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Abstract

PTEN-induced kinase 1 (PINK1), which is required for mitochondrial homeostasis, is a gene product responsible for early-
onset Parkinson’s disease (PD). Another early onset PD gene product, Parkin, has been suggested to function downstream
of the PINK1 signalling pathway based on genetic studies in Drosophila. PINK1 is a serine/threonine kinase with a predicted
mitochondrial target sequence and a probable transmembrane domain at the N-terminus, while Parkin is a RING-finger
protein with ubiquitin-ligase (E3) activity. However, how PINK1 and Parkin regulate mitochondrial activity is largely
unknown. To explore the molecular mechanism underlying the interaction between PINK1 and Parkin, we biochemically
purified PINK1-binding proteins from human cultured cells and screened the genes encoding these binding proteins using
Drosophila PINK1 (dPINK1) models to isolate a molecule(s) involved in the PINK1 pathology. Here we report that a PINK1-
binding mitochondrial protein, PGAM5, modulates the PINK1 pathway. Loss of Drosophila PGAM5 (dPGAM5) can suppress
the muscle degeneration, motor defects, and shorter lifespan that result from dPINK1 inactivation and that can be
attributed to mitochondrial degeneration. However, dPGAM5 inactivation fails to modulate the phenotypes of parkin
mutant flies. Conversely, ectopic expression of dPGAM5 exacerbated the dPINK1 and Drosophila parkin (dParkin)
phenotypes. These results suggest that PGAM5 negatively regulates the PINK1 pathway related to maintenance of the
mitochondria and, furthermore, that PGAM5 acts between PINK1 and Parkin, or functions independently of Parkin
downstream of PINK1.

Citation: Imai Y, Kanao T, Sawada T, Kobayashi Y, Moriwaki Y, et al. (2010) The Loss of PGAM5 Suppresses the Mitochondrial Degeneration Caused by Inactivation
of PINK1 in Drosophila. PLoS Genet 6(12): e1001229. doi:10.1371/journal.pgen.1001229

Editor: Juan Botas, Baylor College of Medicine, United States of America

Received May 24, 2010; Accepted October 29, 2010; Published December 2, 2010

Copyright: � 2010 Imai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the Brain Science Foundation, the Suzuken Memorial Foundation, and the Astellas Foundation for Research on
Metabolic Disorders, as well as from the Program for Young Researchers from Special Coordination Funds for Promoting Science and Technology commissioned
by MEXT and a Grant-in-Aid for Young Scientists (B) from MEXT in Japan (YI). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yimai@idac.tohoku.ac.jp

. These authors contributed equally to this work.

Introduction

Parkinson’s disease (PD (OMIM #168600)) is a neurodegener-

ative disease that affects the maintenance of dopaminergic (DA)

neurons. PD prevalence is estimated at ,1% among people over

the age of 65 and increases with age. Clinical features of PD

include motor abnormalities (tremor, rigidity, akinesia), autonomic

disturbances, psychiatric disability and cognitive impairment. The

recent identification of PD-associated genes has advanced our

understanding the molecular mechanisms underlying PD. Two of

these genes, PINK1 (PARK6, OMIM #605909, Gene ID: 65018)

and parkin (PARK2, OMIM #600116, Gene ID: 5071), are

associated with early-onset autosomal recessive PD, in which loss-

of-function (LOF) of a single gene product results in the clinical

manifestation of Parkinsonism [1,2]. The PINK1 gene encodes a

serine/threonine kinase with a predicted mitochondrial target

sequence and a probable transmembrane domain at the N-

terminus [3]. The gene product of the parkin gene encodes a

protein with an E3 activity [4–6]. Recent genetic studies in

Drosophila have reported that dPINK1 (Gene ID: 31607) acts as an

upstream regulator of dParkin (Gene ID: 40336) in a common

pathway that influences mitochondrial maintenance in a subset of

tissues, including the flight muscle and DA neurons [7–9]. LOF of

the dPINK1 or the dparkin genes results in enlarged or swollen

mitochondria, a phenotype that can be partially rescued by

heterozygosity for LOF mutations of the mitochondrial fusion-

promoting components Optic atrophy 1 (OPA1) and Mitofusin

(Mfn), or by increased mitochondrial fission activity via increased

dosage of the dynamin-related protein 1 (drp1) gene [10–12]. Studies in

mammalian or Drosophila cultured cells report that PINK1 is

required to recruit Parkin to damaged depolarized mitochondria,

and promotes their degradation through an autophagic event

called mitophagy [13–16]. Thus, there is strong evidence to

support an important role for PINK1 and Parkin in regulating
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mitochondrial homeostasis. However, little is known about how

PINK1 regulates mitochondrial integrity and turnover through

Parkin. Indeed, the precise means by which PINK1 exerts an

effect on Parkin is not clear.

Here we show that a mitochondrial protein, phosphoglycerate

mutase 5 (PGAM5, Gene ID: 192111), which was previously

reported to be localized at the outer mitochondrial membrane and

to lack a phosphoglycerate mutase activity [17,18], is involved in

the PINK1 pathway, and that loss of PGAM5 activity improves

mitochondrial defects caused by PINK1 inactivation in Drosophila.

Results

Isolation of PGAM5 as a PINK1-Binding Protein
We and others have previously demonstrated that PINK1 is

genetically upstream of parkin [7–9]. To further investigate the

relationship between PINK1 and Parkin, we searched for PINK1-

binding proteins using a combination of biochemical purification

and mass spectrometric analysis. We affinity-purified human

PINK1 with a FLAG tag at its C-terminus (hPINK1-FLAG) from

lysate of human embryonic kidney (HEK) 293 cells stably

expressing hPINK1-FLAG using an anti-FLAG column, and

determined proteins specifically presented in the hPINK1-FLAG

elution fractions, which include cytoskeleton-related proteins

(MAP1B (GeneID: 4131), KIF11 (GeneID: 3832), Tubulin

GeneID: 602530, 191130)), proteasome subunits (PSMD1 (Gen-

eID: 5707), PSMD2 (GeneID: 5708), PSMC6 (GeneID: 5706)),

PRKDC (GeneID: 5591), Hsp70 (1A, GeneID: 3303; 1B,

GeneID: 3304), Hsp90 (GeneID: 3320), Cdc37 (GeneID:

11140), Insulin substrate-4 (IRS-4, GeneID: 8471) and PGAM5

(Figure 1A). PRKDC is one of proteins non-specifically associated

with FLAG-tagged proteins in our proteomic analyses (data not

shown). The roles of Hsp90, Cdc37 and the proteasome for

PINK1 have been characterized previously [15,19–22]. We

therefore chose IRS-4 and PGAM5 and tested whether these

proteins modulate the dPINK1 LOF phenotypes by Drosophila

genetics. Our initial in vivo tests revealed that a mutant allele for

dPGAM5 (CG14816, GeneID: 31143), PGAM5NP0568 significantly

suppressed the abnormal wing postures observed in dPINK1

knockdown flies [9] (Figure 1B), while it failed to improve the

viability (Figure 1C). Reducing the dose of chico (GeneID: 64880),

which encodes a Drosophila orthologue of IRS-4, significantly

suppresses the short lifespan phenotype caused by dPINK1

knockdown, without affecting wing posture (Figure 1D and 1E).

Inhibition of chico activity has previously been reported to extend

the lifespan of Drosophila, such that we reasoned that the effect on

lifespan we observed might reflect a general phenomenon rather

than reflecting a specific interaction with dPINK1 [23]. Thus for

subsequent studies, we chose to focus on PGAM5.

