authors conclude that JAPL would be the algorithm of choice if as many
samples as possible should be retained for further analysis. This finding is in line with the
conclusions of Plagnol et al. [2007], who stated that their genotype calling algorithm was
specifically designed to deal with uncertain genotypes that are said to be missing by other
approaches. Vens et al. [2009] also found that the highest number of SNPs was kept by
Chiamo, so that this genotype calling algorithm would be the method of choice if
investigators aim at keeping a high number of SNPs for further analyses after standard
quality control.

When SNPs from a GWA study are represented in a deFinetti triangle [Ziegler and König,
2006], most of the SNPs group around the Hardy-Weinberg curve [Goddard et al., 2009].
BRLMM and JAPL showed excess heterozygosity, i.e., more heterozygous subjects than
expected under HWE, for a larger number of SNPs than Chiamo. In contrast, Chiamo more
often revealed a deficiency of heterozygotes than BRLMM and JAPL.

In summary, JAPL would be the algorithm of choice if as many samples as possible should
be retained for further analysis. Chiamo would be the method of choice if investigators aim
to keep a high number of SNPs for further analyses after standard quality control.

STATISTICAL CHALLENGES – QUALITY CONTROL
After genotype calling, standard quality control is performed on the subject level as well as
on the SNP level. Standard filters on the subject level include

• Call fraction which should be as high as possible;

• Cryptic relatedness, as measured by identity by state (IBS) between pairs of
subjects. If the IBS is too high, subjects might be closely related;

• Ethnic origin, as determined by principal component (PC), multidimensional
scaling (MDS) or non-metric multidimensional scaling (NMDS) analysis. Study
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populations should be as homogeneous as possible, and subjects with a different
ethnic background should be excluded from analyses;

• Excess or deficiency of heterozygosity. If the heterozygosity on a chip is too high,
the DNA might be contaminated. If it is too low, hybridization might have failed.

Standard filters on the SNP level include

• Minor allele frequency (MAF). Most genotype calling algorithms tend to perform
poorly for SNPs with low MAF, and the power of a study is low for detecting
associations to SNPs with a low MAF.

• Missing frequency (MiF), often termed 1−[SNP call rate]. It indicates how well the
clusters of a SNP are separated. For case-control studies, the MiF should be
investigated separately in cases and in controls because differential missingness
between cases and controls can result in spurious associations [Clayton et al.,
2005].

• Hardy-Weinberg equilibrium (HWE). SNPs are excluded if substantially more or
fewer subjects are heterozygous at a SNP than expected (excess heterozygosity or
heterozygote deficiency).

These global filters are effective in removing SNPs with clustering problems. They reduce a
large number of highly significant erroneous associations and lower the genomic control
lambda so that quantile-quantile plots do not show more outliers than expected under the
null [Ling et al., 2009]. However, these filters are not able to identify all SNPs of bad
quality. Therefore, Ling et al. [2009] have introduced sex-specific filters which should be
added to the standard quality control procedures. The first three are for X-chromosomal
markers (X), and the last four for autosomal markers:

• X: proportion of male heterozygote calls;

• X: absolute difference in the call fractions for males and females;

• X: code all samples as females, use the correct sex as phenotype and investigate
whether the proportion of missing data is associated with sex;

• Absolute difference in call fractions for males and females;

• Proportion of heterozygotes in males and females in all samples;

• Missing data by sex;

• Test of allelic association by sex among controls.

The last test, which is carried out in the control group only, is especially meaningful because
sex-based confounding is likely to cause some small differences in allele and genotype
frequencies.

The traditional standard quality control filters, termed Travemunde Criteria, are summarized
with the additional standard quality control filters in Table I. The name Travemunde Criteria
comes from a consortium meeting in Travemunde held in 2007 that was used for the work of
Samani et al. [2007] and subsequent papers.

