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ABSTRACT

Memory T cells are generated following an initial viral infection, and have the potential for medi-
ating robust protective immunity to viral re-challenge due to their rapid and enhanced functional
responses. In recent years, it has become clear that the memory T cell response to most viruses is
remarkably diverse in phenotype, function, and tissue distribution, and can undergo dynamic
changes during its long-term maintenance in vivo. However, the role of this variegation and com-
partmentalization of memory T cells in protective immunity to viruses remains unclear. In this re-
view, we discuss the diverse features of memory T cells that can delineate different subsets, the char-
acteristics of memory T cells thus far identified to promote protective immune responses, and how
the heterogeneous nature of memory T cells may also promote immunopathology during antiviral
responses. We propose that given the profound heterogeneity of memory T cells, regulation of mem-
ory T cells during secondary responses could focus the response to participation of specific subsets,
and/or inhibit memory T-cell subsets and functions that can lead to immunopathology.
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INTRODUCTION

THE PROMISE THAT MANIPULATION OF MEMORY T CELLS

HOLDS for providing long-lasting protective immu-
nity against viral infections is matched by the challenge
of understanding their complex and heterogeneous prop-
erties. In primary responses to newly encountered
viruses, naive T cells become activated in lymphoid tis-
sue and differentiate into effector T cells, which then mi-
grate to peripheral sites and coordinate viral clearance.
Most of these effector cells die after virus is cleared, al-
though a subset of primed, virus-specific T cells devel-
ops into long-lived memory. These memory T cells can
mediate rapid and effective recall immune responses con-
ferring protective immunity to viral challenge. There are
two main features of antigen-specific memory T cells that
distinguish them from naive T cells and enable them to

coordinate efficient secondary responses. One feature is
the ability of memory T cells to mediate rapid effector
responses upon antigenic recall, compared to naive T
cells that lack immediate effector function. The other fea-
ture is the remarkable heterogeneity of memory T cells
in homing capacities, function, and tissue distribution in
lymphoid and non-lymphoid sites—starkly contrasting
the homogenous phenotype and exclusive lymphoid res-
idence of naive T cells. This memory heterogeneity im-
parts a functional and spatial diversity to the recall re-
sponse; however, the role of heterogeneous memory T
cells in secondary responses and protective immunity to
viral challenge remains poorly understood. In particular,
it is not known whether maximizing memory hetero-
geneity or focusing a memory T-cell response is more
beneficial to protective immunity. In this review, we will
discuss heterogeneous properties of memory T cells, how



specific memory T-cell subsets differ in their antiviral ef-
ficacy, and how functional diversity may lead to both pro-
tection and immunopathology in antiviral responses. We
also propose that optimizing protective immunity by
virus-specific memory T cells can be achieved by regu-
lating the heterogeneity of existing memory T-cell pop-
ulations.

Memory T cells: Basic properties

Memory T cells exhibit enhanced functional proper-
ties and distinct phenotypic features, compared to naive
T cells (60,132). Functionally, memory T cells exhibit
rapid effector cytokine production within hours of stim-
ulation, whereas naive T cells require days of sustained
activation to differentiate into effector cytokine produc-
ers (26,60). This “rapid recall” response is the defining
feature of memory CD4 and CD8 T cells, and includes
production of Th-1-type effector cytokines IFN-�, IL-2,
and TNF-�; Th-2-like cytokines IL-4, IL-5, and IL-10
(93); or the Th-17-type cytokine IL-17 (148,149). Mem-
ory T cells also have less stringent activation require-
ments compared to naive T cells, including a reduced ac-
tivation threshold for low antigen doses (114). Memory
T cells can be fully activated by many antigen-present-
ing cell (APC) types such as resting B cells, macrophages,
and endothelial cells (31,37), as well as dendritic cells
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(DCs) (166), which are the primary APCs for activating
naive T cells. Phenotypically, memory T cells differ from
naive T cells in their elevated expression of adhesion
markers CD44 (22) and CD11a (147) or CD45RO in hu-
mans. The CD45RB isoform was originally found to be
differentially expressed on naive versus memory CD4 T
cells (19,73); however, CD45RB expression occurs on a
subset of memory CD4 T cells (16) (Table 1), and the
human counterpart, CD45RA, can also be expressed on
subpopulations of memory T cells (131). Thus, the two
invariant functional and phenotypic features that define
memory T cells are rapid effector function, and increased
CD44 expression in mice or CD45RO expression in hu-
mans.

