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Summary

Both erythropoietin (EPO) and haem oxygenase-1 (HO-1), an anti-oxidative
stress protein, have proven protective roles in experimental autoimmune
encephalomyelitis (EAE), a reliable animal model of multiple sclerosis. In this
study, EPO delivered intraperitoneally could reduce disease severity in myelin
oligodendrocyte glycoprotein (MOG)–EAE mice. To assess the effect of EPO
on endogenous HO-1 in EAE, we investigated expression of HO-1 mRNA by
real-time polymerase chain reaction (RT–PCR), protein expression centrally
and peripherally by Western blot and immunohistochemistry and mean fluo-
rescence intensity of splenic HO-1 by flow cytometry. A significantly higher
expression of HO-1 in both the central nervous system (CNS) and spleen was
shown in EPO-treated MOG–EAE mice than in controls. We further examined
the immunomodulatory effect of EPO in EAE, and via RT–PCR demonstrated
significantly lower expression of interferon-g, interleukin (IL)-23, IL-6 and
IL-17 mRNA, and significantly higher expression of IL-4 and IL-10 mRNA in
CNS of EPO-treated MOG–EAE mice than in controls. Using flow cytometry,
we also observed a significantly decreased ratio of both T helper type 1 (Th1)
and Th17 lymphocyte subsets isolated from CNS and a significantly increased
ratio of splenic regulatory CD4 T cells in EPO-treated MOG–EAE mice. In
addition, we demonstrated that MOG-specific T cell proliferation was lower in
the EPO-treated group than in controls and showed amelioration of EAE
by adoptive transfer of splenocytes from EPO-treated MOG–EAE mice.
Together, our data show that in EAE, EPO induction of endogenous HO-1 and
modulation of adaptive immunity both centrally and peripherally may
involve the repression of inflammatory responses.
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Introduction

Multiple sclerosis (MS) is a chronic disease of the central
nervous system (CNS) affecting primarily young adults, of
which the pathogenesis is characterized by inflammation,
demyelination and axonal injury [1]. Experimental autoim-
mune encephalomyelitis (EAE) is the most widely recog-
nized animal model of MS. The immunopathogenic
mechanism of EAE is viewed widely as a T cell-mediated
inflammatory disease of the CNS in which activated T cells
recruit invading macrophages, resident astrocytes and
microglia, leading to release of inflammatory mediators and
toxic molecules including glutamate, nitric oxide (NO)
and/or reactive oxygen species. These contribute to axonal

damage, which is followed by complement activation or
antibody-mediated phagocytosis of axons [2,3].

The potential neuroprotective effect of erythropoietin
(EPO) against neuronal death induced by ischaemia and
hypoxia has been studied extensively both in vitro and in
vivo [4]. Bernaudin et al. first demonstrated a temporally
and spatially regulated cellular expression of EPO and EPO
receptor (Epo-R) with the progression of a cerebral infarct
and showed a basal level of expression of EPO in ischaemic
mice in a range of neural cells. In addition, they demon-
strated a significant reduction in the degree of infarct
in mice treated with intracerebral injection of EPO [5].
Sinor et al. showed that EPO reduced neuronal cell death
from hypoxia and attenuated the neurotoxic effect of
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alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic
acid (AMPA) in cultured cortical neurones [6]. Fletcher
et al. showed that intranasal administration of EPO plus
insulin-like growth factor-I (IGF-I) reduced stroke volumes
within 24 h and improved neurological function in a
murine stroke model [7]. Nadam et al. provided evidence of
the neuroprotective potential of EPO induced in astroglia
displaying delayed neuronal death in the rat hippocampus
after pilocarpine-induced status epilepticus [8]. Moreover,
Zhang et al. showed the neuroprotective effect of EPO in
murine EAE [9], and recently Ehrenreich et al. introduced
EPO to treat patients with chronic MS and showed its effec-
tiveness in a clinical trial [10].

Haem oxygenase-1 (HO-1) is a heat shock protein
induced by oxidative stress that can be amplified significantly
in lesions in animals with EAE [11]. HO-1 expression in
active MS lesions has also been identified [12]. This
increased endogenous HO-1 may have the defensive poten-
tial to minimize tissue damage in EAE [13]. Furthermore,
Chora et al. showed that Hmox1–/–C57BL/6 HO-1 gene
knock-out mice displayed more exacerbated EAE than
Hmox1+/+ mice and that induction of HO-1 by cobalt pro-
toporphyrin IX (CoPPIX) administration suppressed EAE
progression, but that this protection of CoPPIX was abro-
gated in Hmox1–/– mice with EAE [14]. Thus, targeting
induction of HO-1 over-expression could be considered a
novel therapeutic strategy in the treatment of MS.