Although the standard quality control approaches and the novel filters are helpful in
identifying SNPs of low quality, the visual inspection of signal intensity plots is still the
ultimate quality control approach when an association has been identified [Ziegler et al.,
2008]. For example, Affymetrix states in its “Best Practices” for the analysis of data from
GWA studies “Visually analyze all candidate SNPs” [Affymetrix, 2008, p. 257]. The
recommendation to inspect only candidate SNPs is probably a consequence of the fact that
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systematic visual inspection of all cluster plots is impossible in a high-throughput setting
because of the high workload. For example, we currently require approximately 2 h for the
independent visual inspection of 100 cluster plots by two experienced readers, and readers
are fatigued after a short period.

Nevertheless, the inspection of all cluster plots, i.e., on the genome-wide level, is of interest.
For example, for genotype imputation, which often is the basis for meta-analyses of GWA
studies, only SNPs of high quality should be used [de Bakker et al., 2008]. Furthermore,
when machine learning approaches or genome-wide haplotype analyses are used for GWA
data [Trégouët et al., 2009; Ziegler et al., 2007], all SNPs should be quality assured.

Therefore, approaches would be helpful that allow the automated inspection of cluster plots,
and this task is comparable to measuring the internal validity of the clustering in cluster
analysis [Halkidi et al., 2002a; Halkidi et al., 2002b; Handl et al., 2005]. Intuitively, the
genotype calling performs well for a specific SNP if neighboring points in a signal intensity
plot that are similar are assigned the same genotype and points that are dissimilar are
assigned to different genotypes. Furthermore, a good SNP will have small distances within a
genotype group and large distances between different genotypes.

Formally, the validity of a genotype calling can be measured as follows [for reviews see
Handl et al., 2005; Kim and Ramakrishna, 2005]:

• Compactness measures closeness of genotypes. This concept is related to the intra-
cluster variation, and therefore a typical example for such a measure is the
variance. Of course, the variance also indicates how different the subjects within a
genotype group are. However, a low value of variance is an indicator of closeness.

• Connectedness attempts to assess how well partitioning groups subjects together
with their nearest neighbors. Representatives of such measures count violations of
nearest neighbor relationships.

• Separability indicates how distinct two genotype groups are, and therefore the
distance is compared between two different clusters.

• Combinations of the above criteria: A number of approaches combine measures of
the above types, and several measures assess both intra-cluster homogeneity and
inter-cluster separation, and an example for such a measure has been given by
Plagnol et al. [2007] in the context of GWA studies. Another example is the non-
linear combination of both measures using the silhouette width as discussed by
Lovmar et al. [2005] in the context of genotype quality.

• Cluster stability is a special form of internal cluster validation. It measures how
sensitive a method is to perturbation of the data, i.e., how sensitive the genotypes
are with respect to small changes in the signal intensity. Measures of this type
repeatedly re-sample or perturb the original data set, and re-cluster the resulting
data. The consistency of the corresponding results provides an estimate of the
significance of the clusters obtained from the original data set. In the context of
genotype quality, it has been discussed by Teo et al. [2008]. The major
disadvantage of this approach is its CPU time. Specifically, genotypes need to be
called anew after adding the perturbation. Currently, for a study with 1,500 chips
the required time is approximately one working day on a Dual Quad Core with 32
GB RAM. Of course, the analyses should be performed repeatedly for averaging
the random effects.

The usefulness of these approaches for large sample sizes and GWA studies has not been
studied in detail. Therefore, the proposal of Schillert et al. [2009] can be considered a first
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step in this direction. They introduced an automated cluster plot analysis (ACPA) approach,
and their method falls in the group of connectedness. In the method, the Mahalanobis
distance is considered from the center of a cluster to all samples within the cluster. Next, a
cluster boundary is defined by distending the ellipses of the cluster using a factor that
depends on the interquartile range. Finally, the number of samples from the other clusters
falling in the boundary of the cluster under consideration is calculated. If the number of
subjects falling in the boundary of a different cluster exceeds a certain limit, the SNP is said
to have unreliable clustering. They assessed the performance of ACPA with the decision
made by two independent readers based on the BRLMM calls for 1,000 randomly selected
SNPs from the FHS. Sensitivity – correct detection of low quality SNPs – was 88% and
specificity – correct detection of high quality SNPs – was 86%. By varying the width of the
boundary, Schillert et al. [2009] were able to increase the specificity to 99% with a
sensitivity of 50%.