The results of co-immunoprecipitation confirmed that C-

terminally Myc-tagged human PGAM5 (hPGAM5-Myc) specifi-

cally binds to hPINK1-FLAG in transfected HEK293 cells

(Figure 2A). Moreover, we found that hPGAM5 and hPINK1

immunoreactivity co-localizes with mitochondria in transfected

HeLa cells, consistent with the previous finding that PGAM5 is

localized to the mitochondria (Figure 2B and 2C) [24]. To test if

endogenous hPGAM5 interacts with hPINK1, we first generated

an anti-hPGAM5 antibody (Figure 2D). Next, we used a

previously established anti-PINK1 antibody to immunoprecipitate

PINK1 from HEK293 cell lysate, then probed with anti-PGAM5

to detect endogenous hPGAM5. As shown in Figure 2E,

endogenous hPGAM5 was detectable in the fraction immunopre-

cipitated using anti-hPINK1 antibody but not a control antibody,

confirming the results of mass spectrometric analysis. Physical

association of dPINK1 with dPGAM5 was also observed in

Drosophila S2 cells (Figure 2F), suggesting that their functional

interaction is conserved between human and Drosophila.

Previous findings that PINK1 and PGAM5 possess kinase and

phosphatase activities, respectively [18,25,26], prompted us to test

the possibility of their enzyme-substrate relationships. A mobility

shift assay to monitor the status of PINK1 phosphorylation

suggested that overexpression of hPGMA5 has little effect on

hPINK1 phosphorylation (Figure 2G). On the other hand, an in

vitro kinase assay using recombinant dPINK1 failed to show a

possibility that PGAM5 is a substrate for PINK1, or that PGAM5

modifies hPINK1 kinase activities (Figure 2H).

dPGAM5 Alters Mitochondrial Morphology in Drosophila
The Drosophila genome appears to have two orthologs of

mammalian PGAM5, one on the X (CG14816) and the other on

the second chromosome (CG15874, GeneID: 37899). We have

renamed CG14816 and CG15874 as dPGAM5 and dPGAM5-2,

respectively. Our initial in vivo genetic study and most subsequent

analyses were performed using dPGAM5 mutant and transgenic

animals because dPGAM5 is more similar to hPGAM5 than is

dPGAM5-2 (dPGAM5 vs. hPGAM5, 44% amino acid identity, and

dPGAM5-2 vs. hPGAM5, 38% identity, as determined using

ClustalW v1.4 to align the sequences), and because the results of

high-throughput analysis of transcript abundance suggest that the

dPGAM5-2 transcript is expressed at very low levels at the adult

stage, if at all (see http://flybase.org/reports/FBgn0035004.html).

We determined the P-element insertion allele PGAM5NP0568 as a

hypomorph allele, which showed a reduction of dPGAM5

transcript levels to about 25% of normal levels (Figure S1). We

then generated a dPGAM5 null allele PGAM51, in which the

expression of dPGAM5 completely disappeared at both the

transcript and protein levels (Figure S1B and S1C). The PGAM51

homozygous animal is viable, fertile and grossly normal. However,

it displayed longer lifespan (Figure 3A). By contrast, overexpres-

sion of dPGAM5 or dPGAM5-2 resulted in shorter longevity

(Figure 3B). Since a previous report described that overexpression

of human PGAM5 affects the mitochondrial morphology or

Author Summary

Parkinson’s disease (PD) is a neurodegenerative disease
pathologically characterized by degeneration of dopami-
nergic (DA) neurons in the midbrain. A small percentage of
PD cases are inherited in a Mendelian manner, and several
disease-causing genes have been identified. The PINK1 and
Parkin genes have been isolated as the genes for
autosomal recessive form of early-onset PD. Unexpectedly,
loss of function of either PINK1 or Parkin in Drosophila
causes mitochondrial degeneration in the flight muscles,
which exhibits a visible phenotype of abnormal wing
postures, allowing a rapid genetic screening. We purified
PINK1-binding proteins from human cultured cells and
screened the gene for these binding proteins using the
PINK1 mutant flies. We found that inactivation of a PINK1-
binding protein phosphoglycerate mutase 5 (PGAM5)
suppresses mitochondrial degeneration caused by the loss
of PINK1 activity. Although parkin is suggested to be
genetically downstream of PINK1 in Drosophila, loss of
PGAM5 failed to modulate the phenotypes by parkin
inactivation. Our finding suggested that, for mitochondrial
maintenance of tissues with high-energy demands such as
the muscles and DA neurons, PGAM5 acts between PINK1
and Parkin, or functions independently of Parkin down-
stream of PINK1.

Loss of PGAM5 Rescues PINK1 Phenotypes
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mobility in the cultured cells [24], we observed the mitochondria

in the dPGAM5 null and transgenic flies. Although inactivation of

dPGAM5 gene function did not cause mitochondrial degeneration,

the morphology of the mitochondria appears to be moderately

altered (Figure 3D and 3H compared to Figure 3C and 3G). The

mitochondria in the indirect flight muscles of the PGAM5 mutant

flies were longer in the long-axis direction compared to control

animals (Figure 3K). A similar tendency was seen in DA neurons

of the adult brain although the difference did not reach statistical

significance (Figure 3L and 3M). In addition, we frequently

observed constrictions in the mitochondria (see broken lines in

Figure 3D). In contrast, transgenic expression of dPGAM5 or

dPGAM5-2 in Drosophila leads to fragmentation of mitochondria,

with cristae well-preserved in the indirect flight muscles (Figure 3E,

3F, 3I, and 3J) and in the tyrosine-hydroxylase (TH)-positive

neurons of the adult fly brain (Figure 3N and 3O). These results

suggested that dPGAM5 is likely to promote the mitochondrial

fission process in Drosophila.

Figure 1. Identification of PINK1-binding proteins that modulate the phenotypes of dPINK1 knockdown fly. (A) Silver-stained
polyacrylamide gel to visualize hPINK1-binding proteins. FLAG elution fractions purified from cells stably expressing hPINK1-FLAG (PINK1-FLAG lane)
and parental cells (Control lane) are separated on a gel (For details of the procedure, see Materials and Methods). Bands corresponding to hPINK1
(dots) and representative co-purified proteins are indicated. (B, C) The wing phenotype typical of 10- and 20-day-old dPINK1 RNAi flies [9] (B) was
suppressed by the PGAM5NP0568 mutant allele, whereas viability of 10-, 20- and 30-day-old adult flies was not improved (C). *, p,0.05; **, p,0.01 vs.
age-matched dPINK1 RNAi group in Student’s t-test. The genotypes are as follows: MHC-GAL4. dPINK1RNAi (+/+), PGAM5NP0568/Y; MHC-GAL4.
dPINK1RNAi (PGAM5NP0568/Y), PGAM5NP0568/+; MHC-GAL4. dPINK1RNAi (PGAM5NP0568/+). MHC-GAL4, a muscle-specific driver. Flies were raised at 29uC as
the RNAi-induced dPINK1 defects are more pronounced when flies are raised at that temperature. (D, E) Removal of one copy of the IRS4 ortholog
chico had no effect on the wing phenotype of dPINK1 RNAi flies (D) but improved viability (E). *, p,0.05; **, p,0.01 vs. age-matched dPINK1 RNAi
group. The genotypes are: MHC-GAL4. dPINK1RNAi (+/+), chico/+; MHC-GAL4. dPINK1RNAi (chico). Flies were raised at 29uC.
doi:10.1371/journal.pgen.1001229.g001