Park et al. have confirmed that T helper type 17 (Th17)
cells [interleukin (IL)-17-producing CD4+ T cells] have a
fundamental role in the immunopathogenesis of EAE [15].
Tzima et al. demonstrated that myeloid HO-1 deficiency
exacerbated EAE in mice and enhanced infiltration of acti-
vated macrophages and Th17 cells to the CNS, thereby estab-
lishing HO-1 as a critical early mediator of the innate
immune response in EAE [16]. Yuan et al. designed an
elegant study that showed that the immunomodulation of
EPO in EAE was mediated by promoting a large expansion in
CD4+forkhead box P3 (FoxP3+) regulatory T cells (Tregs) to
inhibit Th17 polarization and to abrogate proliferation of
the antigen-presenting dendritic cells (DCs) either in the
peripheral circulation or in the inflamed spinal cord [17].

Katavetin et al. reported that EPO induces HO-1 expres-
sion in cultured renal endothelial cells and that EPO-
induced HO-1 expression is probably responsible for
cytoprotection against oxidative stress in experimental renal
injury in vivo [18]. Recently, Burgers et al. demonstrated that
up-regulation of HO-1 expression contributes to EPO-
mediated cytoprotection during myocardial ischaemia–
reperfusion injuries [19]. However, the effect of EPO on
endogenous HO-1 has not yet been studied in EAE. Here, we
demonstrate that EPO can enhance endogenous HO-1 both
peripherally and centrally in EAE and that it up-regulates
splenic Tregs and Th2 cells and down-regulates Th1 and Th17
cells in EPO-treated myelin oligodendrocyte glycoprotein
(MOG)–EAE mice in situ.

Materials and methods

Mice

C57BL/6 mice (6–8 weeks old) were purchased from the
National Laboratory Animal Center, Taiwan. All animal pro-
tocols were approved by the Institutional Animal Care and
Use Committees (IACUC) in Taiwan.

EAE induction and treatment protocol

MOG35–55 peptide (M-E-V-G-W-Y-R-S-P-F-S-R-O-V-H-L-
Y-R-N-G-K) corresponding to the mouse sequence was syn-
thesized by QCB Inc., a division of BioSource International
(Hopkinton, MA, USA), and purified by high-performance
liquid chromatography (HPLC). Peptide purity was greater
than 95% after HPLC. C57BL/6 mice were immunized on
day 0 with 100 mg per mouse of MOG in 100 ml of an emul-
sion in complete Freund’s adjuvant (CFA) containing 400 mg
of Mycobacterium tuberculosis H37Ra (Difco, Detroit, MI,
USA). Each mouse also received 500 ng intraperitoneally of
pertussis toxin (PTX) (List Biological Laboratories, Camp-
bell, CA, USA) on days 0 and 2 after immunization.

EPO (Eprex®) was kindly supplied by Janssen Cilag
(Taipei, Taiwan) in syringes with 2000 U/ml/vial and was
stored at 4°C. Mice were administered EPO [100 U/100 ml/
mouse/injection diluted in sterilized phosphate-buffered
saline (PBS), equivalent to 5000 U/kg/mouse/injection] or
an equal volume of PBS as control on days 1, 3, 5 and 7
post-immunization.

Clinical EAE score

The clinical EAE score was assessed using the following scale:
0 = no symptoms, 0·5 = distal weak or spastic tail, 1 = com-
pletely limp tail, 1·5 = limp tail and hindlimb weakness
(feet slip through cage grill), 2·0 = unilateral partial hind-
limb paralysis, 2·5 = bilateral partial hindlimb paralysis,
3·0 = complete bilateral hindlimb paralysis, 3·5 = complete
hindlimb and unilateral partial forelimb paralysis,
4·0 = moribund and 5 = dead [20].

Real-time polymerase chain reaction (PCR)

The expression of mRNA for interferon (IFN)-g, IL-6,
IL-12p35, IL-17, IL-23p19, IL-27EBI3, transforming growth
factor (TGF)-b, IL-4 and IL-10 in spinal cord or brain was
analysed with specific primers from Applied Biosystems (Life
Technologies, CA, USA). The expression was normalized to
that of hypoxanthine–guanine phosphoribosyl transferase
(HPRT).

Immunohistochemistry

For immunohistochemical (IHC) staining, mice were per-
fused with PBS, and organs were harvested, formaldehyde-
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fixed and paraffin-embedded. The endogenous peroxidase
activity was quenched, and the sections were blocked with
1% (w/v) bovine serum albumin (BSA) in PBS for 1 h. The
sections were then incubated with a 1:300 dilution of rabbit
polyclonal anti-HO-1 antibody (Stressgen Biotechnologies,
Victoria, BC, Canada) in PBS, followed by horseradish per-
oxidase (HRP)-conjugated goat anti-rabbit IgG (Novus Bio-
logicals, Littleton, CO, USA). The reaction products were
visualized with a colour solution consisting of aminoethyl-
carbazole (AEC; Dako, Carpinteria, CA, USA), and the slides
were counterstained with haematoxylin [21].

