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Abstract

An increasing number of genetic variants have been identified for many complex diseases. However, it is controversial
whether risk prediction based on genomic profiles will be useful clinically. Appropriate statistical measures to evaluate the
performance of genetic risk prediction models are required. Previous studies have mainly focused on the use of the area
under the receiver operating characteristic (ROC) curve, or AUC, to judge the predictive value of genetic tests. However,
AUC has its limitations and should be complemented by other measures. In this study, we develop a novel unifying
statistical framework that connects a large variety of predictive indices together. We showed that, given the overall disease
probability and the level of variance in total liability (or heritability) explained by the genetic variants, we can estimate
analytically a large variety of prediction metrics, for example the AUC, the mean risk difference between cases and non-
cases, the net reclassification improvement (ability to reclassify people into high- and low-risk categories), the proportion of
cases explained by a specific percentile of population at the highest risk, the variance of predicted risks, and the risk at any
percentile. We also demonstrate how to construct graphs to visualize the performance of risk models, such as the ROC
curve, the density of risks, and the predictiveness curve (disease risk plotted against risk percentile). The results from
simulations match very well with our theoretical estimates. Finally we apply the methodology to nine complex diseases,
evaluating the predictive power of genetic tests based on known susceptibility variants for each trait.
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Introduction

Genome-wide association studies have succeeded in uncovering

many common genetic variants underlying complex diseases,

raising hope for individualized risk prediction based on genomic

profiles. Although the effect size of a single genetic marker is

typically very modest and unlikely to be useful in risk prediction,

prediction based on a collection of susceptibility variants may be

promising. Several commercial companies (such as deCODEme,

Navigenics, 23andMe) are already offering disease risk estimates

based on genomic profiles of susceptibility variants. However, it

remains controversial whether such tests will be useful clinically.

This calls for appropriate measures to evaluate the performance of

genetic risk prediction models. It should be noted that a high level

of statistical significance does not equate to good predictive power

[1,2].

A very popular method of assessing the discriminatory ability of

test is the AUC (also known as the c statistic). AUC can be defined

as the area under the receiver operating curve, which is a plot of

sensitivity versus 1-specificity. AUC is also equal to the probability

that the test score or predicted probability is higher for a case than

a non-case. A few previous studies have investigated the use and

performance of AUC in genetic tests. Janssens et al. [3] performed

a simulation study for the AUC achieved under different

combinations of risk allele frequencies, odds ratios and disease

prevalence. Lu and Elston [4] proposed an approach to construct

the optimal ROC curve based on likelihood ratios. It has also been

observed that the increase in AUC by SNPs to existing risk factors

is in general modest [5].

Despite its widespread use, the ROC curve and AUC are not

without limitations and they are not the only ways to assess the

performance of a prediction model. For instance, it has been

pointed out that that the AUC is not directly related to the

absolute disease risks (i.e. probability of disease given test result),

which is often of great clinical interest [6,7]. Very large OR are

often required to increase the AUC beyond existing risk factors

[8]. In view of these limitations, other indices have been

developed. These included the net reclassification improvement

(NRI) and the integrated discrimination improvement [9]. The

former is concerned with reclassification of subjects into risk

categories and the latter with the mean risk difference in cases and

non-cases. Graphs that display the risk distribution in the

population have been advocated, for example the ‘‘predictiveness

curve’’ [7].

In this study, we propose a novel unifying statistical framework

that connects different measures of predictive power together. The
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framework is based on the liability threshold model, which

assumes an underlying liability that is normally distributed.

Affected individuals have a liability above the threshold. We show

that given the overall disease prevalence and total variance in

liability explained (equivalent to heritability explained) by the set

of susceptibility variants, it is possible to estimate analytically the

aforementioned prediction indices and construct graphs to

visualize the performance of risk models.

Methods

Here we establish links to various measures of predictive power

within our variance explained framework. We will derive analytic

expressions to evaluate different prediction indices.

The liability threshold model
Our statistical framework is based on the liability threshold

model. The methods to derive total variance in liability explained

(Vm) by known variants (or other risk factors) and the

corresponding liability score for each genotype will be presented

elsewhere (So et al., submitted [10]). It is useful to note this Vm can

be interpreted as the total heritability attributed to the known

variants. We partition the total liability into two components, one

comprising known risk factors (i.e. ‘‘measurable’’ liability) and the

other comprising other risk factors yet to be found. The

measurable liability is normally distributed with mean 0 and

variance equal to the total variance (or heritability) explained by

the known variants (s2). The overall liability conditioned on the

measurable liability (z) is normally distributed with mean z and

variance 12s2. Vm and s2 are used interchangeably in this paper,

with the former usually referring to the concept of variance

explained and the latter referring to its level.

ROC curve and AUC
Consider a 262 table with disease status and test result (Table 1).

Test is defined as positive if the level of measurable liability

exceeds certain percentile cut-off, c. The absolute disease risk (R) is

given by the chance that the overall liability, conditioned on the

measurable liability, exceeds the threshold. R can be expressed as

1{W
T{zffiffiffiffiffiffiffiffiffiffiffiffi
1{s2
p
� �

, where T is the liability threshold. The liability

threshold is related to the overall probability of disease in the

population (K), with T~W{1(1{K). While we shall mainly focus

on lifetime risks in this study, K can also be the probability of

disease in a given period of time, say the 5-year or 10-year risk of

disease. It is easy to see that the measurable liability is monotone

increasing with the predicted risk, thus ROC curve constructed

using either criterion will be identical.

To construct the ROC curve, we need to evaluate specificity

and sensitivity at different percentile cut-offs. Test positive can be

defined as having a measured liability higher than a certain

percentile cut-off c. Pr(Disease +ve|test+ve) (or the positive

predictive value) is given by the average risk of people whose

percentiles of measured liability exceeds the given cut-off c:

Pr (Diseasezvejtestzve)~
1

1{c

ð1

c

1{W
T{zffiffiffiffiffiffiffiffiffiffiffiffi
1{s2
p
� �� �

dp

where z denotes the liability score at a certain percentile from the

distribution of measurable genetic factors. p is a random variable

representing the percentile of the measurable liability. Note that

we need to integrate over all the percentiles above the cut-off c.

z can also be expressed as the inverse normal of p, i.e.

z~sW{1(p). Hence we have

Pr TPð Þ~Pr Diseasezve and testzveð Þ~

Pr Diseasezvejtestzveð Þ.Pr testzveð Þ

~
1

1{c

ð1

c

1{W
T{sW{1(p)ffiffiffiffiffiffiffiffiffiffiffiffi

1{s2
p

� �� �
dp|(1{c)

~

ð1

c

1{W
T{sW{1(p)ffiffiffiffiffiffiffiffiffiffiffiffi

1{s2
p

� �� �
dp

The other cells in the 262 table are computed readily given

Pr(TP). Sensitivity and specificity are calculated using 5000

percentile cut-offs. Area under the curve (AUC) is then estimated

from the graph using the R function integrate.xy from the sfsmisc

package. Note that the positive and negative predictive values of

the test can also be obtained for any arbitrary percentile cut-off.