Loss of PGAM5 Rescues PINK1 Phenotypes
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Figure 2. PGAM5 associates with PINK1 at mitochondria. (A) hPGAM5 binds to hPINK1 in HEK293 cells. Lysate expressing C-terminally Myc-
tagged hPGAM5 (hPGAM5-Myc) and FLAG-tagged hPINK1 (hPINK1-FLAG) was subjected to immunoprecipitation with anti-FLAG antibody (FLAG-IP),
and analyzed by immunoblotting with anti-tag antibodies. (B) hPGAM5 is localized to the mitochondria. HeLa cells transfected with hPGAM5-Myc
were visualized with anti-Myc (green). Mitochondria were visualized with MitoTracker (red) and nuclei with DAPI (blue). Regions of co-localization of
hPGAM5 with mitochondria appear in yellow in the merged image. (C) hPGAM5 and hPINK1 co-localize at mitochondria. HeLa cells co-transfected
with hPINK1 and hPGAM5-Myc were stained with anti-PINK1 (green) and anti-Myc (red). (D) Anti-hPGAM5 antibody specifically recognizes ,30 kDa
bands in extract from HEK293 cells, which were reduced in lysates from cells treated with siRNAs directed against hPGAM5. Lysate expressing
hPGAM5-Myc and anti-tubulin signals served as a positive control and a loading control, respectively. (E) Endogenous hPGAM5 is associated with
hPINK1. An anti-PINK1 (PINK1-IP) or an antibody against the unrelated protein Delta (Control-IP) was used for immunoprecipitation of proteins in
HEK293 cells. Cell lysate in which hPINK1 was knocked down by RNAi (PINK1 RNAi) and lysate from cells that overexpressed hPINK1-FLAG (PINK1-
FLAG) served as additional controls. The PINK1-FLAG lysate was diluted eight-fold with loading buffer to reduce the strong signal present in that
sample. Asterisk, bands attributable to detection of the antibodies themselves, which may mask lower molecular weight hPINK1 bands (,52 kDa).
(F) dPGAM5 is associated with dPINK1 in Drosophila S2 cells. S2 cell lysate expressing dPINK1-Myc and dPGAM5-FLAG was subjected to
immunoprecipitation with anti-Myc antibody (Myc-IP), and analyzed by immunoblotting with anti-tag or anti-dPGAM5 antibodies. Asterisks, a
putative processed form of dPGAM5. (G) HEK 293 cell lysate expressing hPINK1-FLAG together with hPGAM5-Myc was subjected to Phos-tag
immunoblotting [43]. hPINK1-FLAG lysate treated with alkaline phosphatase (CIP) was used as a positive control. A phospho-protein FoxO1 was
efficiently dephosphorylated by the CIP treatment. (H) An in vitro kinase assay was performed using 2x GST-dPINK1 and GST-hPGAM5. Recombinant

Loss of PGAM5 Rescues PINK1 Phenotypes
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The Relationship between PGAM5 and the Mitochondrial
Fission/Fusion Machinery

Evolutionarily-conserved GTPases Mfn and OPA1 promote the

mitochondrial fusion event while another GTPase Drp1 regulates

the mitochondrial fission [27,28]. To determine the role of

PGAM5 in the mitochondrial fission pathway, we manipulated the

activities of the genes that are involved in mitochondrial fission/

fusion in dPGAM5 null flies. Decreased Mfn activity resulted in

fragmented mitochondria in the indirect muscle tissues, which was

not affected by removal of the dPGAM5 gene (Figure 4A–4D and

4G, Figure S2). Conversely, an increased mitochondrial fission

activity by introducing an extra copy of the drp1 gene was not

suppressed in the dPGAM5 null genetic background (Figure 4E–

4G). These results suggested that dPGAM5 may function

upstream of Mfn or Drp1, or that the mechanism of the

mitochondrial morphological changes by dPGAM5 is independent

of that of the known fusion/fission components.

dPGAM5 Modulates Phenotypes Caused by dPINK1
Inactivation in Drosophila

We next confirmed that the results of the genetic tests in

Figure 1B and 1C using a LOF allele for dPINK1, PINK1B9 to

exclude off-target effects due to RNAi (Figure 5). Adult PINK1B9

flies often have abnormal thoraces with dents in the mid-anterior

region, which is likely due to degeneration of the muscle tissues

lining the inside of the thorax (Figure 5B) [8]. This thorax

phenotype seen in PINK1B9 flies can be suppressed by introduction

of the PGAM5NP0568 or the PGAM51 allele (Figure 5A and 5D). We

then examined the effects of dPGAM5 inactivation on dPINK1

mutant phenotypes that progressively increase over time. As

described above, loss of dPINK1 activity leads to the appearance of

abnormal wing postures, which is indicative of flight muscle

degeneration, and the percent of affected flies increases with

advancing age (Figure 5C and 5F) [8]. Introduction of the

dPGAM5 mutant alleles dramatically suppresses this phenotype

(Figure 5E and 5F), whereas ectopic expression of dPGAM5

enhances the phenotype (Figure 5G). Progressive loss of climbing

ability and the shorter lifespan of PINK1B9 flies are additional

prominent phenotypes that may represent dysfunction of DA

neurons of the central nervous system and muscle degeneration.

The dPGAM5 mutant alleles also significantly improved these

phenotypes (Figure 5H and 5J). Conversely, overexpression of

dPGAM5 worsened the phenotypes (Figure 5I and 5K).

Transmission electron microscopy (TEM) sections from one day-

old adult PINK1B9 mutant flies reveal that mitochondria in the

indirect flight muscles are abnormally fused with one another and

that the structures of the mitochondrial cristae are unclear (i.e. the

cristae have lost the normal electron density seen by TEM) as

compared to those of a dPINK1 revertant line (Figure 6A and 6D

compared to Figure 3C and 3G). Importantly, the mitochondrial

hyperfusion and loss of cristae usually observed in dPINK1 mutant

animals can be partly suppressed by introduction of the

PGAM5NP0568 or the PGAM51 allele (Figure 6B, 6E, and 6G). In

sharp contrast, transgenic expression of dPGAM5 further

promoted mitochondrial degeneration (Figure 6C and 6F). Similar

results were obtained when mitochondria in DA neurons of the

adult brain (Figure 6H, 6I, and 6J) and in the indirect muscle

tissues (Figure S3) were visualized using a version of GFP with a

mitochondrial targeting signal (mitoGFP). Mitochondrial mor-

phology in DA neurons in wild-type flies showed a long tubular

network in the cytoplasm (Figure 3L). As previously reported, DA

neurons in PINK1B9 flies form spherical aggregates of mitochon-

dria (Figure 6I). Removal of dPGAM5 from PINK1B9 flies led to an

increase in the number of small fragmented or tubular

mitochondria (Figure 6J). These results suggest that excessive

mitochondrial aggregation, which is modulated by dPGAM5

inactivation, is indicative of a functional failure of mitochondria in

DA neurons.

Consistent with the beneficial effects of dPGAM5 inactivation

on the mitochondrial degeneration seen in PINK1B9 flies, we

observed that dPGAM5 inactivation suppresses the loss of DA

neurons in the protocerebral posterior lateral 1 (PPL1) and

protocerebral posterior medial 1 and 2 (PPM1/2) clusters of aged

flies (Figure 6K–6M).

Removal of dPGAM5 Fails to Suppress Phenotypes
Resulting from dparkin Inactivation

Previous studies in Drosophila suggested that dPINK1 is

genetically associated with dparkin and furthermore, that dPINK1

functions upstream of dparkin [7–9]. In addition, dparkin null

mutations cause mitochondrial degeneration of a subset of tissues

in Drosophila, which phenocopies dPINK1 inactivation [29,30].