Isolation of lymphocytes from the spleens, brains and
spinal cords

Mice were anaesthetized by intramuscular injection of
100 mg/kg ketamine (Imalgene 1000, Merial Laboratoire de
Toulouse, France) and 20 mg/kg xylazine (Rompum, Bayer
AG, Germany), and perfused transcardially through the left
ventricle with ice-cold PBS. Spleens were harvested, placed in
RPMI-1640 medium (Invitrogen Life Technologies, Gaith-
ersburg, MD, USA) and minced, and erythrocytes were
depleted with Tris-buffered ammonium chloride. The
remaining cell pellets, representing the total splenic mono-
nuclear cell population, were resuspended in RPMI-1640
medium. The non-adherent lymphocyte population was col-
lected, washed and resuspended in PBS containing 1% (v/v)
fetal bovine serum (FBS) (all supplements from Invitrogen
Life Technologies).

Brains and spinal cords were dissociated by glass homog-
enization through a fine mesh screen using a syringe plunger
and collected into 10 ml of Hanks’ balanced salts solution
(HBSS) containing 0·05% collagenase D (Boehringer Man-
nheim Biochemicals, Indianapolis, IN, USA), 0·1 mg/ml of
the trypsin inhibitor N-a-tosyl-L-lysyl chloromethyl ketone
(TLCK) (Sigma Chemical Co., St Louis, MO, USA), 10 mg/ml
DNase I (Sigma) and 10 mM Hepes buffer pH 7·4. The
resulting tissue slurry was mixed at room temperature for
60 min and allowed to settle at unit gravity for 30 min to
deplete any undigested debris. The supernatant was col-
lected, pelleted at 200 g for 5 min and resuspended in 10 ml
Ca2+/Mg2+-free HBSS for each brain. Five millilitres of this
suspension were layered carefully onto 10 ml of a modified
density separation medium (a mixture of 75% RPMI-1640
containing 10% FBS, 10 mM HEPES and 50 mg gentamicin
with 25% Ficoll-Paque) in a 50-ml centrifuge tube and cen-
trifuged at 500 g for 30 min before the overlying media and
tissue interface were removed. The entire 10 ml of gradient
medium was diluted 10-fold with HBSS and centrifuged at
300 g for 10 min [20].

Sodium dodecyl sulphate–polyacrylamide gel
electrophoresis (SDS–PAGE) and Western blot

Proteins were extracted from brains and spinal cords, and
separated by SDS–PAGE (12%). The gel was electroblotted

onto a nitrocellulose membrane, incubated for 1 h in 20 ml
of the blocking buffer [Tris-buffered saline (TBS), 5%
skimmed milk], washed three times in TBS with 0·1%
Tween-20 and incubated overnight at 4°C with rabbit anti-
HO-1 antibody (Stressgen). The blots were washed three
times and incubated for 1 h with HRP-conjugated goat
anti-rabbit antibody (Novus) at room temperature. The
membranes were washed three times, and the membrane-
bound antibody was detected with Western Lightning
Chemiluminescent Reagent Plus (PerkinElmer Life Sci-
ences, Boston, MA, USA) and visualized on X-ray film. The
molecular weight of HO-1 is 32 kDa and of b-actin 43
kDa.

Flow cytometry analysis

Prepared cells (1 ¥ 106 cells in 0·1 ml of PBS) were incubated
on ice and stained with the following marker-specific
antibodies (0·5 mg of antibody/1 ¥ 106 cells): fluorescein
isothiocyanate (FITC)-conjugated anti-HO-1 antibody
(eBioscience, San Diego, CA, USA) and allophycocyanin
(APC)-conjugated anti-mouse CD4 antibody (eBioscience,
San Diego, CA, USA). Either lymphocytes isolated from
central nervous system (CNS) or erythrocyte-depleted sple-
nocytes were stained with anti-mouse CD4 and stimulated
with 20 ng/ml of phorbol myristate acetate (PMA) plus
ionomycin for 4 h, the last 2 h in the presence of monensin
[22]. After fixation in 4% formaldehyde for 20 min, cells
were stained with fluorescein isothiocyanate (FITC)-
conjugated monoclonal antibody (mAb) to IFN-g, FITC-
conjugated mAb to FoxP3, phycoerythrin (PE)-conjugated
mAb to IL-17, PE-conjugated mAb to IL-4 and
PE-conjugated mAb to CD25 or isotype control mAbs,
according to the manufacturer’s instructions (BD Bio-
sciences, San Diego, CA, USA) in the presence of 0·5%
saponin for permeabilization (eBioscience). Flow cytometric
analysis was performed with a fluorescence activated cell
sorter (FACS)Calibur (Becton Dickinson), and data were
analysed with CellQuest software. Results were analysed
using WinMDI software.

