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Abstract
Computation of living processes creates great promise for the everyday life of mankind and great
challenges for physical scientists. Simulations molecular dynamics have great appeal to biologists
as a natural extension of structural biology. Once a biologist sees a structure, she/he wants to see it
move. Molecular biology has shown that a small number of atoms, sometimes even one messenger
ion, like Ca2+, can control biological function on the scale of cells, organs, tissues, and organisms.
Enormously concentrated ions—at number densities of ~20 M—in protein channels and enzymes
are responsible for many of the characteristics of living systems, just as highly concentrated ions
near electrodes are responsible for many of the characteristics of electrochemical systems. Here
we confront the reality of the scale differences of ions. We show that the scale differences needed
to simulate all the atoms of biological cells are 107 in linear dimension, 1021 in three dimensions,
109 in resolution, 1011 in time, and 1013 in particle number (to deal with concentrations of Ca2+).
These scales must be dealt with simultaneously if the simulation is to deal with most biological
functions. Biological function extends across all of them, all at once in most cases. We suggest a
computational approach using explicit multiscale analysis instead of implicit simulation of all
scales. The approach is based on an energy variational principle EnVarA introduced by Chun Liu
to deal with complex fluids. Variational methods deal automatically with multiple interacting
components and scales. When an additional component is added to the system, the resulting Euler
Lagrange field equations change form automatically—by algebra alone—without additional
unknown parameters. Multifaceted interactions are solutions of the resulting equations. We
suggest that ionic solutions should be viewed as complex fluids with simple components. Highly
concentrated solutions—dominated by interactions of components—are easily computed by
EnVarA. Successful computation of ions concentrated in special places may be a significant step
to understanding the defining characteristics of biological and electrochemical systems. Indeed,
computing ions near proteins and nucleic acids may prove as important to molecular biology and
chemical technology as computing holes and electrons has been to our semiconductor and digital
technology.

Mark Ratner has been part of at least two enormous revolutions in science. Semiconductor
electronics has allowed computer technology to grow by Moore’s law1, giving us pocket
computers with more capacity than anyone imagined possible in a room--or in a computer of
any size, at any price, in Mark’s youth. Molecular biology2 has allowed us to manipulate the
molecules of life with an ease and power equally unimagined in the 1950’s.

These two revolutions combined to allow what many view as a new revolution, the
computation of proteins in atomic detail. Simulations can be made of the thousands of atoms
in a protein, and the tens of thousands of water molecules around it, including a few of the
ions in those solutions. Simulations running nanoseconds in full atomic detail are being done
all over the world as I write these words (July 2010). The promise is that these simulations
can directly compute biological function in atomic detail and thus give us control of biology
comparable to our control of semiconductors, with all that implies for medical science and
our daily lives.
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Molecular dynamics (MD as we will call it) takes the static structures of x-ray
crystallography and makes them living objects, reaching towards the real molecules of life
in the full reality of their function. Reaching is not grasping, however, as all of us of Mark
Ratner’s generation were taught in high school. This article is about what is needed to
extend the reach of MD so it can grasp the reality of biology. I argue that scaling issues
make grasping reality nearly impossible, if MD is done in full atomic detail of real
biological systems, as most of them actually function.

Grasping biological function is both easier and harder than grasping physical function. It is
easier because there are definite scales for many biological functions. There is no definite a
priori scale for physical systems but biological systems often have a definite scale—like
engineering systems—namely the scale of their inputs and outputs. An amplifier is
interesting on the (quite limited) scales that it works. An amplifier is not interesting when
light is focused on its input. The time varying potential of light is too fast for it. The function
of the amplifier is on a definite time scale. Simulations must deal with rapidly changing
voltages, but not so rapidly changing as in light.

Biological systems also work on a definite scale. The output of biological systems occur in
seconds and micrometers to meters. Of course, the underlying mechanism span many scales
(as we shall see in some detail) and involve a whole range of scales. But, no matter what the
scales of the mechanisms, simulations must also calculate the functions of life on the scale
that those functions actually occur.