In summary, standard quality control, including the novel filters proposed by Ling et al.
[2009], is an absolute requirement before high-level analyses. The automated evaluation of
cluster plots should be further improved.

ACCURACY AND COMPUTATIONAL CHALLENGES – GENOTYPE
IMPUTATION

There is a growing need to work with complete genotypic data, e.g., for machine learning
approaches, and to combine genotype data across multiple studies that have been obtained
from different platforms. The analysis of missing data has a long tradition in statistics, and it
is important to be aware of the different missing data mechanisms and potential pitfalls for
the statistical analysis [D’Agostino, 2007; Gail, 1991; Laird, 1988]. While traditional
statistical approaches for dealing with missing data use data from the study of interest only,
several approaches have been proposed in the context of GWA studies recently that make
use of external data sources [Li and Abecasis, 2006; Marchini et al., 2007; Nicolae, 2006;
Servin and Stephens, 2007]. A disadvantage of the available publications is that the
statistical assumptions underlying the employed methods are rarely formulated. Several
studies were performed at GAW16 that compared the performance of several genotype
imputation packages in terms of accuracy, speed, and user-friendliness [for a review see
Thomas, 2009].

CHALLENGES FOR PUBLIC HEALTH – MEASURES OF DIAGNOSTIC
ACCURACY

When a series of disease-associated SNPs have been identified, replicated, and possibly
validated [for a detailed discussion of the terminology, see Igl et al., 2009], standard
measures of diagnostic accuracy for a quantitative diagnostic test are investigated. These
include the area under the curve (AUC), which can be constructed even if only summary
data are available [Lu and Elston, 2008]. Jeffries and Zheng [2009] compared the Lu-Elston
approach with the standard logistic regression method when individual-level data are
available. They observed that the Lu-Elston method is valuable when only summary
statistics can be used. However, the conventional logistic regression is preferable when full
data sets are available, because it allows model selection using standard likelihood theory.
Furthermore, to provide useful information without a complete data set, the Lu-Elston
method is subject to two constraints. First, to be included in the model, continuous
covariates are converted to factors with a few levels. Second, unless considerable
information regarding pairwise LD is available, the SNPs are modeled as independent. This
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means that multilocus genotype probabilities have to be obtained by the product of single-
SNP genotype probabilities.

A different scenario for population-based measures has been considered by Hadley and
Strachan [2009]. They showed that the population attributable risk (PAR), i.e., the
proportion of cases attributable to a variant, at the untyped functionally relevant SNP can be
estimated from the allele frequency p and the allelic relative risk RR at an observed SNP as
follows. The (PAR) is often called attributable risk for short. In a first step, a parameter φobs

is estimated at the typed – observed – SNP as . In the second step, φtrue at
the functionally relevant position is estimated via φtrue = φobs/  where  is the usual
normalized Lewontin’s measure of linkage disequilibrium (LD). When the functionally
relevant SNP is not typed in a specific study, the  estimated from an external data source is
used. Finally, the PAR at the untyped SNP is obtained as PAR = φtrue(2 − φtrue).

When a set of genotyped SNPs k = 1,…,K is available that are in LD with the functionally
relevant variant, Hadley and Strachan [2009] proposed to calculate φtrue as a weighted
average across typed SNPs. The weights should be inversely proportional to the variance.
Using the delta method, Hadley and Strachan [2009] derived the approximate variance of
φtrue and showed that inverse-variance weights proportional to the r2 LD measure are

appropriate so that  is the coefficient of
determination between the kth typed SNP and the unmeasured functionally relevant variant.

In summary, the conventional logistic regression is preferable for constructing an AUC over
the Lu-Elston approach when full datasets are available. Using a simple transformation, the
PAR can be estimated at an untyped SNP from genotyped SNPs when information about the
LD is available.