Antigen-specific proliferation

Splenocyte cell suspensions were isolated on day 21 from
MOG35–55-immunized mice treated with or without EPO.
Pooled splenocytes from six individual mice from the same
group were plated in triplicate in 96-well round-bottomed
plates at 2 ¥ 105 cells/well in 200 ml of complete RPMI-1640
medium supplemented with 2 mM l-glutamine, 25 mM
HEPES, 100 U/ml penicillin, 100 mg/ml streptomycin,
5·5 ¥ 10–5 M 2-mercaptoethanol and 5% FBS (all supple-
ments from Invitrogen Life Technologies) containing
0–10 mg/ml MOG35–55 (Enzo Life Sciences, PA, USA) and
cultured at 37°C in 5% CO2. On day 3, 1 Ci/well
[3H]-thymidine (Amersham Pharmacia Biotech, Piscataway,
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NJ, USA) was added, and the cells were cultured for an
additional 6 h, after which cells were harvested and prolif-
eration was assessed by [3H]-thymidine incorporation
detected with a TopCount scintillation counter (Packard,
PerkinElmer, Boston, MA, USA).

Adoptive transfer

Prepared splenocytes were isolated from donor mice treated
or not treated with EPO 21 d after MOG35–55 immunization
and 2 ¥ 107 cells injected intravenously into recipients. The
recipient mice were immunized with 50 mg of MOG35–55 in
CFA and given 500 ng of PTX intraperitoneally on days 0
and 2.

Statistical analysis

Disease scores were analysed using repeated-measures analy-
sis of variance (anova). A significant difference in disease
progression between two groups corresponds to P < 0·05 for
a two-sided significance test. Where significant differences
were found, the Tukey–Kramer multiple comparisons test
was used to identify differences between individual groups.
The significance of the results from real-time PCR was deter-
mined using the Newman–Keul test.

Results

EPO ameliorates EAE and enhances endogenous HO-1
in situ

We first treated mice with intraperitoneal (i.p.) injection of
EPO four times on days 1, 3, 5 and 7, respectively, after
MOG35–55/CFA immunization to induce EAE. EPO was deliv-
ered in a dosage of 100 U/100 ml/mouse/injection (equiva-
lent to 5000 U/kg/mouse/injection), and control mice
received an i.p. injection of the same volume of PBS at the
same times. We observed a significantly lower clinical score
in EPO-treated MOG–EAE mice compared with control
mice (Fig. 1a). In addition, we evaluated the incidence of
disease and time of onset of EAE and observed a delayed
onset and a lower incidence of EAE in EPO-treated MOG–
EAE mice compared with controls (Fig. 1b). Furthermore,
we extracted mRNA for quantitative comparison and
protein for Western blotting from brains and spinal cords.
We demonstrated a significantly elevated expression of
endogenous HO-1 mRNA in brain and a trend to increased
expression in spinal cord from EPO-treated MOG–EAE mice
compared with controls. Similarly, we detected a signifi-
cantly higher expression of HO-1 mRNA in lymphocytes
isolated from CNS of EPO-treated MOG–EAE mice
(Fig. 1c). Interestingly, we observed a higher level of HO-1
protein in spinal cords and only a trend to increased HO-1
protein in brains from EPO-treated MOG–EAE mice com-
pared with controls (Fig. 1d). In addition, we observed

enhanced immunohistochemical staining for HO-1 in the
overlying inflammatory layers and in parenchyma of spinal
cord from EPO-treated MOG–EAE mice compared with
controls (Fig. 1e). This clinically protective effect of EPO on
EAE was consistent with a previous report [9], where we first
addressed the augmentation of endogenous HO-1 in situ in
EPO-treated MOG–EAE mice.

EPO inhibits production of inflammatory cytokines
in situ

The neuroprotective effects of EPO in EAE may not only be
mediated by the induction of endogenous HO-1 expression,
and we hypothesized that immunomodulation could play an
important role in this protective effect of EPO in EAE.
Therefore we tested the extracted mRNA of brains and spinal
cords from mice on day 14 after MOG induction of EAE by
quantitative PCR for the presence of mRNA for cytokines
including IFN-g, IL-6, IL-12p35, IL-17, IL-23p19, IL-27EBI3,
TGF-b, IL-4 and IL-10 (Fig. 2). Predictably, we found signifi-
cantly lower expression of IFN-g, IL-12p35, IL-23p19, IL-6
and IL-17 mRNA in spinal cords from MOG–EAE mice
treated with EPO compared with controls. However, the
levels of these cytokines were not significantly different in
the brains of the two groups. Interestingly, the expression of
mRNA for anti-inflammatory cytokines IL-4 and IL-10 was
significantly higher in brains from the EPO-treated group
than from controls. However, IL-4 mRNA was undetectable
in spinal cords from both groups, and only a mild trend
towards an increase in IL-10 mRNA in spinal cords was
shown in the EPO-treated group compared with controls.
We also investigated the expression of IL-27EBI3 and TGF-b
mRNA in the CNS in EAE. However, the expression of
IL-27EBI3 and TGF-b mRNA did not differ between the
EPO-treated group and controls in either brains or spinal
cords, implying a minor effect of EPO on IL-27 and TGF-b
in EAE.