Grasping biological function is harder than grasping some physical functions because so
many scales are involved simultaneously in most important biological systems. I argue that
scaling issues make grasping biological reality nearly impossible, if MD is done in full
atomic detail of biological systems as they actually work and are controlled. I argue that an
approach that embraces these multiscale realities will show how MD should be used as one
of several indispensable tools in the understanding of biomolecules and their function. Of
course, there are exceptional systems that do not require analysis on all these multi-scales,
but these are rare and not central to biology as a whole.

The scaling issues facing molecular dynamics involve space, time, concentration and voltage
and we go through them one by one (Table 1) using biological function and molecular
reality as our guides.

We need to focus on biological function because biological systems are only interesting on
the scale (and in the conditions) in which they actually work. Physical systems are
interesting on all scales. Engineering and biological systems are not. They are only
interesting when they perform their natural functions. They must operate within their design
limits or they do not operate at all. With the wrong power supply, amplifiers do not amplify.
With the wrong gradients of salt, proteins and ion channels do not conduct. Both
engineering and biological systems are robust in one range, but delicate in another. We must
compute them both in their functioning robust range. Biological systems should be studied
only in their functioning robust range because nothing else is interesting. Outside that range,
biological systems are dead and of limited interest.

The operating limits of biological systems define the scales on which they must be studied.
(Almost all) biological function starts around 100 μsec, reaching to 3 × 109 sec (~100 years)
in fortunate cases. Those are the time scales on which biological function must be studied.
Biological structure starts at 10 pm (0.1 Å) and reaches to 10μm in cells, cm in tissues, and
meters in organisms. Those are the length scales on which biological structure must be
resolved.
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Scales of length involve the size of biological systems in one and three dimensions and the
resolution needed to deal with those sizes. The smallest important scale of life is found in its
molecules, and particularly in the proteins which do so much of life’s work.

Scaling in Space (one dimension)
Side chains of proteins control an enormous range of biological function. Changing one side
chain can completely alter the function of a protein or ion channel. In some cases, changing
one atom can do the trick, just as one (atomic) ion in a channel of a Ca2+ sensing protein can
switch function entirely. The experimental reality is that structural changes of 1 Å can
change biological function on the molecular (nanometer), then cellular (micrometer), tissue
(centimeter), and animal (meter) scales. So, simulations in atomic detail must reach from 10
pm (to give decent resolution of one atom) to say 100 μm, if we stop at a representative
sample of a nerve fiber and its axon, or much larger if we want to simulate the properties of
the real nerve fiber reaching from foot to spinal cord in a human, or elephant. (I use the
example of a nerve fiber because its main function is understood from atom, to molecule, to
membrane, to cell in considerable detail3, in the form of theory and computations that a
physical scientist would recognize. Nerve function can be understood without much use of
arbitrary ‘arrow models’ with undefined physical basis.) Lengths in one dimension range
over 7 orders of magnitude in this realistic example.

Scaling in Space (three dimensions)
The scaling requirements of MD in three dimensions are greater. The frightening range of
linear scales of 107 become the daunting range of 1021 if one proceeds without
approximation or simplification.

Confronted with length scale ranges of 1021, it seems obvious that one must try to
approximate and simplify. This paper focuses on the underlying problems of the full
resolution problem, because so many young scientists assume that is possible. But the
general goal, reaching beyond this particular paper, is to motivate, construct, and test
multiscale models that use appropriate methods at individual scales and combine those
methods in a mathematically defined consistent way. Our goal is to motivate systematic
simplifications and approximations to make the problems manageable, and we will discuss
how to do that toward the end of the paper.

Resolution in Space (three dimensions)
Structures in biology exist in three dimensions and must be resolved in all three dimensions,
independent of scale. Resolving a three dimensional structure takes at least 0.1% resolution
in each dimension, implying an overall resolution of 10−9 independent of the particular
scale. This resolution is needed to describe a protein well enough to compute its volume,
surface area, or the electrical potential around it, if it were a solid macroscopic charged
object. The same resolution is needed to reconstruct a cell, tissue or animal. In fact, the
difficulties of dealing with three dimensional structures with this resolution are not resolved.