Approximation of TPR, FPR, and AUC by the binormal
ROC curve

The binormal ROC curve is a classic example in ROC

methodologies. In this model, we assume the test results are

normally distributed in the affected and unaffected individuals. In

our case, the test results are the measurable liability scores. We

have already assumed the measurable liability follows a normal

distribution in the whole population. The distributions of the

Table 1. A 262 classification table.

Disease +ve Disease 2ve Total

Test +ve TP FP 1-percentile (c)

Test 2ve FN TN percentile (12c)

K 12K 1

K, overall probability of disease in the population; TP: True positive; FP, false
positive; FN, false negative; TN, true negative. c, percentile cut-off.
doi:10.1371/journal.pgen.1001230.t001

Author Summary

Recently many genetic variants have been established for
diseases, and the findings have raised hope for risk
prediction based on genomic profiles. However, we need
to have proper statistical measures to assess the usefulness
of such tests. In this study, we developed a statistical
framework which enables us to evaluate many predictive
indices analytically. It is based on the liability threshold
model, which postulates a latent liability that is normally
distributed. Affected individuals are assumed to have a
liability exceeding a certain threshold. We demonstrated
that, given the overall disease probability and variance in
liability explained by the genetic markers, we can compute a
variety of predictive indices. An example is the area under
the receiver operating characteristic (ROC) curve, or AUC,
which is very commonly employed. However, the limitations
of AUC are often ignored, and we proposed complementing
it with other indices. We have therefore also computed
other metrics like the average difference in risks between
cases and non-cases, the ability of reclassification into high-
and low-risk categories, and the proportion of cases
accounted for by a certain percentile of population at the
highest risk. We also derived how to construct graphs
showing the risk distribution in population.

Predictive Power Based on Heritability Explained
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measurable liabilities conditioned on the affection status are also usually

close to normal curves. By the Pearson-Aitken (PA) formula

[11,12], we can estimate the mean and variance of the liability

conditioned on the affection status and derive the AUC.

Mean measurable liabilities in affected and unaffected

individuals. We consider the overall and measurable liability of

an individual, denoted by Lind and Mind respectively. Selection for

affected individuals changes the overall liability to a truncated

normal distribution, with mean a~w(T)=½1{W(T)� and variance

b~1{a2zaT . We shall use the subscripts A and �AA to denote

affected and unaffected individuals respectively. Applying the

Pearson-Aitken selection formula, it can be shown that within

affected individuals, the mean of Mind = mA = as2 and the variance

of Mind = s2
A = s2 [12(12b) s2].

Similarly, selection for unaffected individuals changes the

overall liability to a truncated normal distribution (this time the

truncation is from above) with mean c~{w(T)=W(T) and

variance d = 1{c2zcT . Within unaffected subjects, the mean of

Mind = m�AA = cs2 and the variance of Mind = s2
�AA

= s2[12(12d) s2].

The approximation formulas. The measurable liabilities in

the affected and unaffected groups can be assumed to follow

normal distributions:

Mind,affected*N(mA,s2
A)

and

Mind,unaffected*N(m�AA,s2
�AA)

The AUC for the binormal ROC curve can be expressed in a

simple form [13] :

AUC~W
(mA{m�AA)=sAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z(sA=s�AA)2
q

0
B@

1
CA

We may assume that the variances of measurable liability in the

affected and unaffected groups are approximately equal, especially

for more common diseases. AUC can then be approximated by

the following formula (see supplementary methods in Text S1):

AUC~W

as2 1z
K

1{K

� �
=sAffiffiffi

2
p

0
BB@

1
CCA

where sA is the standard deviation in cases. This method of

estimating AUC does not involve any numerical integration or

simulations and can be easily implemented in a spreadsheet.

Alternatively, to improve the accuracy of AUC estimate, we may

calculate sA=s�AA using the actual standard deviations of measurable

liability (derived using the PA formula) in affected and unaffected

groups. The formulas have been described previously.

By assuming normality in the measurable liability distributions in

cases and controls, we can also provide simple formulas to approximate

the TPR (i.e. sensitivity) and FPR (i.e. 1-specificity) given a risk

threshold. The idea is to convert the absolute risk to its corresponding

risk percentile within cases or controls. Within cases, we have

R~1{W
T{zffiffiffiffiffiffiffiffiffiffiffiffi
1{s2
p
� �

and

z~W{1(p)sAzmA

Substituting the 2nd expression into the 1st and change p to be the

subject of formula,

p~W
T{W{1(1{R)

ffiffiffiffiffiffiffiffiffiffiffiffi
1{s2
p

{mA

sA

 !

Within cases, a proportion of (12p) of them have predicted risks above

the risk threshold R and will be classified as ‘‘high-risk’’. The true

positive rate (TPR) is simply 12p. By the same argument, we can also

compute the approximate false positive rate (FPR) ( = 1- specificity),

by

FPR~1{W
T{W{1(1{R)

ffiffiffiffiffiffiffiffiffiffiffiffi
1{s2
p

{m�AA

s�AA

 !

Distribution of predicted risks given a set of known
susceptibility variants

A major purpose of risk prediction is to stratify individuals into

different risk categories of clinical importance. The ROC curve,

however, does not typically display risk thresholds. As shown by

Pepe et al. [7], although one can locate a point on the ROC curve

corresponding to a given risk threshold, it is impossible to compare

the population performances of different models using a particular

risk criterion. This is because the point corresponding to the same

threshold will be at different horizontal and vertical positions.

Other measures and plots are more useful if clinically relevant risk

thresholds or categories are concerned, such as plots of the

predicted risk distribution in the population.

Risk distribution in the whole population. Suppose we

are going to predict disease risks based on a set of known

susceptibility genes or variants. What will be the distribution of the

predicted risks in the whole population?

The predicted absolute risk of disease R can be represented by

Pr (disease)~1{W
T{sW{1(p)ffiffiffiffiffiffiffiffiffiffiffiffi

1{s2
p

� �
ð1Þ

where T is the liability threshold, s2 is the variance explained and

p is the percentile of measurable risk derived from known genetic

factors.

The graph of cumulative density function (cdf) of the predicted

absolute risk can be obtained by plotting the risk percentiles

against the predicted risks. The probability density function (pdf)

[denoted g(R)] is derived by differentiation of the cdf, or dp/dR.

The detailed mathematical derivations and results may be found

in the supplementary methods (Text S1). We also derived formulas

for the risk distribution within cases and controls.