EPO counteracts encephalitogenic Th1 and
Th17 subsets

Encephalitogenic Th17 cells are the essential mediators of
the pathogenic effects of EAE [23]. Th1 cells facilitate the
invasion of Th17 cells to the CNS during EAE [24], and
CNS-derived Th2 cytokine IL-4 is crucial to regulate inflam-
mation in EAE [25]. To investigate the effect of EPO treat-
ment on Th lineages, we isolated mononuclear cells from the
CNS of MOG–EAE mice treated with EPO and from
controls. We used flow cytometry to detect directly intracel-
lular IFN-g-, IL-4- and IL-17-producing CD4+ T cells (rep-
resenting Th1, Th2 and Th17 cells, respectively) on day 21,
and their proportion as a percentage of total CD4+ cells was
also analysed for comparison (Fig. 3a). Interestingly, we
showed a significantly lower proportion of both Th1 and
Th17 CD4+ cells in the encephalitogenic CD4+ cells from
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EPO-treated MOG–EAE mice compared with controls and
only a trend to mildly increased encephalitogenic Th2 CD4+

cells in the EPO-treated group (Fig. 3b). This suggests that
EPO preserves, at least in part, the capacity to counteract
encephalitogenic Th1 and Th17 cells in situ and protects
neuronal cells during EAE.

EPO up-regulates splenic HO-1

Recently, in our co-laboratory Wu et al. demonstrated the
therapeutic effect of induction of HO-1 in ameliorating
experimental murine membranous nephropathy via anti-
oxidative, anti-apoptotic and immunomodulatory effects
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[21]. To study further the potential effects of EPO on periph-
eral HO-1 expression, we also examined splenic HO-1
expression by IHC and Western blotting analysis, and used
flow cytometry for evaluation of the level of HO-1 protein in
splenic lymphocytes on day 14 post-EAE induction. We
demonstrated a more extended area of HO-1-positive stain-
ing in splenocytes from EPO-treated MOG–EAE mice than
in those from controls (Fig. 4a), and a marked increase in the
splenic HO-1 protein level in EPO-treated mice with EAE
was revealed by Western blotting (Fig. 4b). To address
whether EPO affected the cellular intensity of HO-1 expres-
sion in splenocytes, using flow cytometry we further
observed a significantly augmented mean fluorescence
intensity (MFI) of HO-1 staining in the same number of
splenic lymphocytes from EPO-treated MOG–EAE mice
compared with controls (Fig. 4c). Taken together, we dem-

onstrated that EPO not only causes central up-regulation of
HO-1 in the CNS but is also a potent inducer of HO-1 in the
peripheral immune system.

EPO enhances splenic Tregs and Th2

Recently, Yuan et al. identified a novel potential of EPO in
modulation of peripheral inflammation in the murine
MOG–EAE model [17]. We were interested to evaluate the
effects of EPO on peripheral immunity during EAE. We thus
analysed subsets of splenic immune cells and Th lineages
of splenocytes by flow cytometry on day 21 after EAE
induction. We demonstrated no significant difference
between EPO and control groups in the numbers of CD19+,
CD4+, CD8+ or CD11c+ cells (Fig. 5a) or the populations of
CD44lowCD62Lhigh (naive), CD44highCD62Llow (memory) and
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CD69+ (active) cells within both CD4+ and CD8+ T cell
populations (Fig. 5b). However, we observed a significantly
lower proportion of encephalitogenic Th1 and Th17 cells in
the CNS of EPO-treated MOG–EAE mice (Fig. 3), but found
only a mild trend towards decreased splenic Th1 and Th17
subsets in EPO-treated MOG–EAE mice (Fig. 5c). Instead,
we detected a significantly higher proportion of splenic Th2
cells (Fig. 5c) in the EPO-treated group compared with
controls, and a highly significant elevation of splenic
CD25+FoxP3+CD4+ Tregs was identified in EPO-treated
MOG–EAE mice (Fig. 5d). These data are consistent with

our previous report, and they reinforce that the mechanism
of EPO-mediated peripheral immunomodulation during
EAE may be through inhibition of Th1 and Th17 responses
and marked augmentation of the tendency to generate Tregs

and Th2 cells [17].