MEMORY T-CELL HETEROGENEITY

The profound heterogeneity of memory T cells first
became apparent 8 years ago in studies by several groups
(5,6,119,120,141). This heterogeneity was found in both
mouse and human CD4 and CD8 memory T cells, and
was defined by variations in expression of the lymph node
homing receptors CD62L and/or CCR7 (6,120,141), and
diverse distribution in lymphoid and non-lymphoid tis-
sue sites (86). Lanzavecchia and colleagues defined two
subsets of memory T cells in human peripheral blood
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TABLE 1. PHENOTYPIC VARIATIONS THAT DEFINE FUNCTIONAL SUBSETS OF MEMORY T CELLS

Phenotypic markers Memory subsets Functions References

CCR7 Effector-memory Effector cytokine 6,118–120,141
CD62L CD62Llo/CCR7� production

Central-memory IL-2, high
CD62Lhi/CCR7� proliferation

CD45RB CD45RBhi Low effector 16
responses

CD45RBlo Effector cytokines
VLA1 CD49b� TNF-�, protective 48, 62
VLA-2 (CD49b) CD49b� IL-10

VLA-1� Th-1 functions
CD27 Effector memory Effector cytokine 18, 46, 53

CD27lo production
Central memory IL-2, high
CD27hi proliferation

CD28 CD28� All resting memory 98, 106, 150
CD28� Newly activated

memory/CMV
downmodulation

CD43 CD43lo Effector cytokines 53, 71, 100
CD43hi Naive

CCR6, CCR4 CCR6�CCR4� IL-17 2, 9
CXCR3 CXCR3� Th-1 responses 68, 131



based on CD62L/CCR7 expression and functional ca-
pacity, with the CCR7�CD62Lhi population producing
predominantly IL-2 designated as “central -memory”
(TCM), and the CCR7–CD62Llo subset producing effec-
tor cytokines defined as “effector-memory” (TEM)
(118–120). Central and effector memory subsets also
were found to delineate memory subsets with distinct tis-
sue distribution, with TCM residing primarily in lymphoid
sites and peripheral blood, and TEM predominating 
in non-lymphoid sites and mucosal compartments
(75,86,118). Further in vitro analysis of human TCM and
TEM subsets led to a model in which the TCM subset
served as a continuously renewing “memory stem cell”
which also replenished the TEM pool (72).

Although the TEM/TCM concept and nomenclature has
been widely adopted, there is accumulating in vivo evi-
dence that the function, heterogeneity, and lineage rela-
tionship of memory T-cell subsets do not follow the 
central/effector memory paradigm. First, the original
functional dichotomy between TCM and TEM subsets does
not apply to multiple antigen-specific models. Equivalent
effector function was found to be produced by mouse
LCMV-specific TCM and TEM CD8 T cells (139,155),
CD62Llo subsets of mouse memory CD4 T cells (16),
and similar effector cytokine functions in human virus
and antigen-specific TEM and TCM subsets (25,36,
118,134,135), indicating that antigen-specific memory
subsets may not have intrinsic differences in cytokine
production. Second, phenotypic heterogeneity of mem-
ory T cells is not limited to CD62L/CCR7 expression,
and the expression of activation markers, adhesion mol-
ecules, homing receptors, co-stimulatory receptors, and
chemokine receptors has been shown to delineate mem-
ory subsets with distinct functions (Table 1). For exam-
ple, differences in the expression of integrins CD49b
(VLA-2) (62) and VLA-1 (48) define functional subsets
of memory CD4 T cells in mice and humans, respec-
tively, with VLA� memory T cells exhibiting more Th-
1-like functions (Table 1). The co-stimulatory molecules
CD28 and CD27 are differentially expressed by human
and/or mouse memory subsets (46,115). While CD28 is
expressed by most resting effector and central memory
T cells (17,44,98), a proportion of human CD28� mem-
ory T cells has been detected in the periphery and is as-
sociated with aging or chronic infection (109,150). Vari-
ations in CD27 expression also occur on human and
mouse memory T cells, with the CD27lo phenotype on
memory CD8 T cells in mucosal sites denoting lytic ca-
pacity (18,53,84). In addition, coordinate expression of
CD27 and the adhesion molecule CD43 together define
functional subsets of mouse memory CD8 T cells with
different recall and proliferative capacities (53). Human
memory T cell subsets can also be distinguished by vari-
ations in CD43 expression that likewise correlate to dif-
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ferent functional capacities (71,100), independent of
CD62L expression (Table 1). Therefore, phenotypic clas-
sification into TEM and TCM subsets, which is based on
CD62L or CCR7 homing receptor expression, does not
fully describe the phenotypic and functional complexi-
ties of a given memory T-cell population.