Given the evidence that PGAM5 is involved in the PINK1

pathway, we next asked if dPGAM5 also affects the in vivo

mitochondrial phenotypes associated with mutations in dParkin.

Introduction of PGAM5NP0568 in the parkin hypomorphic genetic

background (parkinP21) had little effect on abnormal wing postures

(Figure 7A–7C) [29,30]. Consistent with the result in the wing

phenotype, loss of dPGAM5 activity failed to rescue the age-

dependent motor defects and shorter lifespan observed in

parkinP21flies (Figure 7D and 7F). In the same settings, overex-

pression of dPGAM5 further enhanced both motor defect and

reduced lifespan phenotype (Figure 7E and 7G). Loss of dParkin

activity results in an elongated morphology in mitochondria of the

adult indirect flight muscle tissues, a phenotype that was

suppressed by loss of the dPGAM5 gene (Figure 7H, 7I, and 7L).

However, the crista structures of the mitochondria were not

restored by inactivation of the dPGAM5 gene (Figure 7J and 7K).

Taken together, these data suggest that dPGAM5 lies genetically

upstream of dparkin, or functions independently of dparkin

downstream of dPINK1 in Drosophila.

Activation of a Redox Control Pathway Improves Viability
of dPINK1 Mutant Flies

PGAM5 was previously reported to interact with Keap1 (Gene

ID: 9817), a substrate adaptor protein for a Cullin-3-dependent E3

2x GST-dPINK1 purified from bacteria was used as a kinase source. Recombinant GST-hPGAM5 short form (GST-hPGAM5-S) or GST-hPGAM5 was
purified from bacteria and 1 and 2 ml of the purified fractions were separated by SDS-PAGE and stained with Coomassie Brilliant Blue (CBB, right-hand
panel; arrowheads, GST-hPGAM5-S or GST-hPGAM5). A total of 100 or 400 ng of GST-hPGAM5-S or GST-hPGAM5, respectively, were incubated with
100 ng of 2x GST-dPINK1 in kinase reaction buffer A (100 mM Tris-HCl [pH 7.5], 240 mM NaCl, 30 mM ATP, 10 mM MgCl2, 2 mM CaCl2, 5 mCi c-32P
ATP) or buffer B (100 mM Tris-HCl [pH7.5], 240 mM NaCl, 30 mM ATP, 10 mM EDTA, 5 mCi c-32P ATP) for 30 min at 30uC. The reaction mixture was
suspended in SDS sample buffer and then subjected to SDS-PAGE and autoradiography (Left, 32P; the arrow and arrowheads represent expected
migration positions of 2x GST-dPINK1 and GST-hPGAM5/GST-hPGAM5-S, respectively). No specific signals corresponding hPGAM5 or hPGAM5-S were
observed. Note that 2x GST-dPINK1 lacks kinase activity in the buffer B, suggesting that activation of PINK1 requires divalent cations such as Mg2+ and
Ca2+. Scale bars = 15 mm in (B and C).
doi:10.1371/journal.pgen.1001229.g002

Loss of PGAM5 Rescues PINK1 Phenotypes
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complex [17]. In a normal redox state, the Keap1 complex

suppresses activity of a bZIP transcription factor, Nrf2, through

ubiquitin/proteasome-dependent protein degradation [31]. Oxi-

dative stress impairs inhibition of Nrf2 by Keap1 [31]. Nrf2 thus

becomes stabilized and activates oxidative stress protective genes,

restoring cellular redox homeostasis. Although we confirmed the

association of PGAM5 with Keap1 in human cultured cells, the

proposed Keap1-binding motif in PGAM5, NXESGE, was not

conserved in dPGAM5 (Figure S1). On the other hand, Keap1/

Nrf2 signaling does appear to be conserved in Drosophila [32]. We

Figure 3. dPGAM5 is dispensable for normal development, but affects lifespan in Drosophila. (A) Loss of dPGAM5 genes extends the
lifespan. Adult male wild-type (yw/Y; n = 125) vs. dPGAM5 null (y, PGAM51/Y; n = 125) flies, p,0.001 by log rank test. (B) Overexpression of dPGAM5 or
dPGAM5-2 in Drosophila causes shorter lifespan. Overexpression of the transgenes was induced using the ubiquitous daughterless (Da)-GAL4 driver.
Lifespan of adult male EGFP (n = 130), dPGAM5 (n = 76) and dPGAM5-2 (n = 117) flies. EGFP vs. dPGAM5, p,0.001; EGFP vs. dPGAM5-2, p,0.001; by log
rank test. (C–J) Transmission electron microscopy (TEM) analysis of the indirect flight muscle and morphology of mitochondria in 2-day-old adult flies
with the indicated genotypes. In C–F, we outlined some mitochondria with broken lines to highlight morphology. The insets in G–J show
representative mitochondria matrixes. A revertant, PINK1RV, was used as a wild-type comparison [8]. The genotypes are: PINK1RV/Y (C, G), PGAM5NP0568/
Y (D, H), Da-GAL4. UAS-dPGAM5 (E, I), Da-GAL4. UAS-dPGAM5-2 (F, J). Scale bars = 1 mm in C–F and 200 nm in G–J. (K) Quantification of the
percentage of mitochondrial size distribution in the indirect muscle tissue from wild-type (n = 136 from 5 adult flies), PGAM5NP0568 (n = 155 from 5),
PGAM51 (n = 87 from 5), dPGAM5 Tg (n = 143 from 5) and dPGAM5-2 Tg flies (n = 147 from 5) as shown in (C–J). The length of the mitochondria in the
direction of the myofibrils was measured. Data are shown as means 6 SE (* p,0.05, **p,0.01 vs. wild-type). (L–O) Brain tissues of 5-day-old adult flies
were stained with anti-TH antibody (red). Mitochondria labeled with mitoGFP (green) were observed in the PPL1 TH-positive neurons of the indicated
genotypes. The genotypes are as follows: TH-GAL4. mitoGFP (wild-type), PGAM51/Y; TH-GAL4.UAS-mitoGFP (PGAM51), UAS-dPGAM5/TH-GAL4. UAS-
mitoGFP (dPGAM5 Tg), UAS-dPGAM5-2/TH-GAL4. UAS-mitoGFP (dPGAM5-2 Tg). TH-GAL4, a DA neuron-specific driver. Scale bar = 5 mm.
doi:10.1371/journal.pgen.1001229.g003

Loss of PGAM5 Rescues PINK1 Phenotypes
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tested if Keap1/Nrf2 signaling modulates PINK1 phenotypes.

Removal of a copy of the keap1 gene (Gene ID: 42062) in dPINK1

knockdown flies, wherein the dPINK1 RNAi was expressed in the

muscle tissues, failed to rescue the abnormal wing posture

(Figure 8A). However, Keap1 heterozygosity is beneficial to survival

of aging dPINK1 knockdown files, supporting a previous report

suggesting that oxidative stress is partly involved in the PINK1

pathology (Figure 8B) [33,34].