EPO inhibits antigen-specific T cell proliferation and
adoptive transfer assay

To test further the suppressive potential of EPO on T cell-
mediated effector functions in EAE, we investigated the
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MOG-specific T cell response. We isolated splenocytes either
from EPO-treated MOG–EAE mice or from control mice on
day 21 post-EAE. The cultured splenocytes were treated with
various concentrations of MOG as specific antigen. We
observed a dose-dependent antigen-specific stimulation of T
cell proliferation in both groups (Fig. 6a). A significantly
lower response at each concentration of MOG was revealed
in the EPO-treated group compared with controls. To eluci-

date further the immune modulation of T cell function in
vivo by EPO, we isolated splenocytes from EPO-treated
MO-EAE mice or controls on day 21 after MOG35–55/CFA
induction, and transferred these cells passively into C57BL/6
recipients. One day after transfer, recipients received a half-
dose of MOG35–55 (50 mg/mouse) in CFA. Recipients trans-
ferred with splenocytes from EPO-treated MOG–EAE mice
had a less severe clinical score and a more rapid recovery
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from disease than did recipients transferred with splenocytes
from controls (Fig. 6b). This indicates that immunomodu-
latory splenocytes from EPO-treated mice seem to preserve
the ability to lessen neuroinflammation in EAE, implying
that EPO may be a specific repressor of the generation of
immunopathogenic T cells in EAE. Nevertheless, more evi-
dence is needed to clarify this point and to determine the
mechanisms of the interaction between EPO and HO-1
during EAE.

Discussion

The efficient neuroprotective ability of EPO has been dem-
onstrated in stroke models after either intracerebral injec-
tion [5] or intranasal delivery [7], but not after intravenous
(i.v.), subcutaneous (s.c.) or i.p. administration [7]. This
suggests that this variation in the results obtained after dif-
ferent routes of administration of EPO may be a result of
dilution that weakens the remote effects of i.v., s.c. or i.p.
delivery of EPO. However, the progressive immunopatho-
genesis of MS is an extremely complicated process to be

explored adequately by direct test-tube analysis. EAE has
become the most popular animal model of MS in the field of
central nervous system inflammation and demyelination to
investigate complex pathogenic hypotheses and to test novel
therapeutic agents [26]. The protective role of EPO in EAE
and MS has been demonstrated in the last decade [10,17,27],
and EPO has been shown to cross the blood–brain barrier
(BBB) to protect astrocytes and neurones against experi-
mental brain injury in the CNS [28]. Thus, i.p. delivery of
EPO, as used in this study, elicits extensive immunomodula-
tory effects on both peripheral and central manifestations of
EAE.

HO-1 possesses both anti-oxidative and anti-
inflammatory properties, and is highly inducible by a variety
of stimuli, including its substrate haem and oxidative stress.
The cytoprotective effect of HO-1 induced by EPO has been
reported in experimental models such as hypoxic–ischaemic
heart disease and ischaemic renal injury [18,19]. Neverthe-
less, the role of the effect of EPO on HO-1 in autoimmune
diseases such as EAE has not yet been reported. In the
present study, we confirmed the neuroprotective effect of i.p.
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EPO in EAE and addressed for the first time the immuno-
modulatory effects of EPO in EAE. We demonstrate that
these are mediated at least in part through up-regulation of
HO-1 both centrally and peripherally as well as by counter-
acting the generation of Th1 and Th17 cells in situ and
peripheral down-regulation of Tregs and Th2.

However, there are some limitations of this work. First,
Chora demonstrated that induction of HO-1 (encoded by
HMOX1) by cobalt protoporphyrin IX (CoPPIX) adminis-
tration after onset of EAE reversed the inflammation. They
also found augmented CNS demyelination, paralysis and
mortality in Hmox1–/– C57BL/6 mice compared with
Hmox1+/+ mice after EAE initiation [14]. Our study did not
use HO-1 enhancers such as CoPPIX to enforce expression
of HO-1 or use an HO-1 knock-out mouse model such as
Hmox1–/– C57BL/6 mice to investigate the clinical score and
related immunomodulation in EPO-treated mice with EAE
to provide direct evidence of the efficacy of EPO on EAE
with or without HO-1 induction. Secondly, Savino et al.
demonstrated that prolonged administration of EPO for
longer than 1 month caused anaemia in about 50% of EPO-
treated mice with EAE, but they did not find a significant
association between the haematocrit and the EAE score [29].

In our study, we only prescribed EPO in a preventive sched-
ule four times in the first week after MOG induction of EAE.
We did not adopt a longer therapeutic schedule of EPO in
EAE, and we also did not analyse the haematocrit of EPO-
treated mice with EAE to evaluate the potential erythropoi-
etic effect. Thirdly, we used EPO as a preventive treatment
but not a therapy for EAE and did not study the HO-1
activity and the related immune responses at different time-
points or after therapeutic EPO introduced after the onset of
EAE. Nevertheless, we did show this cross-talk between EPO,
HO-1 and adaptive immunity in EAE.