The predictiveness curve. The predictiveness curve, first

proposed by Pepe et al. [7], is a useful way to visualize the

predictive power of a test and the distribution of risk in the

population. This curve is constructed by plotting the predicted

absolute disease risks against the percentiles of the absolute risks,

or transposition of the cdf curve. Since the measurable liability has

a monotonic relationship with the predicted absolute risk (i.e. a

higher measurable liability always leads to a higher risk), the

Predictive Power Based on Heritability Explained
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percentiles of the measurable liability can also be used. The curve

may be produced based on equation (1), which relates the

percentile and the predicted risk. Examples of predictiveness

curves for different levels of variance explained are shown in

Figure 1. This curve is useful for visualizing the proportion of

population exceeding certain risk thresholds. Risk models can also

be compared based on the same risk threshold. For example,

adding susceptibility loci to a prediction model may increase the

proportion of people exceeding the risk threshold. One may also

look for the corresponding threshold given a percentile.

The predictiveness curve contains the same information as the pdf

or cdf plots. The pdf curve is more intuitive, but it is also more difficult

to derive and does not display the percentile and absolute risks directly.

Area under the predictiveness curve and proportion of
cases explained

One way to assess the predictive power is to estimate the

proportion of cases that be accounted for by a given percentage

(e.g. half) of the population at the highest risk. This measure, for

instance, has been used to evaluate the predictive power of genetic

factors for breast cancer [14]. It turns out that the area under the

predictiveness curve is directly related to this measure.

The proportion of cases occurring in the Ptop% of the

population at the highest risk is given by

ð1

1{Ptop=100

1{W
T{sW{1(p)ffiffiffiffiffiffiffiffiffiffiffiffi

1{s2
p

� �� �
dp=K

where K is the average probability of disease in the population. As

an example, we consider the top 20% of the population at the

highest risk in Figure 2. The proportion of cases explained by these

20% of population is equal to the green area divided by the total

area under the predictiveness curve ( = K).

Area under the curve when proportion of cases
explained is plotted against population at the highest
risk

We can plot the proportion of population at the highest risk (or

equivalently the cumulative proportion of population arranged in

descending order of their predicted risk) on the x-axis and the

proportion of cases explained on the y-axis and obtained a curve.

The area under this curve has been proposed as a measure of the

AUC (area under the curve when sensitivity is plotted against 1-

specificity). For example Clayton in a commentary [15] and a

recent study in New England Journal of Medicine [16] consider

the AUC of this plot to be equivalent to the AUC of the more

conventional plot of sensitivity against (1-specificity). This is

however not correct, as will be proved later. In fact, this curve may

also be regarded as an alternative version of the Lorenz curve [17],

originally used for showing wealth distribution. The Lorenz curve

plots the cumulative proportion of population arranged in ascending

order of their predicted risks on the x-axis and the cumulative

proportion of cases on the y-axis. The area above the Lorenz curve

is equivalent to the area under the curve when population at the

highest risk is plotted against the proportion of cases explained.

Note that similar to the ROC curve, the Lorenz curve does not

contain information about the absolute risks.

We derive an analytic form of the conventional (or true) AUC

and compare to the area under this new plot using the variance

explained framework. We show that these two measures are not

equal, but are close when the outcome is rare. Readers please refer

to the supplementary methods (Text S1) for detailed derivations.

Figure 1. Predictiveness curves for different levels of variance explained. The percentile of measurable liability is equivalent to the
percentile of absolute risk. The disease probability in the population is set at 0.1.
doi:10.1371/journal.pgen.1001230.g001

Predictive Power Based on Heritability Explained
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It can be shown that the true AUC is given by

AUC~

ð1

0

sens(c)d(1{spec(c))

~

ð1

0

ð1

c

1{W
T{sW{1(p)ffiffiffiffiffiffiffiffiffiffiffiffi

1{s2
p

� �� �
dp=K

�

| W
T{sW{1(c)ffiffiffiffiffiffiffiffiffiffiffiffi

1{s2
p

� �
=(1{K)

� ��
dc

where c is the percentile cut-off of the measurable liability.

Now suppose we plot the proportion of population at the

highest risk on the x-axis and the proportion of cases explained on

the y-axis. The area under this curve is

ð1

0

ð1

c2

1{W
T{sW{1(p)ffiffiffiffiffiffiffiffiffiffiffiffi

1{s2
p

� �� �
dp=K

( )
dc2

where c2 is a percentile cut-off point.

This area differs from the previous (true) AUC by a factor of

W
T{sW{1(c)ffiffiffiffiffiffiffiffiffiffiffiffi

1{s2
p

� �
=(1{K) in the integrand. When variance

explained (s2) is small and T is large (i.e. the outcome is rare),

the numerator is roughly equal to W(T), or (12K). Thus the two

measures are close when the outcome is rare, but are not identical

mathematically.

Net reclassification improvement (NRI)
For many diseases, there exist a priori risk categories to guide

the plans of management for patients. For instance, the Third

Adult Treatment Panel (ATP III) guideline suggests dividing the

10-year coronary heart disease risks into three categories (0 to 6, 6

to 20 and .20%). In clinical practice, we are often interested in

whether adding a new biomarker or test will improve the re-

classification of subjects into risk categories. The ability to

reclassify subjects has therefore been suggested as a measure to

assess a new biomarker or test [9]. This approach is not only

clinically relevant, but may also be more sensitive than AUC, as

shown in an example of predicting coronary heart disease by

introducing high-density cholesterol to the model [9].

We now connect the variance explained framework to the

notion of net reclassification improvement. Assume there are two

prediction models which share all risk factors, except for a new

biomarker. Our aim is to estimate the improvement in

reclassification when the new marker is added. The performances

of the models are considered separately for those who develop the

event and for those who do not. We cross-tabulate the predicted

absolute risks according to preset risk categories for the two

models. An example of such a re-classification table can be found

in Table 2 of Pencina et al [9].

Let D be the event indicator. We classify downward movement

(down) as a change to a lower risk category under the new model

and upward movement (up) as a change to a higher risk category.

Pencinia et al.[9] defined the net reclassification improvement

(NRI) as

NRI~ P upjD~1ð Þ{P downjD~1ð Þ½ �

{ P upjD~0ð Þ{P downjD~0ð Þ½ �

To evaluate the NRI under a variance explained framework, we

need to consider three liability distributions: (1) the overall liability

(Loverall ), (2) the measurable liability under the old model (Mold ) and

(3) the measurable liability under the new model (Mnew). Note that

Mnew~MoldzMextra, where Mextra is the measurable liability

Figure 2. Area under the predictiveness curve and proportion
of cases explained. The proportion of cases explained by the 20%
population at the highest risk is equal to the green shaded area divided
by the total area under the predictiveness curve.
doi:10.1371/journal.pgen.1001230.g002

Table 2. A typical re-classification table with 3 risk categories.