Discussion

The event of fusion/fission is required for maintenance of a

healthy mitochondrial population. Mitochondrial fusion is be-

lieved to require the interchange of a set of internal components,

including copies of the mitochondrial genome, respiratory proteins

and metabolic products. Mitochondrial fission has been proposed

to play a role in disposal of damaged mitochondria, such as those

with a reduced mitochondrial membrane potential, via mitophagy

[35]. A role for PINK1 in the regulation of mitochondrial fission/

fusion dynamics has recently been demonstrated in Drosophila [10–

12]. The PINK1/Parkin pathway appears to promote fission and/

or inhibits fusion, likely through an indirect mechanism. Indeed,

loss of dPINK1 or dParkin produces swollen or enlarged

mitochondria in tissues with high-energy demands, such as the

muscles, which is suppressed by reduced fusion activity or

increased fission activity after genetic manipulation of the

mitochondrial fission/fusion machinery. Namely, either reducing

the activity of the mitochondrial fusion proteins OPA1 and Mfn,

or increasing the activity of a mitochondrial fission protein, Drp1,

can partially rescue PINK1 and parkin mutant phenotypes.

We identified PGAM5 as a PINK1-binding protein and went on

to show that dPGAM5 can modulate dPINK1 mutant phenotypes.

Loss of dPGAM5 activity had little effect on the lifespan of a dPINK1

RNAi fly strain in our initial in vivo test (Figure 1C). However, we

found that loss of dPGAM5 does significantly extend lifespan of

PINK1B9 mutant flies (Figure 5J). We speculate that continuous

expression of the short hairpin RNA in the RNAi-based test confers

additional toxicity, leading to a shorter lifespan in a sequence-

independent manner, such that the suppressive effect of dPGAM5

mutations cannot be detected in the PINK1 RNAi flies.

dPGAM5 appears to be dispensable for mitochondrial homeo-

stasis in Drosophila, as overall, flies homozygous for a null allele of

dPGAM5, PGAM51, appear to be normal. It has previously been

reported that ectopic expression of PGAM5 leads to perinuclear

aggregation or small fragmentation of mitochondria in mamma-

lian cultured cells, which suggested that PGAM5 has a role in

regulation of mitochondrial fission/fusion process or mobility [24].

Our study also observed alteration of mitochondrial morphology

in Drosophila with different dPGAM5 activities. Transgenic

expression of dPGAM5 or dPGAM5-2 leads to fragmentation of

mitochondria both in the TH+ neurons and indirect flight muscles

(Figure 3E, 3F, 3I and 3J). By contrast, dPGAM5 LOF moderately

increases mitochondria with a longer tubular or a swollen

morphology (Figure 3D and 3K). Our genetic tests with the

Figure 4. Relationship between dPGAM5 and the mitochondrial
fusion/fission genes. (A–F) dPGAM5 inactivation failed to rescue the
mitochondrial fragmentation caused by mfn knockdown (mfn RNAi) or
introduction of an extra copy of the drp1 gene (drp1+). To visualize the
mitochondria under a fluorescence microscopy, we used the muscle-
specific MHC-GAL4 driver to induce expression of a mitoGFP (green)
transgene in 5-day-old adult flies with the indicated genotypes. Muscle
tissue was counterstained with phalloidin (red). Scale bar = 2 mm. (G)
The average length of the mitochondria in the direction of the
myofibrils was measured from wild-type (n = 343 from 7 adult flies),
PGAM51 (n = 390 from 8), mfn RNAi (VDRC40478, n = 305 from 6;
VDRC105261, n = 372 from 8), mfn RNAi (VDRC40478); PGAM51 (n = 355
from 7), mfn RNAi (VDRC105261); PGAM51 (n = 237 from 5), drp1+

(n = 245 from 5) and drp1+; PGAM51 (n = 247 from 5) as shown in (A–F).
Data are shown as means 6 SE (**p,0.01; N.S., not significant). The
genotypes are as follows: +/Y; MHC-GAL4.mitoGFP (A, wild-type),
PGAM51/Y; MHC-GAL4.UAS-mitoGFP (B, PGAM51), +/Y; MHC-GAL4.UAS-
mitoGFP; UAS-mfn RNAi (VDRC40478) (C, mfn RNAi), PGAM51/Y; MHC-
GAL4.UAS-mitoGFP; UAS-mfn RNAi (VDRC40478) (D, mfn RNAi; PGAM51),
+/Y; MHC-GAL4.mitoGFP; drp1+ (E, drp1+), PGAM51/Y; MHC-GAL4.
mitoGFP; drp1+ (F, drp1+; PGAM51).
doi:10.1371/journal.pgen.1001229.g004
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Figure 5. Loss of dPGAM5 suppresses dPINK1 mutant phenotypes in Drosophila. A thorax defect (B, arrowheads) and abnormal wing posture
(C) caused by loss of dPINK1 activity are suppressed in dPGAM5 mutant genetic backgrounds (A, D and E). (F) Percentage of 10-, 20- and 30-day-old
male flies showing abnormal wing postures. Error bars show S.E. from three experiments. (G) Percentage of 10-day-old male PINK1B9 and PINK1B9

ubiquitously overexpressing dPGAM5 flies showing abnormal wing postures. Error bars show S.E. from three experiments. (H, I) Percentage of
locomotor activity. Error bars show S.E. from three repeated experiments. (J) Lifespan of adult male flies. Loss of dPGAM5 partially improved the
reduced lifespan seen in PINK1B9 fly (PINK1B9 vs. PINK1B9, PGAM5NP0568 or PINK1B9, PGAM51, p,0.001; wild-type vs. PINK1B9, PGAM5NP0568 or PINK1B9,
PGAM51, p,0.01 by the log rank test). (K) Lifespan of adult male PINK1B9 and PINK1B9 ubiquitously overexpressing dPGAM5 flies. Overexpression of
dPGAM5 further reduced the lifespan (PINK1B9 vs. PINK1B9; dPGAM5 Tg, p,0.001). The same files were used in (A–F, H and J) and in (G, I and K). The
genotypes and the number used in the assays are; wild-type (PINK1RV/Y, n = 161), PGAM5NP0568 (PGAM5NP0568/Y, n = 161), PGAM51 (PGAM51/Y, n = 161),
PINK1B9 (PINK1B9/Y, n = 101), PINK1B9, PGAM5NP0568 (PINK1B9, PGAM5NP0568/Y, n = 162) and PINK1B9, PGAM51 (PINK1B9, PGAM51/Y, n = 160) in (A–F, H and
J), PINK1B9 (PINK1B9/Y; Da-GAL4/+, n = 162) and PINK1B9, dPGAM5 Tg (PINK1B9/Y; Da-GAL4. UAS-dPGAM5, n = 161) in (G, I and K).
doi:10.1371/journal.pgen.1001229.g005
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Figure 6. Loss of dPGAM5 improves degeneration of the mitochondria and DA neurons caused by dPINK1 inactivation in Drosophila.
(A–F) TEM analysis of the indirect flight muscle and morphology of mitochondria in 2-day-old adult flies with the indicated genotypes. In A and B,
some mitochondria are outlined with broken lines. The insets in D–F show representative mitochondria matrixes. Scale bars = 1 mm in A–C and 200
nm in D–F. (G) Quantification of the percentage of mitochondrial size distribution in the indirect muscle tissue from wild-type (n = 136 from 5 adult
flies), PINK1B9 (n = 96 from 5), PINK1B9, PGAM5NP0568 (n = 116 from 5), PINK1B9, PGAM51 (n = 111 from 5) as shown in Figure 3K. Data are shown as means
6 SE (* p,0.05, **p,0.01). (H–J) Quantification of the percentage of cytoplasmic mitochondrial aggregates with diameter of 0.5–1.0, 1.0–1.5 or
$1.5 mm in each PPL1 TH+ neuron from wild-type (n = 373 from 18 adult flies), PGAM51 (n = 356 from 18), PINK1B9 (n = 231 from 11), PINK1B9PGAM51
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known mitochondrial fusion/fission machinery suggested that