The expression of chemokine receptors, which control
leukocyte migration to tissue sites, inflammation, and in-
teractions with immune accessory cells (70), also exhibit
considerable variation on memory T-cell populations and
can define functional subsets (Table 1). The original TCM

and TEM subsets were defined based on expression of the
CCR7 chemokine receptor (119,120), that mediates lym-
phoid homing similar to CD62L. However, the coordi-
nate expression of CCR7 and CD62L on TCM and their
downregulation on TEM does not occur on virus-specific
memory CD8 T cells in mice (110,140), and in subse-
quent studies, CCR7 did not distinguish functional sub-
sets of virus-specific memory T cells in humans and mice
(25,35,139). The expression of other types of chemokine
receptors can delineate subsets of memory T cells with
distinct cytokine profiles and replicative history, as de-
fined by telomere length. Thus, expression of CXCR3
and/or CCR4 can define subsets of memory CD4 T cells
having the capacity to produce Th-1 or Th-2 cytokines,
and also delineate subsets with different in vivo turnover
(68,111,131). CCR8 expression on memory T cells can
indicate the potential for production of Th-2 cytokines
(130), and recently, expression of both CCR6 and CCR4
has been shown to mark a population of memory CD4 T
cells that produce the proinflammatory cytokine IL-17
(2,9). It is not known whether expression of chemokine
receptors directly controls functional capacity, or rather
reflects stimulation, trafficking, or replicative history of
memory T cells that has more directly biased their cy-
tokine profile. These broad variations in surface marker
expression on memory T cells suggest a diverse usage of
trafficking markers that may alter during subsequent re-
call to antigen challenge.

The compartmentalization of memory T cells in di-
verse tissue sites adds yet another layer to the phenotypic
and functional complexity of memory T cells described
above. While the majority of memory T cells in non-lym-
phoid tissue bear a predominant CD62Llo profile
(16,85–87), there is increasing evidence that tissue-resi-
dent memory T cells exhibit compartment-specific phe-
notypic, functional, and homing properties. For example,
mouse bone marrow (BM)-resident memory CD8 T cells
exhibit enhanced effector and proliferative capacities
(14,105) as we also found for human BM memory T cells
(169). Lung memory T cells, by contrast, exhibit reduced
proliferation yet highly activated phenotypes and effec-
tor responses (24,41,42,113,159). Gut-resident memory
T cells exhibit further variations in phenotypes, homing,
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and increased apoptosis (76,88). In addition, we have
found that lung and spleen memory CD4 T cells exhibit
tissue-specific homing tropism (16), indicating that cer-
tain tissue compartments can impart specific properties
on their indigenous memory T cells. In addition, CCR7�/
CD62L� TCM-phenotype cells can be found in non-lym-
phoid sites including lung (16,101), CNS (65), and gut
(145,146), and these non-lymphoid CD62Lhi cells are not
functionally equivalent to lymphoid CD62Lhi subsets
(16,146). When taken together, these results indicate that
the memory subsets in spleen and peripheral blood are
not equivalent to memory T cells of comparable CD62L
phenotype resident in peripheral tissue parenchyma. A
given memory T-cell population therefore consists of
multiple functional subtypes in diverse tissue sites that
are maintained by homeostasis, and may recirculate be-
tween tissue sites or turnover within each compartment
(Fig. 1A). The functional properties of individual mem-
ory T cells are influenced by a combination of surface
marker expression and tissue compartment, although the
precise contributions of these factors in directing mem-
ory T-cell responses in vivo are unknown.