Old model (without the new biomarker) New model (with the new biomarker)

Predicted Risk ,6% 6–20% .20%

Those who develop the event

,6% a11 a12 a13

6–20% a21 a22 a23

.20% a31 a32 a33

Those free of the event

,6% b11 b12 b13

6–20% b21 b22 b23

.20% b31 b32 b33

doi:10.1371/journal.pgen.1001230.t002

Predictive Power Based on Heritability Explained

PLoS Genetics | www.plosgenetics.org 5 December 2010 | Volume 6 | Issue 12 | e1001230



attributed to the new risk factor(s) introduced. We assume the new

risk factor is independent of the existing risk factors, or Mextra is

independent of Mold . This may not be true in some cases, such as

adding genetic markers associated with lipid levels or blood pressure

to a prediction model of coronary artery disease that has already

included these risk factors. The framework presented below can deal

with such complications theoretically, however the covariance

between Mold and Mnew needs to be correctly specified beforehand.

The vector [Loverall , Mold , Mnew] has the following mean and

covariance matrices

m~

0

0

0

2
64
3
75 S~

1 Vold Vnew

Vold Vold Vold

Vnew Vold Vnew

2
64

3
75

where Vold and Vnew are the total variance explained under the old

and new prediction models respectively.

Let us consider the group who develop the event of interest.

Applying PA formula, the mean and variance of the vector

[Mold Dcase, MnewDcase] are as follows:

~mm~
0

0

� �
z

Vold

Vnew

� �
(1)(a{0)~

aVold

aVnew

� �

~VV~
Vold Vold

Vold Vnew

" #
{

Vold

Vnew

" #
(1{b) Vold Vnew½ �

~
Vold{(1{b)V2

old Vold{(1{b)VoldVnew

Vold{(1{b)Vold Vnew Vnew{(1{b)V2
new

" #

The mean and variance of Mold and Mnew within the non-cases

are calculated in a similar manner.

Recall that the predicted risk R can be calculated by

R~1{W(
T{zffiffiffiffiffiffiffiffiffiffiffiffi
1{s2
p )

Hence

z~T{½W{1(1{R)�
ffiffiffiffiffiffiffiffiffiffiffiffi
1{s2
p	 


Suppose there are 3 preset risk categories: 0 to r1, r1 to r2 and r2 to

1. Note that the method can also be readily extended to deal with

any number of categories. The corresponding quantile of the

measurable liability (z) can readily be obtained from the above

formula, given the variance explained. As an example, among the

cases, the probability of moving from 0 to r1 category under the

old model to the r1 to r2 category under the new model is given by

ðzr1,old

{?

ðzr2,new

zr1,new

w2(Mold Dcase,MnewDcase)dMold DcasedMnewDcase

where zr1,old , zr1,new and zr2,new are the quantiles of the measurable

liability corresponding to the specified risk under the old or new

models. w2 denotes the bivariate normal density function. Since

the mean and covariance matrix of [Mold Dcase, MnewDcase] is known,

the above integral can be readily computed. The probabilities of

other patterns of changes in risk categories can be obtained by

altering the upper and lower limits of the integral.

To illustrate how the NRI is calculated, consider the following

example in which two models are used to predict the risk of an

event and the risk categories are 0–6%, 6–20% and .20% (i.e.

r1 = 0.06 and r2 = 0.2). Table 2 illustrates how the re-classification

table would look like. Note that all table cells are expressed in

probabilities, such that
P
ij

aij~1 and
P
ij

bij~1. For instance,

a12 = (no. of cases who moved from ,6% category to 6–20%

category) / (total no. of cases)

All the cells can be computed analytically by bivariate

integration. For example, the bivariate integral shown above

calculates cell a12. We have

P upDD~1ð Þ~a12za13za23

P downDD~1ð Þ~a21za31za32

P upDD~0ð Þ~b12zb13zb23

P downDD~0ð Þ~b21zb31zb32

Integrated discrimination improvement
The reclassification improvement is dependent on the choice

of risk categories. Pencina et al. [9] suggests an extension of NRI

to overcome this drawback. Instead of setting only a few

categories, now each person represents a separate category. In

this case, it is sensible to consider the actual changes in predicted

probabilities rather than simply the directions of movement

in risk categories. Denoting the predicted disease probabilities

under the old and the new modes be p̂pold and p̂pnew respectively,

we have the following index known as integrated discrimination

improvement:

ID̂DI~

P
i in cases

½p̂pnew(i){p̂pold (i)�

No: of cases
{

P
j in non-cases

½p̂pnew(j){p̂pold (j)�

No: of non-cases

Pencina et al. showed that the above index has another intuitive

meaning: it is equal to the difference in Yate’s discrimination

slopes (DS) [18] under the two models. The discrimination slope

is equal to the difference in mean predicted risks in cases and

non-cases. Therefore we have

ID̂DI~(�̂pp̂ppnew,cases{
�̂pp̂ppnew,non{cases){(�̂pp̂ppold,cases{

�̂pp̂ppold,non{cases)

Since we have derived the pdf of predicted risks in case and non-

cases previously, the discrimination slope can be deduced for any

model and IDI can be calculated easily for two nested models.

Let gcase(R) and gnoncase(R) be the pdf of predicted risks in cases

and non-cases respectively, the discrimination slope under a

certain model is simply

DS~

ð1

0

Rgcase(R)dr{

ð1

0

Rgnoncase(R)dR
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Standard deviation of the predicted risks
The variance or standard deviation (SD) of the risk distribution

is another index to the predictive ability of a test. A test which high

discriminatory power should assign more dispersed risk estimates

to subjects. In contrast, subjects’ risk estimates tend to be close for

a test that discriminates poorly.

If g(R) is the pdf of the risk distribution, the variance of the risk

distribution is

var(R)~

ð1

0

(R{K)2g(R)dR

where K mean disease risk in the population. It is also useful to

compare var(R) with the maximum variance that can be achieved.

In the perfect case, all cases are assigned a risk of 1 and all non-

cases are assigned a risk of 0. The variance of risk under this

perfect scenario is given by the variance of a Bernoulli variable i.e.

K(12K). The ratio of the observed variance to the maximum

achievable variance is hence

Ð 1

0
(R{K)2g(R)dR

K(1{K)

Interestingly, this ratio is equal to the mean risk difference between

cases and controls, or the discrimination slope, as shown in Pepe et

al [19]. The results in Table 3 confirmed this relationship.