HO-1 is expressed at low levels in most tissues under
physiological conditions, and HO-1 can be up-regulated
during cellular stress for cytoprotection [30]. In the CNS,
several cell types including astrocytes, oligodendrocytes and
microglia can induce expression of HO-1 in the CNS after
damage or in disease conditions. Thus, HO-1 induction in
cerebrovascular endothelial cells is suggested to be an impor-
tant protective mechanism against neurological injury [31].
Colombrita et al. demonstrated that the expression of HO-1
mRNA in aged rats was increased in extracts from the hip-
pocampus and cerebellum but not from the cortex [32]. In
contrast, Hirose et al. showed that HO-1 protein levels
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assessed by IHC were increased with age in the cortex and
hippocampus of autopsied human brains from patients
without traumatic brain injury or neurodegenerative disease
[33]. This discrepancy between studies on HO-1 mRNA
expression and HO-1 protein in aged mammalian brains is a
dilemma [31]. In addition, the brain is highly vascularized
and contains blood vessels with particular cerebrovascular
endothelial cells that form tight junctions and contribute to
the BBB [31], and that may play a role in HO-1 expression

during the disease process of EAE. We observed a trend to
increased expression of HO-1 mRNA but a notable increase
in HO-1 protein in the spinal cords of EPO-treated MOG–
EAE mice compared with controls. In contrast, a significant
elevation of HO-1 mRNA but only a slight increment in
HO-1 protein compared with controls was observed in
the brains of EPO-treated MOG–EAE mice (Fig. 1c and d).
However, we detected enhanced IHC staining for HO-1 over
the layer of infiltrating inflammatory cells and parenchyma
of spinal cords obtained from EPO-treated MOG–EAE mice
compared with controls (Fig. 1e). Thus, the complex kinetic
inflammatory process and different HO-1 expressing cells in
CNS may lead to this discrepancy between mRNA and
protein levels of HO-1 in spinal cords and brains from EPO-
treated mice.

We were interested in the immunomodulatory mecha-
nisms that could account for this phenomenon. Currently,
Th17 cells are known to play a vital role in the immuno-
pathogenic mechanisms of EAE, and Th1 cells possessing the
ability to facilitate the entry of Th17 cells to the CNS during
EAE were demonstrated recently [24]. Yuan et al. showed
with an elegant experimental design that short-term EPO
therapy for EAE can down-regulate major histocompatibility
complex (MHC) class II expression on peripheral DCs and
counteract Th17 responses [17]. Our data also confirmed
that EPO counteracts both Th17 and Th1 mediated inflam-
matory responses in situ during EAE. However, we did not
evaluate the effect of EPO on the expression of MHC classes
I and II on DCs. We evaluated the encephalitogenic Th
subsets isolated from pooled brain and spinal cord, but we
did not analyse encephalitogenic Th subsets from separate
brain and spinal cord samples. Recently, Murphy et al. dem-
onstrated an apparently comparable trend in the proportion
and numbers of Th1 and Th17 cells in brain and spinal cord,
respectively, on day 21 after initiation of EAE [34], implying
a minor difference in the distribution of encephalitogenic Th
subsets between collection and separation of brain and
spinal cord obtained on day 21 after initiation of EAE. EPO
reduced IL-6 markedly in the spinal cord and decreased
inflammation and the clinical score of EAE, suggesting that
this immunomodulation may be partly dependent upon
reduction of IL-6 [27]. Tron et al. studied the elevated
expression of HO-1 in a localized inflammation model after
intramuscular injection of inflammatory material and
showed that IL-6-specific transcripts were also detected in
the injured muscle, and levels were in accordance with serum
levels of IL-6. This implies that the induction of HO-1 in
local inflammation may modulate anti-inflammatory effects
such as the local IL-6 concentration [35]. Our data demon-
strated a repression of IL-6 mRNA in CNS from EPO-treated
MOG–EAE mice that may be attributed to an over-
expression of endogenous HO-1 to counteract the IL-6 in
CNS (Fig. 2). Batten et al. observed a de novo effect of IL-27
that suppressed IL-6-mediated T cell proliferation and the
development of Th17 cells to restrict autoimmune encepha-
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lomyelitis [36]. Similarly, Veldhoen et al. demonstrated that
TGF-b plays a key role in the initiation of EAE and verified
that disease progression of EAE may require ongoing chronic
inflammation and production of IL-23 [37]. However, the
expression of IL-27EBI3 and TGF-b mRNA did not differ
between the EPO-treated group and controls in either brains
or spinal cords, implying a minor effect of EPO on IL-27 and
TGF-b in EAE. Thus, we demonstrated that EPO preserves
the capacity to inhibit inflammatory cytokines in CNS, sug-
gesting that endogenous HO-1 may play a role in modula-
tion of in situ inflammation and that the suppressive effect of
EPO on IL-6 may not be through the effect of IL-27 in situ.
Nevertheless, more evidence is needed to confirm this.