The lineage relationship between CD62L memory T-
cell subsets and lymphoid and non-lymphoid memory T
cells also remains an unresolved issue. In particular, it is
not known whether memory subset delineation is estab-
lished during priming, and/or varies over time during
memory maintenance (95). The CD62L profile of mem-
ory T cells can be affected by initial priming conditions,
including the extent of antigenic stimulation during prim-
ing and the antigen-specific precursor frequency (74,95).
For CD4 T cells, strong or sustained antigenic stimula-
tion during priming yielded memory T cells with in-
creased effector function (80) and increased CD62L het-
erogeneity (94), whereas for CD8 T cells, limiting the
extent of antigen exposure during infection resulted in
more CD62Lhi lymphoid memory CD8 T cells (143,156).
The precursor frequency of antigen-specific CD8 T cells
also affects the development of heterogeneous memory
cells. A low precursor frequency responding to vesicular
stomatitis virus (VSV) infection gave rise to primarily
CD62Llo cells, whereas higher T-cell precursors gener-
ated more CD62Lhi TCM cells (13,83). The role of CD4
T-cell precursors in heterogeneous memory generation
during viral infection is not yet defined, although quan-
titation of peptide-specific CD4 T-cell precursors based
on new MHC class II tetramer reagents revealed corre-
lations between initial naive precursor and memory cell
frequency (92). CD62L expression can also vary over
time during memory persistence in the periphery
(112,155), or upon homing to lymphoid or non-lymphoid
tissue sites (16,84). At present, it remains unknown
whether the tissue-specific influences on resident mem-
ory T cells are reversible or inducible upon exit or entry
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into a specific compartment, respectively. The factors
that regulate CD62L expression and homing capacity of
memory T cells in vivo remain unresolved issues and are
important parameters for understanding the lineage rela-
tionship of CD62L memory subsets.

In summary, although the use of TEM or TCM pre-
dominates in the literature, this classification does not ac-
count for the multiple variations in phenotype, function,
and homing of peripheral memory T cells, as well as tis-
sue-specific variations that exist in non-lymphoid mem-
ory populations. In addition, designating memory subsets
as TCM or TEM implies a lineage relationship that is not
yet established. Thus, we propose that a more accurate
designation of memory subsets would be to indicate both
the tissue of residence and homing receptor phenotype,
such as LN-CD62Lhi, lung-CD62Llo, or spleen-CD62Llo

memory T cells. This designation uses the CD62L phe-
notype to indicate lymphoid homing capacity, and the tis-
sue or origin to indicate potential tissue-specific influ-
ences, and makes no assumptions regarding lineage
relationships.

MEMORY T-CELL HETEROGENEITY 
AND PROTECTIVE IMMUNITY

The heterogeneous nature of memory T cells raises im-
portant questions concerning the role of this memory di-
versity in antiviral protective immunity. In recall re-
sponses to viral infection, multiple types of memory
subtypes can participate—including memory T cells at
the site of infection, lymphoid memory T cells that 
become activated and migrate to peripheral sites, and
memory T cells circulating from other non-lymphoid
compartments, with each of these memory subtypes ex-
hibiting specific functional and proliferative capacities
(Fig. 1B). The different types of memory T cells required
for recall responses to specific viruses are important is-
sues that need to be resolved in order to promote long-
term T-cell immunity. While heterogeneous memory T
cells may diversify the recall response, leading to more
effective protective immunity, it is possible that only spe-
cific subpopulations of memory T cells within the het-
erogeneous pool can mediate protective responses. How-
ever, the existence of heterogeneous memory T-cell
subsets may also result in certain subsets of memory T
cells being ineffective or potentially detrimental to an-
tiviral protective immunity.

Adoptive transfer approaches have been informative in
assessing the in vivo protective capacities of specific
memory subsets, and have revealed that certain memory
subsets may be more effective than others in mediating
viral clearance. The protective capacities of central and
effector memory subsets differing in CD62L expression
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vary depending on the viral infection system. In LCMV
infection, purified splenic CD8 TCM cells transferred into
adoptive mouse hosts mediated more effective viral clear-
ance than purified TEM (155), whereas for Sendai virus
infection, the protective capacity of memory CD8 T-cell
subsets varied over time and did not depend on CD62L
profile (53,112). By contrast, protection from vaccinia
virus infection was restricted to the TEM subset of CD8
T cells (12). For CD4 T-cell subsets, less is known con-
cerning their protective capacity in viral systems. CD4 T
cells have been shown to provide protection against a
number of different viruses, including respiratory viruses
(57), rotavirus (89), gamma-herpes viruses (29), and pi-
cornaviruses (99). The subset specificity of protective
memory CD4 T cells for most of these viruses remains
undefined, although CD62Llo CD4 T cells have been
shown to be protective in responses to rotavirus (128),
and vaccinia virus (1). Further refinements in the pheno-
typic and functional characterization of memory T cells
should lead to insights into the type of memory T cells
necessary for optimal protective immunity to viral infec-
tions.