Simulations
We performed a simulation study to check our results. We

simulated a hypothetical cohort study of 1 million people. The

‘‘true’’ predicted risk of disease is based on a logistic model,

log
P

1{P

� �
~b0zb1x1zb2x2:::zbnxn

and

P~
exp (b0zb1x1zb2x2:::zbnxn)

1z exp (b0zb1x1zb2x2:::zbnxn)

where P is the true predicted risk of disease. The outcomes of

individuals were simulated from P. The outcome was set to 1 if a

randomly generated uniform variable was less than the true

predicted risk and vice versa. To ensure that the allele frequencies

and effect sizes in our simulations are realistic, we extracted the

allele frequencies and odds ratios from a list of 30 known

susceptibility variants for prostate cancer. The data were based on

the National Human Genome Research Institute (NHGRI)

catalog. The loci were assumed to be independent and genotypes

(coded 0, 1 and 2) were simulated randomly from the allele

frequencies. The model was additive on the log-odds scale, or

equivalently multiplicative on the odds ratios scale. The regression

coefficients b1…bn were derived from log(OR) and b0 was

adjusted to yield disease probabilities that were approximately

equal to 0.005, 0.01 and 0.1. The precise disease probability is not

important as our aim is just to compare theoretical and simulation

results. We computed predictive metrics and constructed histo-

grams of predicted risks and predictiveness curves based on the

simulated disease status and predicted risks. The calculations were

repeated using the allele frequencies and effect sizes of the first 10,

20 and 30 variants from Table S1. The somers2 function in the

Hmisc package was used to compute the AUC.

To compute the NRI in simulations, the outcomes and true

predicted risk were first simulated with the above method using all

30 loci. Then we fitted a logistic regression model using only the

first 20 loci, treating it as the old model. The NRI from the old

model (20 loci) to the new model (30 loci) was computed.

As a more technical consideration, the OR is not exactly equal

to the risk ratio which is required for calculating the variance

explained. Zhang and Yu [20] have proposed a simple correction

of OR to the risk ratio in cohort studies. We modified their

approach to accommodate the three genotypes (or ‘‘exposures’’) in

our case (So et al. submitted [10]). The resulting risk ratio

estimates were used as inputs.

Results

Predictive indices obtained by analytic calculations and simula-

tions are presented in Table S2. The results from both approaches

were very close in all scenarios. Figure 3 and Figure 4 show

comparisons of the predictiveness curves and the risk distributions

from simulations and our theoretical calculations. Again the graphs

derived from analytic means match very well with the simulation

results. The results confirm our derivations and show that a

multiplicative model on the OR scale is very similar to an additive

model on the liability scale. This is equivalent to the similarity

between probit and logit models in generalized linear modeling

[21]. Also of note is that the AUCs from the approximation

formulas are close to the more accurate version. In addition, the

AUCs are almost identical given an identical set of susceptibility

SNPs, regardless of disease prevalence. This is because AUC only

depends on the ranks of predicted risks but not actual risk levels.

Table S3 shows the NRI and its components (probability of moving

up or down categories in cases and non-cases) from theoretical

derivations and simulations. They are reasonably close, though the

discrepancy is slightly larger than in the previous table. The

discrepancy may be due to difference in model assumptions (probit

Vs logit) and slight sampling variability. As NRI involves the risks

estimates from two models and their covariance, any difference in

model assumptions may be exaggerated. NRI also involves the

discretization of risks into categories in two models, and this may

also lead to a slightly higher discrepancy.

We created some combinations of disease probability (K) and

variance explained and computed the predictive metrics in each

case (Table 3). As expected, all the prediction metrics improve

when Vm increases. This includes increases in AUC, proportion of

cases explained by people at highest risk, variance of the predicted

risk, the mean risk difference and the range and relative risk at the

10th and 90th percentiles.

We now considered how the predictive metrics changes at different

prevalences, given a fixed level of Vm. As shown in Table 3, the AUC

and the proportion of cases explained decreases with increasing

prevalence. The mean risk difference in cases and controls is wider

when the disease is more common, given the same Vm. The relative

risk by comparing the risks at 10th and 90th percentiles is larger at

lower prevalences, but the range is larger at higher prevalences.

Next some combinations of Vm under the old and new

prediction models are considered (Table 4). The risk thresholds

were set at 6% and 20% under overall prevalences of 5% and

10%. Under the simulated scenarios, we observed that the

magnitude of NRI is the largest, followed by the increase in

AUC, and the IDI is the smallest. It is noteworthy that it is possible

the AUC increase is unimpressive but the NRI is more substantial.

For example when the variance explained increases from 20 to

25% at K = 0.05 or 0.1, the AUC increases by only about 0.03

while the NRI is around 11%.

Predictive Power Based on Heritability Explained
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Finally we applied our methodologies to a number of complex

diseases to evaluate the predictive performance achievable by the

known susceptibility loci (Table 5). To our knowledge, this is by far

the most comprehensive assessment of predictive power based on

established susceptibility variants, in terms of both the number of

diseases and the variety of predictive metrics covered. We

computed the total variance explained by established susceptibility

variants for each disease. Details of the survey are provided

elsewhere (So et al., submitted [10]).

As shown in Table 5, the AUC for the diseases are in general

not very high, but the AUC for type 1 diabetes and systemic lupus

erythematosus (SLE) reach around 0.75, a threshold that may be

considered clinically useful in discrimination [22]. (Also note that

the MHC variants were not included for type 1 diabetes.) The

mean risk differences in affected and unaffected individuals range

from almost 0 to about 7%, the difference being larger for more

common diseases. The relative risk and the range between the

10th and 90th percentiles were also shown. The largest relative

risk was about 14 times (type 1 diabetes) and the widest range was

around 30% (type 2 diabetes). We note that this sort of comparison

may be quite arbitrary as one can compare any 2 percentile cut-

offs. We merely aim at providing an idea of how dispersed the risks

are at different percentiles. For a more comprehensive assessment,

one can look at the predictiveness curve and use formulas derived

before for the predicted risk at any percentile. Figure 5 contains a

panel of six graphs showing the predictive performance of known

variants for breast cancer. Similar graphs for the other diseases

studied are shown in Figures S1, S2, S3, S4, S5, S6, S7, S8.

Discussion

We have shown in this study that the variance explained

framework enables us to evaluate the predictive or discriminatory

power of tests analytically. Under this framework, the overall

probability of disease and the total variance explained are the two

fundamental quantities that determine the distribution of predict-

ed risks and the predictive power. Note that we mainly considered

lifetime risk in the current study, although one can also consider

the probability of disease in a specified period of time. The

distribution of predicted risks in the population can be derived

analytically given the overall probability of disease and the

variance explained. We can also compute many indices of

predictive power, such as AUC, discrimination slope, reclassifica-

tion improvement and the proportion of cases explained by

specific percentile of population at the highest risk. Hence the

concept of variance explained provides a unifying framework that

connects different approaches to prediction model assessment.

Although the methods presented are primarily motivated and

demonstrated using genetic markers, they can also be applied to

other biomarkers or environmental risk factors.

The methodology described here can be applied to case-control

studies, as long as the overall probability of outcome and variance

explained are known. By supplying the overall disease probability,

the appropriate absolute risks and reclassification indices can be

computed. This is verified by our simulation which is equivalent to

a cohort study. Using the variance explained derived from allele

frequencies and ORs, all the prediction metrics and plots from our

theoretical calculations approximates the simulation results very

well. Another advantage of risk prediction based on the variance

explained framework is that it can be extended to deal with

markers in LD, haplotypes or multilocus genotypes. These

extensions will be discussed elsewhere (So et al., submitted [10]).