PGAM5 acts upstream of them or in an independent pathway

(Figure 4). Given that PGAM5 is involved in mitochondrial fission,

loss of PGAM5 would be expected to enhance the PINK1 mutant

phenotype in Drosophila, similar to the interaction between PINK1

and the mitochondrial fusion/fission machinery [10–12]. Inter-

estingly, the number of large aggregated mitochondria, which are

frequently seen in PINK1B9 flies, was mildly decreased in TH+

neurons of PINK1B9PGAM51 flies (Figure 6H–6J). Moreover, loss

of dPGAM5 also modulated the mitochondrial morphology of

dParkin mutant fly without suppressing the mitochondrial degen-

eration (Figure 7H–7L). Based on these observations, it could be

speculated that PGAM5 does not directly regulate mitochondrial

fission but instead, modulates the PINK1 pathway in a different

way. Recent studies have proposed two different models for the

mechanism of mitochondrial morphological changes through the

PINK1/Parkin pathway in Drosophila and mammals. Ziviani et al.

and Poole et al. have demonstrated that dParkin promotes

degradation of Mfn in a dPINK1-dependent manner, which leads

to mitochondrial fragmentation in Drosophila [16,36]. Our current

results demonstrated that the loss of dPGAM5 activity does not

affect mitochondrial fragmentation caused by reduction of Mfn

activity, suggesting that dPGAM5 might not contribute to the

proposed PINK1/Parkin pathway (Figure 4). Sandebring et al.

have proposed that accumulation of damaged mitochondria by

PINK1 inactivation results in mitochondrial calcium efflux, which

activates Drp1 through Calcineurin-mediated dephosphorylation

of Drp1 in human cells [37]. This model well explains the

observation that loss of PINK1 indirectly promotes mitochondrial

fragmentation in mammalian cells and the indication that PINK1

is not a core component of the fusion/fission machinery in a

Drosophila study [11]. However, most of Drosophila studies do not

support a result that loss of PINK1 leads to mitochondrial

fragmentation in mammals. Thus, it still remains a question for

further investigation how PGAM5 modulates the mitochondrial

dynamics.

Although the property of PGAM5 to physically interact with

PINK1 appears to be conserved between human and Drosophila,

the functional significance of this binding remains to be

established. PINK1 and PGAM5 have kinase and phosphatase

activities, respectively. However, there is no evidence to suggest

that PINK1 directly phosphorylates PGAM5, or that PGAM5

dephosphorylates PINK1 (Figure 2G and 2H) [18,25,26]. The

PINK1 protein levels are maintained at very low level under

steady-state conditions by constitutive processing and subsequent

degradation through the ubiquitin-proteasome pathway [15].

Recent studies suggested that PINK1 selectively translocates from

cytosol to mitochondria with low membrane potential, at which

PINK1 is stabilized [14,15,38]. The accumulated PINK1 on the

depolarized mitochondria further recruits Parkin to induce

mitophagy [13–15,38]. However, Parkin does not seem to be

the target of PINK1 kinase activity [15], and PINK1 does not

seem to activate Parkin E3 activity directly (data not shown). Based

on these findings, it is possible that PGAM5 may promote a

selective recruitment of PINK1 to the outer membrane of the

damaged mitochondria, or that PGAM5 may regulate PINK1

stabilization. Our molecular analysis, however, did not support the

idea that PGAM5 stabilizes PINK1 (data not shown). In addition,

because loss of dPGAM5 partially suppresses dPINK1 null

phenotypes, it seems likely that PINK1 negatively regulates

PGAM5 function (Figure 9). PGAM5 was originally identified as

a Bcl-xL-binding protein, and in itself can be toxic to cells,

promoting mitochondrial fragmentation, when expressed at high

levels (Figure 3B). Therefore, it seems possible that PGAM5

modulates a cell protective or a mitochondrial morphogenetic

activity of the Bcl-2 family member Bcl-xL downstream of PINK1

but in a pathway that is independent from Parkin (Figure 9A) [39].

In this context, PINK1 may suppress the cell toxic action of

PGAM5 through an indirect mechanism where an unidentified

substrate of PINK1 inactivates PGAM5. Interestingly, a recent

report suggests that the dPINK1 phenotype can be partially

suppressed by transgenic expression of Drosophila Bcl-2 protein

Buffy [8]. Alternatively, PGAM5 may be one of components of a

negative regulator complex against Parkin E3, downstream of

PINK1 (Figure 9B). Matsuda et al. have reported that Parkin E3

activity is activated only at the depolarized mitochondria,

suggesting the existence of its negative regulator(s) [38]. E3

activity of Parkin may be released when PINK1 associates with the

negative regulator complex via PGAM5 and suppresses its

function by phosphorylation of another complex component(s).

This idea might be partly supported by our observation that loss of

dPGAM5 had little effect on dparkin mutant flies.

Although the primary cause of the mitochondrial degeneration

by the loss of PINK1 remains less obvious, the growing evidence

suggests that PINK1 eliminates oxidatively damaged mitochondria

in cooperation with Parkin, the failure of which leads to tissue

degeneration. Supporting for this hypothesis, the mitochondrial

phenotypes of dPINK1 and dParkin mutant flies are primarily

exhibited in similar tissues that require higher energy demands [7–

9]. Although dPAGM5 might not regulate Keap1 function in

Drosophila, the Keap1/Nrf2 pathway appears to be conserved in

Drosophila [32], and activation of the Keap1/Nrf2 pathway by

genetic manipulation effectively suppressed the short-lifespan

phenotype by dPINK1 inactivation. This finding may also support

the above idea that the accumulation of oxidatively damaged

mitochondria leads to degeneration of specific tissues, providing a

hint of therapeutic strategies for PINK1-associated PD.

In conclusion, the results of our genetic study demonstrate that

the mitochondrial-localized protein PGAM5 modulates the

PINK1 pathway in Drosophila. However, further work will be

required to determine how PGAM5 regulates the PINK1 pathway

at the molecular level, as well as to determine if manipulation of

PGAM5 activity might provide a therapeutic advantage in

treatment of PINK1-associated PD.

flies (n = 235 from 13). Mitochondrial morphology was revealed by mitoGFP as shown in Figure 3L–3O. Data are shown as means 6 SE (*, p,0.05;
**, p,0.01; N.S., not significant). Tubular or reticular mitochondria were excluded from the estimation due to difficulty in the counting. However, the
ratio of mitochondria with that morphology was also increased in PINK1B9PGAM51 flies (J) compared with that in PINK1B9 flies (I). Arrowheads in (J)
indicate representative tubular or reticular mitochondria. Scale bar in (I) = 5 mm. (K) Quantification of TH+ DA neuron number in the PPM1, PPM2 and
PPL1 clusters in 25-day-old males. PPM1 and PPM2 cluster neurons were counted together. Data are shown as means 6 SE (*, p,0.05; n = 16). (L, M)
Representative images of PPM1/2, PPM3 and PPL1 clusters of PINK1B9 (L) and PINK1B9, PGAM5NP0568 flies (M) visualized with anti-TH antibody. Scale bar
in (M) = 50 mm. The genotypes are: PINK1RV/Y (wild-type), PINK1B9/Y (PINK1B9), PGAM5NP0568/Y (PGAM5NP0568), PGAM51/Y (PGAM51), PINK1B9,
PGAM5NP0568/Y (PINK1B9, PGAM5NP0568), PINK1B9, PGAM51/Y (PINK1B9, PGAM51), PINK1B9/Y; Da-GAL4. dPGAM5 (PINK1B9, PGAM5 Tg), in (A–G, K–M),
PINK1RV/Y; TH-GAL4. mitoGFP (wild-type), PINK1B9/Y; TH-GAL4. mitoGFP (PINK1B9), PGAM51/Y; TH-GAL4. mitoGFP (PGAM51), PINK1B9, PGAM51/Y; TH-
GAL4. mitoGFP (PINK1B9, PGAM51) in (H–J).
doi:10.1371/journal.pgen.1001229.g006
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Materials and Methods