The efficacy of a secondary T-cell response to viral in-
fections may ultimately reside within memory T cells in
specific anatomical compartments, given that viruses en-
ter and disseminate in different tissue sites. Recent stud-
ies provide evidence that the tissue-resident memory T
cells rather than the peripheral homing subtype, drive the
recall response and mediate protection (63,66,157). How-
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ever, the requirements for lymphoid and/or non-lymphoid
memory T cells can depend on the viral system, and lym-
phoid memory T cells can serve important protective
roles, particularly for systemic viral infection. In response
to ectromelia virus (mousepox) infection, memory CD8
T cells in lymph nodes were found to be important “gate-
keepers” in pathogen clearance (161). Lymphoid-derived
central memory CD4 T cells have also been associated
with protective responses to HIV/SIV and EBV infec-
tion. In primates vaccinated with simian immunodefi-
ciency virus (SIV), animals that preserve their central
memory pools and have strong IL-2 recall responses have
lower levels of initial viral replication and prolonged sur-
vival (136). Moreover central memory CD4 T cells in
blood comprise half of the responding EBV-specific
memory CD4 T cells and directly replenish the effector-
memory pool (52). Lymphoid memory can also predom-
inate in response to the respiratory virus SARS, where
the majority of the blood virus-specific memory CD4 T
cells bear a CD62Lhi phenotype (164). However, for in-
fluenza virus infection that is restricted to the lung, mem-
ory CD8 T cells can mediate recall responses to viral
challenge in mice congenitally devoid of secondary lym-
phoid tissue (96), suggesting that lymphoid memory T
cells are dispensable for protection to respiratory
pathogens. While it is likely that secondary responses to
viruses at specific tissue sites involve both tissue-resident
memory T cells as well as an influx of memory T cells
from lymphoid and other non-lymphoid sites (Fig. 1B),
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FIG. 1. Schematic model of heterogeneous memory T cells during steady-state conditions and in response to a respiratory
infection. (A) During steady-state conditions, memory T cells in different tissue sites are maintained by homeostasis, with some
replenishment from lymphoid sites, and possible trafficking between distinct non-lymphoid sites. (B) During a site-specific in-
fection, as in the lung, memory T cells from multiple lymphoid and non-lymphoid sites can potentially become activated and mi-
grate to the infectious site, resulting in a rapid and heterogeneous response. The participation of multiple subsets and their po-
tential for mediating protective immunity and/or immunopathology are discussed in the text.



whether lymphoid memory T cells mediate significant
protective responses in site-specific infections remains to
be determined.

Although memory T cells are found in multiple pe-
ripheral sites, those resident in the lung and lamina pro-
pria of the gut have been the focus of a number of stud-
ies due to their abundance and importance in viral
infections at these sites. Lung memory CD4 and CD8 T
cells persist in humans and mice following respiratory
virus infection with influenza, parainfluenza, and respi-
ratory syncytial virus (RSV) (34,45,56,102). These lung-
resident memory T cells have been shown to be replen-
ished from the peripheral pool and maintained by
continuous turnover (55,84,159). Lung memory CD4 and
CD8 T cells produce higher levels of IFN-� compared to
counterparts in peripheral blood or secondary lymphoid
organs (16,86), and may be particularly adapted to me-
diate effective protective responses in situ. Hogan and
colleagues demonstrated in situ rapid viral clearance
when virus-specific memory CD4 T cells were adminis-
tered directly to the lungs of recipient mice (57), indi-
cating that localization of memory T cells at the site of
infection is sufficient to provide protection. In the nat-
ural infection, however, influenza-specific CD8 T cells
are widely dispersed, present in spleen, lung, bone mar-
row, and other tissue sites (82), and memory CD4 T cells
specific for influenza HA are also heterogeneous in
CD62L expression and tissue distribution (6,16,137).
These findings indicate that multiple memory T cell sub-
types could respond and home to the lung during sec-
ondary influenza challenge (Fig. 1B). Several groups
have found that influenza antigens persist long after virus
is cleared in the lung (59,167), and may maintain effec-
tor memory populations. Understanding the exact in-
terplay of multiple memory subsets as well as the patho-
genesis of the infecting virus would contribute signifi-
cantly to targeting protective subsets during vaccination.