A note on the optimality of the ROC curve
Recently Lu and Elston [4] have suggested a way to construct

the optimal ROC curve, based on likelihood ratios. An optimal

ROC curve is one that maximizes the true positive rate for any

Table 3. Predictive indices under different combinations of overall disease probability (K) and variance explained (s2).

K = 0.005 K = 0.005 K = 0.005 K = 0.01 K = 0.01 K = 0.01 K = 0.05 K = 0.05 K = 0.05 K = 0.1 K = 0.1 K = 0.1

s2 = 0.05 s2 = 0.1 s2 = 0.2 s2 = 0.05 s2 = 0.1 s2 = 0.2 s2 = 0.05 s2 = 0.1 s2 = 0.2 s2 = 0.05 s2 = 0.1 s2 = 0.2

AUC accurate 0.678 0.746 0.832 0.666 0.730 0.814 0.635 0.690 0.765 0.622 0.672 0.742

AUC approx 0.677 0.742 0.821 0.665 0.726 0.803 0.634 0.686 0.754 0.621 0.669 0.731

AUC approx2 0.679 0.747 0.833 0.667 0.731 0.815 0.636 0.691 0.766 0.623 0.673 0.744

Prop cases exp 0.1 0.258 0.350 0.505 0.241 0.323 0.460 0.201 0.255 0.346 0.182 0.224 0.293

Prop cases exp 0.2 0.421 0.530 0.691 0.401 0.500 0.650 0.349 0.421 0.535 0.323 0.382 0.474

Prop cases exp 0.5 0.746 0.831 0.924 0.729 0.812 0.906 0.681 0.752 0.845 0.656 0.719 0.805

Var of risk 1.23E-05 2.90E-05 7.97E-05 4.06E-05 9.27E-05 2.39E-04 5.68E-04 1.21E-03 2.75E-03 1.60E-03 3.34E-03 7.20E-03

Var of risk to max 0.0025 0.0058 0.0160 0.0041 0.0094 0.0241 0.0120 0.0255 0.0578 0.0178 0.0371 0.0800

Mean risk in cases 0.0075 0.0108 0.0209 0.0141 0.0193 0.0339 0.0614 0.0743 0.1049 0.1160 0.1334 0.1720

Mean risk in noncases 0.0050 0.0050 0.0049 0.0100 0.0099 0.0098 0.0494 0.0487 0.0472 0.0982 0.0963 0.0921

Mean Risk Diff 0.0025 0.0058 0.0160 0.0041 0.0094 0.0241 0.0120 0.0255 0.0577 0.0178 0.0371 0.0799

Risk at 10th percentile 0.0017 0.0008 0.0002 0.0037 0.0020 0.0006 0.0238 0.0153 0.0066 0.0538 0.0377 0.0191

Risk at 90th percentile 0.0094 0.0111 0.0126 0.0182 0.0214 0.0250 0.0817 0.0957 0.1154 0.1537 0.1778 0.2142

RR from 10th to 90th 5.68 13.21 58.42 4.95 10.76 42.06 3.44 6.23 17.56 2.85 4.72 11.24

Range from 10th
to 90th

0.0078 0.0102 0.0124 0.0145 0.0194 0.0244 0.0580 0.0803 0.1088 0.0998 0.1401 0.1951

AUC accurate, accurate AUC obtained by the integration formula as described in text; AUC approx, AUC approximated by binormal curve and assuming equal variance
in cases and controls; AUC approx2, AUC approximated by binormal curve and unequal variance in cases and controls.
Prop cases exp 0.1, proportion of cases explained by the people at top 10% of risk; similar abbreviations used for the next 2 items.
Var : variance ; max, maximum ; Diff, difference; RR, relative risk.
doi:10.1371/journal.pgen.1001230.t003
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fixed value of false positive rate and hence gives the maximum

AUC. Another method to construct the optimal ROC curve is

simply to use the risk score function or the predicted probability of

disease, Pr(disease| test result). This method is perhaps less

recognized and has not been mentioned in Lu and Elston [4]. It

has been shown that the risk score is a monotone increasing

function of likelihood ratios, and therefore also gives the optimal

ROC curve [23]. In our methodology, construction of the ROC

curves (and AUC) are all based on the actual predicted risks, or

equivalently the liability score, which is a monotone increasing

function of the actual risks. As a result, the ROC curve produced

by our method should be optimal by definition. In practice, the

‘‘optimality’’ will depend on whether the risks are specified

correctly by the most appropriate model. Our approach is to

assume an underlying normal liability distribution. Another

common approach is to assume a logistic model, which is the

same as assuming ORs are multiplicative. These 2 models (normal

Vs logistic) are however very close, and in reality it is difficult to tell

which one is closer to the truth.

On measures of predictive power and the limitations of
AUC

Broadly speaking, individualized estimates of disease risk serves

two main purposes. One is accurate classification of individuals

into two distinct groups, diseased or not diseased. Such high levels

of accuracy in classification are required, for example in disease

diagnosis or identifying subgroups of people for costly and/or

invasive screening procedures or interventions. The actual disease

risks are relatively unimportant. In this case AUC is an

appropriate measure of predictive ability.

Another purpose is to better stratify people into risk categories

and offer different management or screening strategies according

to the level of predicted risks. The intervention or screening plans

are typically less expensive or risky. For example, subjects having a

10-year risk of breast cancer over a certain percentage may be

recommended for mammography screening. In that case, the

increase in AUC by adding genetic markers to the prediction

model may not be the primary concern. Instead, it is more

pertinent to know how well an individual may be reclassified into

the ‘‘screening’’ and ‘‘no screening’’ groups. This idea of using the

reclassification concept to assess a predictive model has been

discussed in previous studies [6,9].

AUC has been widely used to measure the ability of risk

prediction for sets of genetic variants and other biomarkers. As

Figure 3. Comparison of the predictiveness curves from
simulated data and theoretical calculations. The predictiveness
curve plots the predicted risk against risk precentiles. The overall
disease risk K = 0.005 and 30 loci from Table S1 were included. The black
dotted line represents results from simulations and the green solid line
is obtained by theoretical calculations. The total variance explained is
equal to 0.0442. The theoretical estimates of predicted risks are from

equation (1), i.e. Pr (disease)~1{W
T{sW{1(p)ffiffiffiffiffiffiffiffiffiffiffiffi

1{s2
p

� �
, where T is the

liability threshold, s2 is the variance explained and p is the percentile of
measurable risk derived from known genetic factors.
doi:10.1371/journal.pgen.1001230.g003

Figure 4. Comparison of predicted risk distributions from
simulated data and theoretical calculations. The overall disease
risk K = 0.005 and 30 loci from Table S1 were included. The histogram
was obtained from simulations data, while the blue line showing
probability density was derived from theoretical calculations. The
theoretical distribution was obtained by differentiating the cumulative
density function of estimated risks.
doi:10.1371/journal.pgen.1001230.g004

Table 4. Improvement in predictive indices with increase in
variance explained.