Purification of PINK1-Binding Proteins
HEK293 cells stably expressing hPINK1-FLAG or parent cells

were grown in suspension culture (Joklik-modified Eagle’s

minimum essential medium with 5% fetal bovine serum). The

cell pellet (2.46108 cells) was homogenized in lysis buffer (50 mM

Tris pH 7.4, 120 mM NaCl, 5 mM EDTA, 10% glycerol, 1%

Trion-X100) supplemented with Complete Protease Inhibitors

(Roche Diagnostics). The soluble fraction of the suspension was

Figure 7. Disruption of dPGAM5 fails to suppress the mitochondrial phenotype caused by dParkin inactivation in Drosophila. The
abnormal wing posture caused by a homozygous dParkin mutation (A) was not suppressed by removal of the dPGAM5 gene (B). (C) Percentage of
flies with abnormal wing posture among 10- and 20-day-old male wild-type (n = 105), parkinP21 (n = 102) and PGAM5NP0568; parkinP21 (n = 109) flies.
Error bars show S.E. from three repeated experiments. *, p,0.05; **, p,0.01 vs. dParkin(+/+). (D) Percentage of flies showing locomotor activity
among 10- and 20-day-old male parkinP21 (n = 86), parkinP21 (n = 73) and PGAM5NP0568; parkinP21 (n = 78) flies. Error bars show S.E. from twenty
repeated experiments. *, p,0.05; **, p,0.01 vs. dParkin(+/+). (E) Locomotor activity of 10-day-old male parkinP21 (n = 153) and parkinP21 ubiquitously
overexpressing dPGAM5 flies (parkinP21; dPGAM5 Tg, n = 155) flies. Error bars show S.E. from twenty repeated experiments. **, p,0.01. (F) Lifespan of
adult male wild-type (n = 104), parkinP21 (n = 102) and PGAM5NP0568; parkinP21 (n = 91) flies. PGAM5NP0568; parkinP21 vs. parkinP21, p = 0.191; wild-type vs.
parkinP21, p,0.001 by log rank test. (G) Lifespan of adult male parkinP21 (n = 153) and parkinP21; dPGAM5 Tg flies (n = 155) flies. parkinP21 vs. parkinP21;
dPGAM5 Tg, p,0.001 by log rank test. (H–K) TEM analysis of the indirect flight muscle and mitochondrial morphology in tissue from flies of the
indicated genotypes. The long tubular mitochondrial phenotype seen in parkinP21 flies can be rescued by dPGAM5 inactivation (H and I). However, the
mitochondrial matrix still appears degenerated (insets in J and K). Scale bars = 1 mm in H and I and 200 nm in J and K. (L) Quantification of the
percentage of mitochondrial size distribution in the indirect muscle tissue from wild-type (n = 136 from 5 adult flies), parkinP21 (n = 89 from 5) and
parkinP21; PGAM5NP0568 flies (n = 84 from 5) as shown in (H–K). The length of the mitochondria in the direction of the myofibrils was measured. Data
are shown as means 6 SE (* p,0.05, **p,0.01 vs. wild-type; # p,0.05 vs. parkinP21; PGAM5NP0568). The genotypes are: +/Y (wild-type), +/Y; parkinP21/
parkinP21 (parkinP21), PGAM5NP0568/Y; parkinP21/parkinP21 (parkinP21; PGAM5NP0568).
doi:10.1371/journal.pgen.1001229.g007
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immunoprecipitated with anti-FLAG M2 agarose (Sigma-Aldrich)

and washed five times in lysis buffer. The fractions eluted with

200 mg/ml 3x FLAG peptide were resolved by SDS-PAGE.

Specific bands detected by silver staining were excised for in-gel

digestion. The digest extracted from the gel was subjected to

online HPLC-MS/MS, followed by informatics-based identifica-

tion of the proteins (Nippon Proteomics).

Drosophila Genetics
Fly culture and crosses were performed on standard fly food

containing yeast, cornmeal and molasses, and flies were raised at

25uC unless otherwise indicated. To generate UAS-dPGAM5

transgenic lines, cDNA for dPGAM5 and dPGAM5-2 obtained by

RT-PCR from adult Drosophila total RNA was subcloned into the

pUAST vector. Introduction of transgenes into Drosophila germ line

and establishment of transgenic lines into a w– background were

performed by BestGene Inc. (Chino Hills, CA). A P-element

insertion line for dPGAM5 mutant, PGAM5NP0568 obtained from

Kyoto Drosophila Genetic Resource Center, expresses a reduced

level (,25%) of mRNA, in which NP0568 element is integrated

50 bp downstream of the dPGAM5 translational start site (Figure

S1B). We could not detect any dPGAM5 protein signal in

PGAM5NP0568 homozygous flies (Figure S1C). The PGAM5NP0568

line was backcrossed to w– for six generations to remove

background mutations, and used for most experiments as a

dPGAM5 mutant line. UAS-dPGAM5 RNAi (VDRC 51655) and

UAS-mfn RNAi (VDRC105261 and VDRC40478) strains were

obtained from the Vienna Drosophila RNAi Center. To generate

PGAM51, the KG09727 P-element insertion (obtained from the

Bloomington Drosophila Stock Center) was mobilized using D2–3

transposase, and the entire dPGAM5 coding region was deleted by

imprecise excision, as shown in Figure S1A. All other fly stocks

and GAL4 lines used in this study were obtained from the

Bloomington Drosophila Stock Center and have been previously

described: UAS-dPINK1 RNAi [9]; PINK1B9 and revertant PINK1RV

[8]; parkinP21 [30]; keap1EY1and keap1EY5 [32]; Drp12 and Drp1+

[40].

RT-PCR and Plasmids
For quantitative RT-PCR analysis, reverse transcription and

PCR reactions with total RNA extracted from fly heads were

performed using a Superscript VILO cDNA synthesis kit

(Invitrogen) and SYBR GreenER qPCR SuperMix (Invitrogen),

respectively. Full-length cDNAs corresponding to hPGAM5

(GenBank NP_001170543) and a short isoform of hPGAM5

(hPGAM5-S, GenBank NM_138575) were amplified by RT-

PCR from total RNA purified from HEK293 cells or a cDNA

clone (RIKEN clone ID: IRAK003D15), and was cloned in

pcDNA3-Myc, pGEX6P-1 and pGEX4T-1 vectors. Expression

plasmids for hPINK1-FLAG and pUAST-dPINK1-Myc have been

reported elsewhere [9,20].

Antibodies
Rabbit anti-human PGAM5 polyclonal antibody was raised

against recombinant GST-tagged PGAM5 domain (89–289 aa)

produced in the E. coli strain BL21(DE3)pLysS (Novagen), and was

affinity-purified against the antigen. Rabbit anti-dPGAM5 poly-

clonal antibody was raised against the peptide ELLTN-

RIPRDVKNVV. Anti-hPINK1 antibody (BC100-494), anti-Myc

(4A6) and anti-FLAG (M2) antibodies were purchased from

Novus, Millipore and Sigma-Aldrich, respectively. Mouse anti-TH

monoclonal antibody was purchased from ImmunoStar, and

rabbit anti-Drosophila TH polyclonal antibody was described

previously [9].