In the lamina propria (LP), memory T cells bear a pre-
dominant CD62Llo/CD27lo effector-memory-like pheno-
type, yet also exhibit distinct characteristics including up-
regulated expression of the early activation marker CD69,
indicating a semi-activated state, and expression of the
�4�7 integrin, reflecting unique homing properties
(64,67,76). These LP or mucosal memory T cells are as-
sociated with protection against intestinal viruses such as
rotavirus (116). By contrast, in HIV/SIV infection, LP
memory CD4 T cells are impaired in protective capacity
and facilitate viral dissemination. The semi-activated
state of LP memory CD4 T cells renders them highly per-
missive for HIV/SIV infection and severe depletion
through direct infection or bystander activation with 
Fas-mediated apoptosis (8,20,32,76). In addition,
CD4hiCD8lo double positive T cells make up a signifi-
cant proportion of resident CD4 T cells in the intestines
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(5–20% in primates and humans), produce high levels of
effector cytokines, and are highly susceptible to HIV in-
fection (49,103,144). While dendritic cells and gut resi-
dent macrophages tend to promote an immunosuppres-
sive state (61,129), LP memory CD4 T cells have
heightened levels of CD2 and associated LIGHT expres-
sion, indicating heightened activation (30,40). Thus, the
mucosal immune system, with its direct interaction with
pathogens, can mediate responses highly distinct from
those observed in peripheral blood or spleen. This mu-
cosal population of memory T cells may make important
contributions to antiviral immunity and may also medi-
ate immunopathology.

FUNCTIONAL HETEROGENEITY 
IN MEMORY RESPONSES

In addition to heterogeneity in homing and tissue dis-
tribution, memory T cells also exhibit diverse capacities
to produce cytokines and mediate cytolytic functions on
a cellular level. Individual memory T cells can produce
multiple types of cytokines rapidly following antigenic
recall. Both memory CD8 and CD4 T cells have been
shown to simultaneously produce IFN-�, TNF-�, and/or
IL-2 (127,154), and memory CD8 T cells also vary in ex-
pression of lytic molecules including granzyme B and
perforin (138). Memory CD4 and CD8 T cells produc-
ing IL-2, IFN-�, and/or TNF-� are referred to as “poly-
functional” memory T cells (23,33,81). Polyfunctional
memory T cells can be potent antiviral T cells in that they
are highly proliferative and severely limit viral replica-
tion in infected cells (50). Not all memory T cells are
polyfunctional, and within a given population of virus-
specific memory T cells, individual cells vary in their ca-
pacity for production of cytokines. For example, human
antiviral memory CD8 T cells comprise a mixed popu-
lation with most cells secreting IFN-� alone, and a
smaller number secreting both IL-2 and IFN-�, whereas
memory CD4 T-cell responses contain fairly even distri-
butions of cells producing IL-2 or IFN-� alone, or IL-2
and IFN-� in combination (50). Polyfunctional responses
involving IL-17 have not yet been identified, although
IL-17–producing cells are exclusive of IFN-� production
in vivo (162). It has been proposed that targeting the gen-
eration of specific types of multi-functional memory T-
cell clones in vaccines may be particularly advantageous
for protective immunity (104). Given the complex prop-
erties of memory T cells described above, the most ef-
fective protective response will likely depend on gener-
ating the appropriate functional subtype at the appropriate
tissue locale.

Functionally heterogeneous memory T cells are also
endowed with plasticity in the type of recall cytokines
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they produce. We originally demonstrated that a popula-
tion of antigen-specific memory CD4 T cells can alter
the cytokine profile, depending on the nature and avid-
ity of the recall stimulus (4,106). Similar plasticity in cy-
tokine production has been demonstrated among human
memory CD4 T cells (90), and most recently in mouse
memory CD4 T cells responding to bacterial challenge
in vivo (69). These findings suggest that the functional
fate of memory T-cell populations is not fixed, and can
be altered in different infectious environments. Inherent
plasticity in memory responses to viruses has been pro-
posed to account for adaptability in the immune responses
to diverse viral antigens (124). Plasticity within memory
populations can also alter productive recall responses,
and therefore understanding how memory plasticity is
regulated is essential to preserve the efficacious features
of the anamnestic T-cell response.