K Vold Vnew NRI AUC increase IDI

0.05 0.05 0.1 0.099 0.055 0.014

0.05 0.15 0.195 0.096 0.029

0.1 0.15 0.102 0.041 0.015

0.1 0.2 0.202 0.075 0.032

0.2 0.25 0.104 0.029 0.019

0.2 0.3 0.201 0.054 0.040

0.1 0.05 0.1 0.166 0.050 0.019

0.05 0.15 0.306 0.089 0.040

0.1 0.15 0.142 0.038 0.021

0.1 0.2 0.262 0.070 0.043

0.2 0.25 0.109 0.028 0.024

0.2 0.3 0.205 0.053 0.049

Vold and Vnew refers to the variance explained under the old and new models
respectively.
doi:10.1371/journal.pgen.1001230.t004
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mentioned previously, there are limitations in just using AUC to

quantify the predictive power of a test. More detailed discussions

on the shortcomings are presented elsewhere [6,7,24]. In brief,

AUC is not a function of the actual predicted risks. As an extreme

example described by Cook (2007), a risk model that assigns a risk

of 0.52 to all cases and 0.51 to all non-cases achieved perfect

discrimination but is not clinically useful. The benefit of new

markers in reclassification cannot be captured by AUC as it

contains no information about the predicted risks. AUC only

depends on the rank of the test results (or the model risks) and

ignore the magnitude of differences. If all the predicted risks are

multiplied by a factor of 10, the ranks and hence the ROC curve

or AUC will stay unchanged, but the clinical impact is very

different [24].

Another criticism concerns the interpretation of AUC. AUC

equals the probability that the risk of a case is higher than a non-

case. This is however not directly clinically relevant since

physicians do not see patients in pairs and it is not necessary to

decide which person in a pair will develop the disease.

Moreover, the ROC curve and AUC considers all possible

cutoffs for the test results or model risks and the specificity and

sensitivity at each cutoff. As a result, no pre-specified cutoff is

required. However, if there exist established risk thresholds, then a

large part of the ROC curve will in fact be derived from cutoff

points not of clinical interest.

We reckon that a more comprehensive assessment of prediction

model performance may be achieved by complementing AUC

with other available prediction indices and graphs, such as NRI,

IDI and risk distribution plots, particularly when there exist

meaningful risk thresholds. If there are no such thresholds, NRI

may not be useful, but AUC, IDI and distribution of risks in the

population can still be evaluated. The practical choice or emphasis

on which metric is dependent on the clinical context.

Areas not addressed
Several areas have not been addressed in this study. We have

not considered model calibration, which is a measure of how close

the predicted probabilities of outcome match the actual probabil-

ities. Calibration may be assessed by dividing subjects into deciles

of risk and compare the mean predicted risk with the actual

proportion of outcomes in each decile. The goodness of fit may be

tested by a chi-square test, also known as the Hosmer-Lemeshow

test [25]. The predictiveness curve can also be used to visualize the

goodness-of-fit [7]. We have assumed perfect calibration when

deriving the results. Interaction between SNPs, for example, may

affect calibration. Exploration of interactions will be a useful next

step after the single-SNP analyses in GWAS.

The measured liability is assumed to be normally distributed. If

we consider a number of SNPs with small effect sizes (as is the case

in many complex diseases), the normal assumption is usually

acceptable. However, if a disease has one or a few variants with

particularly large effects, the normal assumption may not hold. For

example, consider a disease with a biallelic locus showing large

effects and ten other SNPs with modest effects. The resulting

measured liability can be regarded as a mixture of three normal

distributions. The mixing proportion will depends on the genotype

frequencies of the large-effect locus. The analytic computation of

predictive indices will be much more complex. Simulations may

need to be performed to assess the predictive power of genetic

variants in complicated cases. As an example, for Alzheimer’s

disease the APOE locus exerts a large effect compared to other loci

[26], hence the normal assumption is more dubious and analytic

calculations of predictive metrics may not be very accurate.

Another potential problem is that the effect size measures may

not be accurate. For example, the effect size of the top significant

results in a GWAS may be subject to the ‘‘winner’s curse’’, leading

to overestimation of OR. Methods to correct for this bias were

Table 5. Predictive indices for nine complex diseases.

Bipolar Ca Breast CAD Crohn Ca Prostate SCZ SLE DM1 DM2

Lifetime Risk 0.021 0.127 0.3365 0.0060 0.156 0.0072 0.0031 0.0066 0.2895

Vm 0.0214 0.057 0.123 0.074 0.125 0.003 0.087 0.109 0.118

No. of variants 5 13 12 32 27 4 23 45 25

AUC accurate 0.600 0.625 0.662 0.711 0.680 0.543 0.741 0.750 0.661

AUC approx 0.600 0.624 0.658 0.708 0.675 0.544 0.738 0.745 0.657

AUC approx2 0.601 0.626 0.664 0.712 0.681 0.544 0.742 0.751 0.663

Prop cases exp 0.1 0.174 0.181 0.173 0.298 0.218 0.130 0.345 0.353 0.180

Prop cases exp 0.2 0.310 0.322 0.314 0.471 0.376 0.246 0.523 0.535 0.324

Prop cases exp 0.5 0.639 0.656 0.655 0.788 0.716 0.562 0.825 0.835 0.664

Var of risk 5.68E-05 2.56E-03 1.66E-02 2.66E-05 7.62E-03 1.28E-06 1.05E-05 5.24E-05 1.41E-02

Var of risk to max 0.0028 0.0231 0.0745 0.0045 0.0578 0.0002 0.0034 0.0079 0.0687

Mean risk in cases 0.0237 0.1472 0.3859 0.0104 0.2048 0.0074 0.0065 0.0145 0.3383

Mean risk in noncases 0.0209 0.1241 0.3114 0.0059 0.1470 0.0072 0.0031 0.0066 0.2696

Mean Risk Diff 0.0028 0.0231 0.0745 0.0045 0.0578 0.0002 0.0034 0.0079 0.0687

Risk at 10th percentile 0.0124 0.0682 0.1759 0.0015 0.0588 0.0058 0.0005 0.0011 0.1444

Risk at 90th percentile 0.0310 0.1950 0.5119 0.0122 0.2754 0.0087 0.0067 0.0148 0.4517