Acknowledgments
The author is grateful to all participants of GAW16 Group 8. The group discussions would not have been a success
without the participating senior colleagues Joan E. Bailey-Wilson, Heather Cordell, Charles C. Gu, and Yan Sun.
The author is also grateful to the authors of the seven BMC Proceedings papers summarized in this work: Xiang
Chen, David Hadley, Neal Jeffries, Hua Ling, Arne Schillert, Daniel F. Schwarz, and Maren Vens. This work was
supported by the German Ministry of Education and Science, grant 01 EZ 0874, and the German Research
Foundation, grant ZI 591/17-1. The Genetic Analysis Workshops are supported by NIH grant R01 GM031575 from
the National Institute of General Medical Sciences.

REFERENCES
Affymetrix. BRLMM: An improved genotype calling method for the GeneChip® Mapping 500K

Array Set. Santa Clara, CA: Affymetrix; 2007.
Affymetrix. Affymetrix® Genotyping Console 3.0 user manual. Santa Clara, CA: Affymetrix; 2008.
Amos CI, Chen WV, Seldin MF, Remmers E, Taylor KE, Criswell LA, Lee AT, Plenge RM, Kastner

DL, Gregersen PK. Data for Genetic Analysis Workshop 16 Problem 1, association analysis of
rheumatoid arthritis data. BMC Proc. 2009; 3 Suppl 7:S2. [PubMed: 20018009]

Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: An R library for genome-wide
association analysis. Bioinformatics. 2007; 23:1294–1296. [PubMed: 17384015]

Chen X, Zhang M, Wang M, Zhu W, Cho K, Zhang H. Memory management in genome-wide
association studies. BMC Proc. 2009; 3 Suppl 7:S54. [PubMed: 20018047]

Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, Maier LM, Smink LJ, Lam AC, Ovington
NR, Stevens HE, Nutland S, Howson JM, Faham M, Moorhead M, Jones HB, Falkowski M,
Hardenbol P, Willis TD, Todd JA. Population structure, differential bias and genomic control in a
large-scale, case-control association study. Nat Genet. 2005; 37:1243–1246. [PubMed: 16228001]

Ziegler Page 7

Genet Epidemiol. Author manuscript; available in PMC 2010 December 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Cupples LA, Heard-Costa N, Lee M, Atwood LD. for the Framingham Heart Study Investigators.
Genetic Analysis Workshop 16 Problem 2: The Framingham Heart Study data. BMC Proc. 2009; 3
Suppl 7:S3. [PubMed: 20018020]

D’Agostino RB Jr. Overview of missing data techniques. Methods Mol Biol. 2007; 404:339–352.
[PubMed: 18450058]

de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects of
imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet. 2008;
17:R122–R128. [PubMed: 18852200]

Franke A, Wollstein A, Teuber M, Wittig M, Lu T, Hoffmann K, Nurnberg P, Krawczak M, Schreiber
S, Hampe J. GENOMIZER: An integrated analysis system for genome-wide association data.
Hum Mutat. 2006; 27:583–588. [PubMed: 16652332]

Gail MH. A bibliography and comments on the use of statistical models in epidemiology in the 1980s.
Stat Med. 1991; 10:1819–1885. [PubMed: 1805315]

Goddard KA, Ziegler A, Wellek S. Adapting the logical basis of tests for Hardy-Weinberg equilibrium
to the real needs of association studies in human and medical genetics. Genet Epidemiol. 2009
(Epub ahead of print).

Hadley D, Strachan DP. Inference of disease associations with unmeasured genetic variants by
combining results from genome-wide association studies with linkage disequilibrium patterns in a
reference data set. BMC Proc. 2009; 3 Suppl 7:S55. [PubMed: 20018048]

Halkidi M, Batistakis Y, Vazirgiannis M. Cluster validity methods: Part I. Sigmod Rec. 2002a; 31:40–
45.

Halkidi M, Batistakis Y, Vazirgiannis M. Clustering validity checking methods: Part II. Sigmod Rec.
2002b; 31:19–27.