MEMORY T CELLS AND
IMMUNOPATHOLOGY

The rapid effector responses of memory T cells, their
diverse distribution in peripheral tissue sites, and their
ability to interact with tissue macrophages and endothe-
lial cells (28,108,125) enables them to coordinate recall
responses at the site of pathogen entry, but also predis-
poses them to be involved in immunopathology and lo-
cal tissue destruction during an antiviral response. Mem-
ory CD8 T cells can mediate lethal immunopathology in
response to LCMV infection (107), and destruction of
lung epithelia in influenza virus infection through direct
cytotoxicity and the production of TNF-� (21,160).
Memory CD8 T cells have also been shown to cause se-
vere immunopathology in responses to vaccinia virus,
RSV, and LCMV (10,78,117,126). Despite their low cy-
totoxic potential, memory CD4 T cells can also direct re-
sponses that lead to immunopathology. Memory CD4 T
cells were found to direct potent immune-mediated
meningitis in LCMV-immune �2-microglobulin–defi-
cient mice lacking CD8 T cells (54), and to promote de-
myelination and immunopathology during neurotropic
mouse hepatitis virus infection (133). Memory CD4 T
cells secreting TNF-� were also shown to promote se-
vere tissue inflammation in LCMV, influenza, and sec-
ondary dengue virus infections (11,47,62,153). The gen-
eration of TNF-�–secreting memory T cells is therefore
common in many viral diseases for which im-
munopathology plays a large role in tissue destruction.

The identification of memory T-cell subtypes that
promote effective viral clearance with minimal im-
munopathology would be beneficial for optimizing mem-
ory T-cell responses during vaccinations. It will be nec-
essary to precisely define memory T cell functions and/or
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subsets that lead to immunopathology. For example,
memory T cells that rapidly produce high levels of IFN-
� with limited TNF-� may prove more beneficial to elim-
inating virus with minimal tissue damage, whereas a high
level of TNF-� relative to IFN-� production may pre-
dispose a memory T cell to mediate tissue destruction. In
addition, the contribution of lymphoid versus non-lym-
phoid memory T cells to immunopathology may differ
in responses to certain viruses. While lung resident mem-
ory T cells may promote effective protective responses
to respiratory virus challenge in situ, the involvement of
lymphoid memory T cells with enhanced proliferative ca-
pacities may cause increased recruitment and inflamma-
tion in the lung. By contrast, lymphoid memory T cells
that are recalled in lymphoid tissue or peripheral blood
may not lead to local tissue destruction. Dissecting the
beneficial and detrimental functions of memory T cells
and mechanisms for their actions is necessary to ensure
the generation of protective T-cell vaccines.

Memory T cells generated from exposure to a pathogen
can also cross-react with antigens present in an unrelated
pathogen, a phenomenon termed “heterologous immu-
nity” (122,124), which is thought to predominate in adult
immune processes (27,121,151,152). Heterologous mem-
ory CD8 T cells specific for one virus can mediate 
immunopathology in response to an unrelated virus
(27,123), suggesting that the presence of any memory T
cells creates the potential for deleterious immune reac-
tions. Thus, the enhanced and beneficial immune clear-
ance properties of memory T cells includes the potential
for increased tissue damage and immunopathology in re-
sponse to viral challenge.

This dual nature of the memory T-cell response sug-
gests that the presence of virus-specific memory T cells
may not always yield a productive type of protective re-
sponse, and that a given population of heterogeneous
memory T cells may contain subsets with propensities
for mediating immunopathology. In the case of influenza
virus infection, memory T cells specific for influenza
have been shown to persist in the lungs of previously in-
fected mice and humans (34,45,56,57,158), and to be pre-
sent in the peripheral blood of most older children and
adults (38,43,51). However, these memory T cells are not
known to provide protection in the form of sterilizing im-
munity to influenza. It is possible that flu-specific mem-
ory T cells participate in influenza immunity, enabling
effective viral clearance; however, the immunopathology
triggered by memory T cells and resultant illness masks
their role. It is interesting to note that a population pro-
foundly affected by immunopathology in the 1918 flu
was adults in the 20- to 40-year-old range (39), and re-
cent avian flu cases have had their most pathological im-
pact in adults, with milder clinical signs in children un-
der 5 year of age (165). While the unusual deaths of

105



younger adults in the 1918 pandemic may be due to their
naiveté to related flu strains at that period as was recently
suggested (7), it is also possible that a deleterious im-
mune reaction was triggered by memory T cells in this
adult population. Further elucidation of the memory T-
cell functions and subsets that promote immunopathol-
ogy during viral infection is required to understand the
nature of the antiviral memory T-cell response.