Figure 8. Reduction of Keap1 activity improves the lifespan of
dPINK1 RNAi flies. Removal of one copy of Drosophila keap1 had no
effects on the wing phenotype of dPINK1 RNAi flies (A) but improved
viability (B). *, p,0.05; **, p,0.01 vs. age-matched dPINK1 RNAi group.
The genotypes are as follows: MHC-GAL4. dPINK1RNAi (+/+), MHC-
GAL4. dPINK1RNAi/KeapEY1 (KeapEY1), MHC-GAL4. dPINK1RNAi/KeapEY5

(KeapEY5). Flies were raised at 29uC.
doi:10.1371/journal.pgen.1001229.g008

Figure 9. Schematic of the proposed PINK1/PGAM5 pathways
in Drosophila. (A) PGAM5 has a role in mitochondrial activities
independently of Parkin downstream of PINK1. (B) PGAM5 negatively
regulates Parkin downstream of PINK1.
doi:10.1371/journal.pgen.1001229.g009
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Cell Culture, Immunoprecipitation, and Immunoblot
Analysis

Transfection of mammalian cultured cell, immunopurification

of FLAG-protein from transfected cell lysate and immunoblot

analysis was performed as described previously [4,41]. For the

hPGAM5 RNAi experiment, HEK293 cell lysate transfected with

20 mM stealth RNAi reagent against hPGAM5 or a control RNAi

reagent (Invitrogen), was analyzed 72 hrs after transfection. To

detect an endogenous interaction between PINK1 and PGAM5,

we treated HEK293 cells (26107 cells) with 20 mM carbonyl

cyanide 3-chlorophenylhydrazone for 24 hrs to induce a sufficient

level of human PINK1 protein for the study. The treated cells

were subjected to immunoprecipitation using a Rabbit TrueBlot

kit combined with rabbit anti-human PINK1 or rabbit anti-Delta

(Santa Cruz) as a species-matched control. For the preparation of

fly samples for immunoblot analysis, fly heads were directly

homogenized in 20 ml/head of SDS sample buffer using a motor-

driven pestle. After centrifugation at 16,000 g for 10 min, the

supernatant was used in SDS-PAGE.

In Vitro Phosphorylation Assay
Recombinant 2x GST-dPINK1 (153–709 aa), which has an N-

terminal GST-tag and a C-terminal GST/6x His tag, was

produced in the E. coli strain pG-KJE8/BL21 (TAKARA) and

purified by a sequential purification with Ni-NTA agarose and

glutathione sepharose. GST-hPGAM5-S (1–255 aa) and GST-

hPGAM5 (1–289 aa) were incubated with 2x GST-dPINK1 as

described in Figure 2.

Whole-Mount Immunostaining and Transmission
Electron Microscopic (TEM) Analysis

Counting of TH-positive neurons was performed by whole-

mount immunostaining of brain samples as described previously

[9]. TEM images were obtained at the Biomedical Research Core

of Tohoku University Graduate School of Medicine. All

histochemical analyses were performed using DeltaVision micro-

scope system (Applied Precision) or LSM5 PASCAL laser scanning

microscope system (Carl Zeiss). The images obtained by DeltaVi-

sion system were deconvolved through 10 iterations using the

DeltaVision deconvolution software (Applied Precision). Area

calculation of the mitochondria was performed following estab-

lished criteria for classification [12] using softWoRx (Applied

Precision) or Image J software from the US National Institute of

Health (http//rsb.info.nih.gov/ij/).

Lifespan Assay and Quantification of Wing Phenotypes
and Climbing Ability

For lifespan studies, twenty female adult flies per vial were

maintained at 25uC, transferred to fresh fly food, and scored for

survival every 4 or 5 days. To control for isogeny, the

PGAM5NP0568, PINK1B9 and PGAM51, PINK1B9 alleles were

backcrossed to PINK1B9 for six generations, and parkinP21 and

PGAM5NP0568; parkinP21 were backcrossed to w2 wild-type

background for six generations, UAS-dPGAM5 transgenic flies

were generated in the w2 genetic background and thus have

matched genetic backgrounds. The lifespan of PGAM51 was

compared in the y2 genetic background. The number of flies

exhibiting defective abnormal wing posture (held-up or drooped)

was determined for each genotype [9]. A climbing assay was

performed as described previously [42].

Statistical Analysis
One-way repeated measures ANOVA was performed to

determine significant differences among multiple groups unless

otherwise indicated. If a significant result was achieved (p,0.05),

the mean of the control and the specific test groups was analyzed

using the Tukey-Kramer test. For lifespan assays, the Kaplan-

Meier analysis with log-rank test was performed.

Supporting Information

Figure S1 dPGAM5 mutant alleles. (A) PGAM5NP0568 and

PGAM51 mutant alleles are depicted. Boxes, exons of the dPGAM5

gene; triangles, the positions of the transposon NP0568 and

KG09727 insertions. Coding regions and the transcript are

depicted by black and yellow boxes, respectively. (B) Quantitative

RT-PCR of the dPGAM5 transcript in homozygous dPGAM5

mutant and RNAi lines. Expression of the dPINK1 RNAi was

induced via the Da-GAL4 driver. Primer-binding sites for PCR are

shown as arrows in (A). (C) Immunoblot analysis of dPGAM5 in the

homozygous dPGAM5 mutant, RNAi and transgenic lines. LE,

longer exposure. (D) Alignment of the amino acid sequences

of PGAM5 orthologues. Putative transmembrane domains are

underlined in green for mammalian PGAM5 and blue for Drosophila

PGAM5. A red arrowhead indicates the point of insertion of the

transposon NP0568. Red underlining, sequences corresponding to

the reported keap1-binding motif in human PGAM5.

Found at: doi:10.1371/journal.pgen.1001229.s001 (0.69 MB

TIF)

Figure S2 Quantitative RT-PCR of the mfn transcript in the mfn

RNAi lines. Expression of the mfn RNAi was induced via the Da-

GAL4 driver, and total RNA was purified from 3rd instar larvae

because mfn RNAi flies exhibited a pupation-defect phenotype.

Found at: doi:10.1371/journal.pgen.1001229.s002 (0.18 MB TIF)

Figure S3 Loss of dPGAM5 improved mitochondrial degenera-

tion of the indirect flight muscles caused by dPINK1 inactivation.

To visualize the mitochondria under a fluorescence microscopy,

we used the MHC-GAL4 driver to induce expression of a mitoGFP

(green) transgene in 5-day-old adult flies with the indicated

genotypes. Muscle tissue was counterstained with phalloidin (red).

Integrity of the mitochondria in PINK1B9 flies was partially

restored by removal of dPGAM5 as shown by recovery of the

mitoGFP signal (green) in PINK1B9PGAM51 flies. The genotypes

are as follows: MHC-GAL4.MitoGFP [wild-type], PGAM51/Y;

MHC-GAL4.UAS-mitoGFP [PGAM51], PINK1B9/Y; MHC-GA-

L4.UAS-mitoGFP [PINK1B9], PINK1B9, PGAM51/Y; MHC-GA-

L4.UAS-mitoGFP [PINK1B9, PGAM51].

Found at: doi:10.1371/journal.pgen.1001229.s003 (1.40 MB

TIF)
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