Ponomarev et al. showed that increased expression of
IL-4 in glial cells was associated with reduced severity of
EAE and that IL-4 production in the CNS is essential for
controlling autoimmune inflammation by inducing an
alternative regulation of microglial cells [25]. Lifshitz et al.
showed, by over-expressing human EPO in transgenic mice,
that DCs are a direct target of EPO in the initiation of the
immune response in vivo, and confirmed a higher expres-
sion of Epo-R mRNA in bone marrow-derived DCs [38].
Falcon et al. showed that IL-4 is a critical modulator in EAE
by using IL-4–/– mouse strains [39]. Subsequently, Zhang
et al. demonstrated that mature DCs selectively down-
regulate the antigen-specific response in EAE through sup-
pression of Th1 and induction of Th2 cytokines [40]. Lee
and Chau demonstrated that over-expression of HO-1
from macrophages can inhibit the proinflammatory
response induced by lipopolysaccharide (LPS) stimulation,
and that IL-10 and HO-1 activate a positive feedback
circuit to enhance the anti-inflammatory response both in
vitro and in vivo [41]. Although we did not approach the
role of DCs in the EPO-treated MOG–EAE model, our data
showed a higher level of IL-10 and IL-4 mRNA in CNS and
a trend to increased Th2 cells in situ in EPO-treated MOG–
EAE mice. Accordingly, we suggest that EPO may target
resident DCs to enhance endogenous HO-1 and to polarize
local Th2 bias through activation of IL-10 and IL-4 pro-
duction in situ.

Ruuls et al. demonstrated a marked aggravation of the
clinical signs of EAE in rats treated with NO synthase
inhibitors and suggested an important role of NO as an
immune modulator in the disease process during EAE [42].
Kumral et al. demonstrated that EPO exerts neuroprotec-
tion through the selective inhibitory effect of EPO on NO
overproduction and that the inhibition of NO via EPO has
a neuroprotective effect in neonatal hypoxic–ischaemic
brain injury [43]. The signal pathway of neuroprotection by
EPO in ischaemic and CNS degenerative models has been
established to involve Janus-tyrosine kinase 2 (Jak2) signal-
ling subsequent to activation of phosphatidyl inositol
3-kinase (PI3K)/protein kinase B (Akt) phosphorylation
and nuclear factor (NF)-kB cascades to repress the CNS
damage due to excitotoxins and consequent generation of

free radicals, including NO [44]. Interestingly, PI3K/Akt-
pathway-related responses to oxidative stress and apoptosis
have also been demonstrated at the level of transcriptional
regulation of HO-1 [45]. Liu showed that inhibition of the
expression of HO-1 markedly exacerbated EAE, suggesting
an important protective role of endogenous HO-1 in EAE,
and that targeted induction of HO-1 over-expression may
exemplify a novel therapy for the treatment of MS [46].
Panahian et al. proved in an HO-1 transgenic model that an
over-expression of HO-1 protects cells and tissues of the
CNS from ischaemic damage [47]. In this study, another
limitation is that we did not examine the effect of EPO on
inducible NO synthase (iNOS) and NO production during
EPO-treated MOG–EAE or identify the signal pathways
involved in the induction of endogenous HO-1, nor did we
test the influence on iNOS in CNS in our EPO-treated
MOG–EAE model. Thus, the cross-talk of associated oxida-
tive stress factors such as iNOS with the effect of EPO on
HO-1 and the complicated signal transduction pathways for
the neuroprotective mechanisms of EPO in EAE must be
clarified in the near future.

Kohm et al. observed that Tregs inhibit effectively both the
proliferation of, and cytokine production by, MOG-specific
Th1 cells and that adoptive transfer of Tregs confers signifi-
cant protection from EAE [48]. Recently, Stephens proved
that in vitro-expanded myelin-reactive Tregs can prevent
disease relapse when delivered after the onset of clinical EAE
[49]. Correspondingly, a high level of splenic Tregs may
provide an immunosuppressive mechanism to protect EPO-
treated MOG–EAE mice. Zelenay et al. demonstrated by a
comparison of HO-1 deficient mice and wild-type controls
under physiological conditions that the development, main-
tenance and function of Tregs are independent of HO-1 activ-
ity [50]. Accordingly, the enhancement of HO-1 may not
contribute to the over-expression of peripheral Tregs in EPO-
treated MOG–EAE mice seen in our study, and the precise
mechanism by which EPO induces peripheral Tregs is still
puzzling. Nevertheless, we identified a significant suppres-
sion of MOG-specific T cell proliferation and lower clinical
severity after adoptive transfer of splenocytes from the EPO-
treated group, which may be attributed at least in part to the
up-regulation of peripheral Tregs and Th2 lineages in EPO-
treated MOG–EAE mice.

In conclusion, we confirmed that giving exogenous EPO
augments the induction of endogenous HO-1 centrally and
peripherally, and represses Th1 and Th17 responses in situ as
well as enhancing systemic Th2 and Tregs populations to
ameliorate EAE. Collectively, this study suggests that the
neuroprotection of EPO in EAE involves various immuno-
modulatory mechanisms for systemic and local inhibition
of inflammation. In summary, we conclude that EPO can
up-regulate endogenous HO-1 and modulate inflammatory
immune responses centrally and peripherally in the MOG–
EAE model, supporting the clinical therapeutic potential of
EPO in autoimmune CNS disorders like MS.
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