OPTIMIZATION OF MEMORY
HETEROGENEITY IN 

ANTIVIRAL IMMUNITY

The functional, phenotypic, and spatial diversity of
memory T cells and their potential for mediating im-
munopathology suggests that modulating memory T-
cell heterogeneity could be an effective strategy for op-
timizing secondary responses. Targeting memory
heterogeneity could be accomplished by strategies
which regulate and focus memory T-cell responses to
optimize their capacity for protective immunity. In gen-
eral, memory T cells are believed to be resistant to reg-
ulation, as strategies that inhibit naive T-cell activation
and effector generation are ineffective in the presence
of memory T cells (97). For example, blockade of the
CD40L/CD40 pathway, which effectively hinders pri-
mary T-cell activation, does not inhibit memory T-cell
responses in vivo (3,142,168). In addition, regulatory T
cells that suppress naive T-cell activation are ineffec-
tive in curtailing memory T cell–mediated rejection of
allografts (163). However, there is increasing evidence
that inhibition of certain co-stimulatory pathways can
modulate specific memory T-cell functions and/or hom-
ing potentials. The CD28 co-stimulatory pathway was
initially believed to be dispensable for memory T-cell
activation based on in vitro studies (31,79); however,
we and others have recently reported that CD28 signal-
ing is required for optimal memory CD4 and CD8 T-
cell secondary responses to antigenic peptides and in-
fluenza (17,98). Using an in vivo system to follow early
and late recall of memory CD4 T cells in vivo, we found
that inhibiting CD28 signaling on memory CD4 T cells
preferentially limited antigen-driven expansion and IL-
2 production, and reduced the tissue homing capacity
and CD62L downregulation of memory T cells in vivo
(98). CD28 has also been shown to direct homing ca-
pacity on human memory T cells (91), and we have also
found that a similar change in homing capacity occurs
on memory CD4 T cells responding to influenza virus
(unpublished data), suggesting that CD28 co-stimula-
tion can drive the migration of memory T cells to non-
lymphoid sites. CD28 is also known to be downregu-
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lated on human memory T cells in response to viruses
such as CMV (109), although the protective role of these
CD28-deficient memory T cells is not yet defined.
These newer findings on the role of CD28 co-stimula-
tion in memory T-cell responses in vivo suggest that
CD28 inhibition using approved biologicals such as
CTLA4Ig (77) could regulate deleterious memory T-
cell responses to viral infection. Other co-stimulatory
pathways such as ICOS and OX40 likewise show
promise in regulating primary and/or secondary antivi-
ral responses (15,58), although their specific effects on
memory T-cell functions, heterogeneity, and homing re-
main to be determined. Identifying additional pathways
involved in memory T-cell responses will be particu-
larly important for immunotherapeutic modulation and
optimization of protective recall immunity.

CONCLUDING REMARKS

Cellular and functional heterogeneity is a universal
feature of virus-specific memory T cells. Summarized be-
low are the key features of memory heterogeneity re-
viewed here, their implications for antiviral protective
immunity and immunopathology, and how regulation of
memory T-cell heterogeneity during recall responses in
vivo may be a promising strategy for optimization of pro-
tective responses.

1. Identification of phenotypic markers for memory T
cells is constantly evolving. Although expression of
certain phenotypes may be associated with specific
functions, whether these phenotypes direct functional
capacity remains unknown.

2. Memory T cells in lymphoid and non-lymphoid tis-
sues exhibit compartment-specific features that are
likely important to secondary recall to specific virus
infections.

3. Specific memory subtypes may promote im-
munopathology during secondary responses, and the
degree of immunopathology may depend on the tis-
sue site, homing capacity, and functional profile of the
participating memory T cells.

4. Modulating memory populations may be a way of di-
recting more effective protective immunity without
immunopathology.
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