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Because carbonyl groups are ubiquitous in organic chemistry, the
ability to synthesize functionalized carbonyl compounds, particu-
larly enantioselectively, is an important objective. We have devel-
oped a straightforward and versatile method for catalytic asym-
metric carbon–carbon bond formation at the γ-position of carbonyl
compounds, specifically, phosphine-catalyzed additions of malo-
nate esters to γ-substituted allenoates and allenamides. Mechanis-
tic studies have provided insight into the reaction pathway.
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There are a variety of powerful methods for functionalizing car-
bonyl compounds in the α- and the β-positions, including clas-

sic approaches such as reacting enolates with electrophiles and
adding nucleophiles to α,β-unsaturated carbonyl compounds
(1, 2). In contrast, there are few general processes for incorpor-
ating new substituents in the γ-position of carbonyl compounds,
particularly catalytic asymmetric reactions that form carbon–
carbon bonds (3).

In pioneering early investigations, Trost and Lu demonstrated
that phosphines can catalyze additions of certain carbon, nitro-
gen, and oxygen nucleophiles to the γ-position of 2-butynoates
and 2,3-butadienoates (Eq. 1, EWG ¼ ester), as well as related
compounds (4–8); for these electrophiles, the γ-carbon of the
product is not a stereocenter. In contrast, for additions to homo-
logues of these electrophiles, there is the potential to simulta-
neously form a new bond and to control the stereochemistry
of the γ-carbon (Eq. 2). Until recently, however, there were only
isolated examples of intermolecular reactions of this type [≤30%
yield (9–11); instead, another phosphine-catalyzed process, iso-
merization to the dienone (Eq. 2) (12, 13), often intervened],
and there were no reports of an enantioselective variant.
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Since 2009, some progress has been described in achieving
asymmetric γ additions of the type outlined in Eq. 2, specifically,
chiral phosphine-catalyzed additions of nitromethane (14) and
alkylthiols (15). Due to the central importance of carbon–carbon
bond formation in organic chemistry, we are particularly inter-
ested in the use of carbon nucleophiles in this powerful

functionalization process. Unfortunately, the only method that
has been reported for catalytic enantioselective γ additions of
carbon nucleophiles is limited to a single nucleophilic partner,
nitromethane. Even nitroethane did not furnish satisfactory
results (14).

1,3-Dicarbonyl compounds are an important family of carbon-
based (pro)nucleophiles that have been widely exploited in asym-
metric catalysis (16), including enantioselective γ-additions to
2-butynoates and 2,3-butadienoates (which cannot undergo unde-
sired isomerizationtoadienoate) togenerateaδ-stereocenter (17).
To the best of our knowledge, 1,3-dicarbonyl compounds have not
beenemployedasnucleophiles inγ-additionsof the type illustrated
in Eq. 2, which would lead to the formation of a carbon–carbon
bond between two tertiary centers. In this paper, we establish that
such γ-additions of secondary carbon nucleophiles to γ-substituted
electrophiles can indeed be achieved by a chiral phosphine catalyst
in good yield and enantiomeric excess (ee) (Eq. 3).
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Thus, phosphepine 1, which was originally developed as a
chiral ligand for transition metals (18), together with 2-methoxy-
phenol, efficiently catalyzes the γ-addition of diallyl malonate to a
γ-substituted allenoate, furnishing the desired product in
98% yield and 95% ee (entry 1 of Table 1). In the absence of
phosphepine 1, no γ-addition is observed (entry 2). If the protic
additive (2-methoxyphenol) is omitted, or if the reaction is con-
ducted at room temperature, then a lower yield and ee are
obtained (entries 3 and 4). Chiral phosphines that have been em-
ployed in other catalytic asymmetric processes, including γ-addi-
tions, are not as effective as 1 (entries 5–8) (14, 15, 19–21).

Under our optimized conditions, an array of catalytic enantio-
selective γ-additions of malonate esters to readily accessible γ-
substituted allenoates proceed in good yield and ee (Table 2).
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Thus, formation of the desired carbon–carbon bond between two
tertiary carbons occurs smoothly in the presence of functional
groups such as alkynes, halides, ethers, acetals, esters, and
alkenes.