Handl J, Knowles J, Kell DB. Computational cluster validation in post-genomic data analysis.
Bioinformatics. 2005; 21:3201–3212. [PubMed: 15914541]

Igl B-W, König IR, Ziegler A. What do we mean by “replication” and “validation” in genome-wide
association studies? Hum Hered. 2009; 67:66–68. [PubMed: 18931511]

Jeffries N, Zheng G. Evaluation of an optimal receiver operating characteristic procedure. BMC Proc.
2009; 3 Suppl 7:S56. [PubMed: 20018049]

Kim M, Ramakrishna RS. New indices for cluster validity assessment. Pattern Recognit Lett. 2005;
26:2353–2363.

Laird NM. Missing data in longitudinal studies. Stat Med. 1988; 7:305–315. [PubMed: 3353609]
Li Y, Abecasis GR. Mach 1.0: Rapid haplotype reconstruction and missing genotype inference. Am J

Hum Genet. 2006; S79:2290. [abstract].
Ling H, Hetrick K, Bailey-Wilson JE, Pugh EW. Application of sex-specific single-nucleotide

polymorphism filters in genome-wide association data. BMC Proc. 2009; 3 Suppl 7:S57.
[PubMed: 20018050]

Lovmar L, Ahlford A, Jonsson M, Syvanen AC. Silhouette scores for assessment of SNP genotype
clusters. BMC Genomics. 2005; 6:35. [PubMed: 15760469]

Lu Q, Elston RC. Using the optimal receiver operating characteristic curve to design a predictive
genetic test, exemplified with type 2 diabetes. Am J Hum Genet. 2008; 82:641–651. [PubMed:
18319073]

Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide
association studies by imputation of genotypes. Nat Genet. 2007; 39:906–913. [PubMed:
17572673]

Nicolae DL. Testing untyped alleles (TUNA)-applications to genome-wide association studies. Genet
Epidemiol. 2006; 30:718–727. [PubMed: 16986160]

Orro A, Guffanti G, Salvi E, Macciardi F, Milanesi L. SNPLims: A data management system for
genome wide association studies. BMC Bioinformatics. 2008; 9 Suppl 2:S13. [PubMed:
18387201]

Plagnol V, Cooper JD, Todd JA, Clayton DG. A method to address differential bias in genotyping in
large-scale association studies. PLoS Genet. 2007; 3:e74. [PubMed: 17511519]

Ziegler Page 8

Genet Epidemiol. Author manuscript; available in PMC 2010 December 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Purcell, S. PLINK (v1.05). A whole-genome association toolset. Boston, MA: Psychiatric and
Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General
Hospital. 2008. http://pngu.mgh.harvard.edu/~purcell/plink/

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker
PI, Daly MJ, Sham PC. PLINK: A tool set for whole-genome association and population-based
linkage analyses. Am J Hum Genet. 2007; 81:559–575. [PubMed: 17701901]

Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T,
Braund P, Wichmann HE, Barrett JH, König IR, Stevens SE, Szymczak S, Tregouet DA, Iles MM,
Pahlke F, Pollard H, Lieb W, Cambien F, Fischer M, Ouwehand W, Blankenberg S, Balmforth AJ,
Baessler A, Ball SG, Strom TM, Braenne I, Gieger C, Deloukas P, Tobin MD, Ziegler A,
Thompson JR, Schunkert H. WTCCC and the Cardiogenics Consortium. Genome-wide
association analysis of coronary artery disease. N Engl J Med. 2007; 357:443–453. [PubMed:
17634449]

Schillert A, Schwarz DF, Vens M, Szymczak S, König IR, Ziegler A. ACPA: Automated cluster plot
analysis of genotype data. BMC Proc. 2009; 3 Suppl 7:S58. [PubMed: 20018051]

Servin B, Stephens M. Imputation-based analysis of association studies: Candidate regions and
quantitative traits. PLoS Genet. 2007; 3:e114. [PubMed: 17676998]