RR from 10th to 90th 2.50 2.86 2.91 8.32 4.69 1.49 12.23 13.92 3.13

Range from 10th to 90th 0.019 0.127 0.336 0.011 0.217 0.003 0.006 0.014 0.307

Vm , level of variance explained. Bipolar, bipolar disorder; Ca Breast, breast cancer; CAD, coronary artery disease; Crohn, Crohn’s disease; Ca Prostate, prostate cancer;
SCZ, schizophrenia; SLE, systemic lupus erythematosus; DM1, type 1 diabetes mellitus; DM2, type 2 diabetes mellitus.
doi:10.1371/journal.pgen.1001230.t005
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Figure 5. Graphs showing risk distribution and predictive power of known susceptibility variants for breast cancer. A: ROC curve ; B:
predictiveness curve (predicted risk against risk perecentile) ; C: Cumulative density function of predicted risks ; D: Probability density function of
predicted risks ; E: Probability density function of predicted risks in the population (blue solid line) and in cases (green dotted line) ; F: Proportion of
cases explained against proportion of population at highest risk. While the plots A and F appear similar, they are not identical as shown
mathematically in the text. Similar graphs for other diseases are presented in Figures S1, S2, S3, S4, S5, S6, S7, S8.
doi:10.1371/journal.pgen.1001230.g005
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described elsewhere [27,28,29]. In addition, sometimes cases and

controls may not be representative of the general population. For

example, some studies may recruit cases enriched for family

history or more extreme phenotypes. For the applications in the

current study, the effect sizes are based on combining the initial

GWAS and replication samples, and the bias should in general be

small. As for the practical value of a single GWAS in genetic risk

prediction, Wray et al. [30] used simulated case-control datasets to

consider the predictive performance of selected markers.

As described before, an important aim of risk prediction models

is to stratify people into appropriate risk categories so they may be

subject to different interventions or screening strategies. We have

not discussed issues regarding the determination of risk thresholds.

We need to evaluate the associated costs and benefits before

making such a choice. More mathematical treatment based on a

decision theory framework may be found for example in [31]. In

addition, the costs and benefits may vary with age or other

environmental factors and may vary in different populations. In

practice, medical decision making will need to involve the patient’s

own values and tolerance for risks as well. A recent study by Gail

[32] provided an example on how different metrics based on

public health considerations may be used to assess the perfor-

mance of a breast cancer prediction model with genetic markers.

We have used NRI to assess how a new test will improve the re-

classification of subjects into risk categories. The NRI may also be

viewed as the difference in expected loss between the new test and

the old. Recalling the formula for NRI,

NRI~ P upjD~1ð Þ{P downjD~1ð Þ½ �

{ P upjD~0ð Þ{P downjD~0ð Þ½ �

in fact all the four components are given equal weighting. For

example, the loss incurred by putting a diseased individual in a

lower risk category is assumed to be identical to the loss incurred

by putting a healthy person in a higher risk category. In practice,

this may not be the most appropriate. For instance, we may

consider that putting an affected person into a lower risk category

and hence not giving him/her treatment [the component

P(down|D = 1)] is worse than erroneously moving up the risk

category of a healthy individual [the component P(up|D = 0)] and

treating the person. This may be true if the morbidity or mortality

of the disease is much greater than the side-effects from treatment.

To tackle this problem one can for example incorporate different

loss functions for the components. This may be done within our

framework by weighing the four components differently. In a

similar vein, Gail [32] considered different loss functions for TP,

TN, FP and FN and evaluated the expected loss for mammog-

raphy screening if the risk threshold was set at a certain optimal

level. As described previously, we can derive all four components

in a 262 classification table (Table 1) and the expected loss can

also be obtained readily by assigning appropriate losses to each

component.

Another noteworthy limitation is that if there exists more than

one risk bin, NRI does not consider the number of risk categories

changed upon adding the new marker. For example, say there are

three risk categories, placing a case in the lowest risk bin and the

second-lowest bin will have the same effect on NRI. To correct

this problem, we may consider giving numeric scores that reflect

the number of categories shifted, as suggested in [28]. For

example, moving up a person who develops the event from

category 1 (lowest risk) to category 3 (highest risk) will receive a

higher score than just moving up to category 2 (intermediate risk).

Again, our framework can be readily extended to deal with this

problem, as we can calculate the probability of changing from any

one risk category to another using bivariate integration.

We have mainly considered lifetime risk when calculating

predictive indices. In clinical practice the risk in a given period of

time may be more relevant than the lifetime risk. For example, the

ATP III guideline quoted above relies on 10-year risk of coronary

heart disease. The use of tamoxifen for breast cancer prevention is

dependent on the 5-year risk of disease [33,34]. It is also worth

noting that the absolute risk of disease is reduced by the chance

that an individual dies of other causes prior to developing the

disease. Our statistical framework can be extended to deal with

risks in a specified period of time (for individuals of a certain age).

In that case, the inputs should be carefully specified. The disease

probability and the relative risks in the specified period of time should

be provided to compute the correct variance explained. The rest of

the calculations remain unchanged. Concepts of absolute risk

estimation were discussed for example in [35]. We describe in a

separate paper [36] the detailed methodologies to derive age-

conditional risk estimates given a follow-up period, accounting for

competing risks in the context of genetic association studies.

We have not considered the variability of the predictive metrics

in this study. It should be noted that the disease probability and

the variance explained by known variants are both subject to

variations, and so will be the predictive metrics derived from these

two quantities. One should be careful in interpretation of the

results if the disease probability or effect sizes of variants are

estimated from small sample sizes.

We noticed a recent study on AUC estimation in the context of

genetic risk prediction [37]. Their study is also based on a liability

threshold model, and they have derived an analytic formula to

approximate the maximum AUC achieved when all genetic loci

are found (at heritability or at fractions of it). Their formula

described is similar to ours under the section on approximation of

AUC by the binormal ROC curve. However, apart from this,

other methodologies presented here have not been described

before. Besides the approximation formula based on normal

distributions in cases and controls, we also provide the exact

formula for AUC as well as formulas to derive all 4 cells in the 262

classification table (given any threshold). Hence we are able to

draw the ROC curve based on analytic methods. Also, not only

are we able to derive the AUC when all heritability has been

explained, but we may also calculate the AUC directly given the

allele frequencies and effect sizes of a set of known susceptibility

loci. We have also argued for other measures and graphs to

evaluate the predictive performance of models and provide

analytic formulas to obtain all relevant indices or plots.

Evaluation of a risk prediction model is no simple task, and

inevitably we cannot perfectly deal with every complexity

involved. Nevertheless, we hope the current study will stimulate

more thoughts on the proper assessment of prediction models and

provide a convenient and useful methodology for researchers to

assess the predictive ability of sets of susceptibility loci. Programs

(written in R) to implement the methodology presented in this

paper are available at https://sites.google.com/site/hon-

cheongso/software/pred-metrics.
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Figure S4 Graphs showing risk distribution and predictive

power of known susceptibility variants for Crohn’s disease.
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power of known susceptibility variants for schizophrenia.
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power of known susceptibility variants for systemic lupus
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Table S2 Predictive indices from simulations (sim) compared to

theoretical estimates (theo).
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