Furthermore, in a preliminary study under our standard reac-
tion conditions, we have determined that phosphepine 1 can cat-
alyze the γ-addition of an α-substituted 1,3-dicarbonyl compound
to an allenoate, thereby achieving asymmetric carbon–carbon
bond formation between a tertiary and a quaternary stereocenter
with good ee (and modest diastereoselectivity; Eq. 4).
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The conditions that we developed for γ-additions of malonate
esters to allenoates can be applied, without modification, to re-
actions of allenamides (Table 3) (22). Good enantioselectivities
are observed with a range of substrates.

The enantioenriched products generated by phosphine-cata-
lyzed γ-additions to activated allenes can be transformed into
other useful compounds. For example, deallylation/decarboxyla-
tion can provide a carboxylic acid [Eq. 5; see C1–C6 of amphi-
dinolide X: (23)], which can be cyclized to form a butyro-
lactone with good diastereoselectivity (Eq. 6; 24, 25).
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Several observations regarding this method for the addition
of 1,3-dicarbonyl compounds to γ-substituted allenes are note-
worthy. First, in contrast to other phosphine-catalyzed enantio-
selective γ-addition reactions (14, 15), kinetic resolution of the

Table 1. Effect of reaction parameters on the catalytic asymmetric
γ-addition of a malonate ester to a γ-substituted allenoate

"standard conditions"
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Entry Change from the “standard conditions” Yield, %* ee, %

1 None 98 95
2 No (S)-1 <5 —
3 No 2-methoxyphenol 24 71
4 Room temperature instead of −30 °C 91 90
5 (S)-2 instead of (S)-1 80 95
6 (S)-3 instead of (S)-1 <5 —
7 (S)-4 instead of (S)-1 93 93
8 (+)-TangPhos instead of (S)-1 50 17

All data are the average of two experiments.
*The yield was determined by GC analysis with n-decane as an internal
standard.
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Table 2. Catalytic asymmetric γ-additions of malonate esters to
γ-substituted allenoates
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Entry R1 R2 R Yield, %* ee, %

1 Me 94 94
2 (CH2)2

88 92

3 ðCH2Þ3CI 91 93

4 ðCH2Þ4OTIPS 78 87

5 ðCH2Þ4OBn Et Allyl 78 90

6 (CH2)2 O

O

Ph

71 94

7 ðCH2Þ3CO2Me 77 94

8
(CH2)6

n-Oct

71 86

9 n-Pr 84 93
10 (CH2)7 Bn Et 65 90

11 CH2OMe 74 93

12†
CH2 71 85

All data are the average of two experiments.
*Yield of purified product. Only the E isomer is observed.
†15% (S)-1 was used.

Table 3. Catalytic asymmetric γ-additions of malonate esters to
γ-substituted Weinreb allenamides
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Entry R1 Yield, %* ee, %

1 Me 71 95
2 n-Pr 66 93
3 ðCH2Þ2Ph 66 94
4 (CH2)2 70 94

All data are the average of two experiments.
*Yield of purified product. Only the E isomer is observed.
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allene is observed (Eq. 7; the ee of the product is constant during
the reaction). To the best of our knowledge, there are few exam-
ples of kinetic resolutions of allenes (26), and none that involve
phosphine catalysis (8).
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In addition, we have determined that the resting state of the
catalyst during the γ-addition process is phosphepine 1 itself (not
the protonated catalyst or a catalyst-allene adduct). Furthermore,
the rate law for the reaction is first order in catalyst and in allene,
and zero order in malonate. Finally, the ee of the product corre-
lates linearly with the ee of the catalyst. These observations are
consistent with a pathway in which the first step of the reaction is
turnover-limiting (Fig. 1).

In summary, we have developed phosphine-catalyzed γ-addi-
tions of secondary nucleophiles to γ-substituted allenes, specifi-
cally, a versatile method for asymmetric carbon–carbon bond
formation between malonate esters and 2,3-allenoates and 2,3-
allenamides. Interestingly, a preliminary investigation suggests

that the enantioselective synthesis of adjacent tertiary and
quaternary stereocenters may even be possible through this
approach. Mechanistic studies have furnished insight into the re-
action pathway, including an example of a kinetic resolution of
an allene. Because this straightforward method for the catalytic
asymmetric γ-functionalization of carbonyl compounds comple-
ments existing methods for α- and β-functionalizations, additional
efforts to exploit this powerful mode of reactivity are under way.
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Fig. 1. Possible mechanism for the phosphine-catalyzed asymmetric γ-addi-
tion of a malonate ester to an activated allene (for the sake of simplicity, only
one E∕Z isomer of the intermediates is illustrated and all of the elementary
steps are drawn as irreversible).
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