Taylor M, Valdar W, Kumar A, Flint J, Mott R. Management, presentation and interpretation of
genome scans using GSCANDB. Bioinformatics. 2007; 23:1545–1549. [PubMed: 17400728]

Teo YY, Small KS, Clark TG, Kwiatkowski DP. Perturbation analysis: A simple method for filtering
SNPs with erroneous genotyping in genome-wide association studies. Ann Hum Genet. 2008;
72:368–374. [PubMed: 18261185]

The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of
seven common diseases and 3,000 shared controls. Nature. 2007; 447:661–678. [PubMed:
17554300]

Thomas DC. Genome-wide association studies for discrete traits. Genet Epidemiol. 2009 this volume.
Trégouët D-A, König IR, Erdmann J, Munteanu A, Braund PS, Hall AS, Götz A, Linsel-Nitschke P,

Perret C, DeSuremain M, Meitinger T, Wright BJ, Preuss M, Balmforth AJ, Ball SG, Meisinger C,
Germain C, Evans A, Arveiler D, Luc G, Ruidavets JB, Morrison C, van der Harst P, Schreiber S,
Neureuther K, Schäfer A, Bugert P, El Mokhtari NE, Schrezenmeir J, Stark K, Rubin D,
Wichmann HE, Hengstenberg C, Ouwehand W, Ziegler A, Tiret L, Thompson JR, Cambien F,
Schunkert H, Samani NJ. Wellcome Trust Case Control Consortium; Cardiogenics Consortium.
Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a
risk locus for coronary artery disease. Nat Genet. 2009; 41:283–285. [PubMed: 19198611]

Vens M, Schillert A, König IR, Ziegler A. Look who is calling: A comparison of genotype calling
algorithms. BMC Proc. 2009; 3 Suppl 7:S59. [PubMed: 20018052]

Yeung JM, Sham PC, Chan AS, Cherny SS. OpenADAM: An open source genome-wide association
data management system for Affymetrix SNP arrays. BMC Genomics. 2008; 9:636. [PubMed:
19117518]

Ziegler A, DeStefano AL, König IR. on behalf of Group 6. Data mining, neural nets, trees – Problems
2 and 3 of Genetic Analysis Workshop 15. Genet Epidemiol. 2007; 31 Suppl 1:S51–S60.
[PubMed: 18046765]

Ziegler, A.; König, IR. A statistical approach to genetic epidemiology: Concepts and applications.
Weinheim: Wiley-VCH; 2006.

Ziegler A, König IR, Thompson JR. Biostatistical aspects of genome-wide association studies. Biom J.
2008; 50:8–28. [PubMed: 18217698]

Ziegler Page 9

Genet Epidemiol. Author manuscript; available in PMC 2010 December 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pngu.mgh.harvard.edu/~purcell/plink/


Figure 1.
Succession of design, experimental and data analysis steps in a genome-wide association
and subsequent studies. Adapted from Ziegler et al. [2008].
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Table I

Filters for standard quality control (sQC) of genome-wide association (GWA) studies: Travemunde Criteria.

Level Filter criterion Standard value for filter

Subject Call fraction ≥ 97%a

Cryptic relatedness Study specific

Ethnic origin Study specific; visual inspection of principal
components

Heterozygosity Within mean ± 3 SD over all samples

Heterozygosity by sex Within mean ± 3 SD within sex group

SNP Minor allele frequency (MAF) ≥ 1%

Missing frequency (MiF) ≤ 2% in any study group, e.g., in both cases and
controls

MiF by sex ≤ 2% in any sex

Hardy-Weinberg equilibrium p < 10−4

Difference between control groups p > 10−4 in Cochran-Armitage trend test between
control groups

Sex differences among controls p > 10−4 in Cochran-Armitage trend test between
males and females

X-chromosomal SNPs only Code all samples as females, use the correct sex as
phenotype and investigate whether the proportion of
missing data is associated with sex

No standard value available

Proportion of male heterozygote calls No standard value available

Absolute difference in the call fractions for males and
females

No standard value available

Sex-specific heterozygosity No standard value available
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