The implications of these resolution requirements are large. Many gigabytes of memory are
needed to describe a static three dimensional structure with 0.1% resolution in all directions,
with double precision floating point numbers as are required for robust computation. Arrays
of this size are difficult to store in memory even today, particularly when various versions
are needed for mathematical manipulation. Memory bandwidth does not allow rapid
handling of these arrays even in present day computers. Much of the interest of biological
systems is in their time evolution. The memory needs for static computation are multiplied
by the number of time steps needed to compute time evolution. If the time step is tiny (10−15
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sec), and the time duration is as short as that of the quickest functions of a nerve fiber (10−7

sec), the dynamic problem is 108 times more demanding than the static one. Simulations of
structure reaching to 1 sec are 1015 times more demanding than the static one.

The static problem itself is demanding. It is not possible yet to solve the partial differential
equations of electrostatics in three dimensions with this 0.1% resolution for surfaces as
complex as those that define proteins, in any way approaching routine, although the makers
of computer games are trying their best, and will surely succeed soon (i.e., within a decade:
three or four iterations of Moore’s law). The issue is not the complexity of the surface of the
protein. For the purposes I have in mind the surface of a rigid protein would need somewhat
less resolution than the surface of an animal. The issue is the limitations of Poisson solvers
presently available. One imagines that numerical procedures to solve three dimensional
partial differential equations with 0.1% resolution exist ‘behind the fence(s)’—in weapons
laboratories where the nuclear fusion weapons of our nightmares are designed—but that
capability is not generally available to outsiders.

Scaling in Time
The scaling requirements in time are easy to define for biological simulations. MD
simulations must be done with step sizes less than femtoseconds to resolve atomic
vibrations. Step sizes of 10−16 seconds are best but 10−15 seconds will do. The fastest
biological functions (that do not involve light) occur in about 10−4 seconds. (I have the
signals in nerve cells in mind.) There are of course many special properties of proteins that
occur in 10−5 sec or even faster, with proteins involved in photosynthesis and vision being
very fast indeed. But the great majority of living processes start around 1 msec and reach as
long as 3 × 109 sec (~ 100 years).

The gap in time scales between a full resolution treatment of atomic motion and a typical
nerve signal is, then, 11 orders of magnitude, 10−15 to 10−4. One hundred billion (1011) is a
very large gap indeed. It corresponds to the gap between a few days on the earth when it was
forming 109 years ago, and today. Few would think to compute the properties of the earth
today by starting with its properties a billion years ago, computing on a time scale of days
for the whole way, the entire time. The reach needed to compute biological function in full
detail challenges the imagination—and evades the grasp—of scientists in other fields.

Arguments have sometimes been made that computations on, say, a picosecond time scale
can explore ‘phase space’ and thus deal with biological phenomena on the msec time scale.
These arguments have been heard and half-believed by many students and beginning
scientists and so I present a counter example here. I hope to make clear the obvious, that if
one wishes to study something that takes 1 msec, one must compute on at least a 1 msec
time scale.

Imagine a system computed to 100 picoseconds. Imagine another identical system to which
a spring, mass, and dashpot are added that create a mechanical resonance that becomes
measurable at only 500 picoseconds. All properties computed after 1000 picoseconds will
depend dramatically on the resonance. The resonance is not detectable in the short time
system. Thus, the short time system cannot reproduce the properties of the resonance. It is
obviously possible to make this counter example as realistic and explosive as desired by
replacing the resonance with a nonlinear triggered process that can be discontinuously
sudden. The conclusion is that computations to a short time will miss long time phenomena.
Thus any system must be computed on the time scale on which it functions.
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Scaling in Parameters
Scaling issues occur in the ‘thermodynamic’ parameters used to describe life, as well as in
time and space. Everyday experience and experimentation show that life involves variables
like concentration, average electrical potential, and thus electrochemical potential. The
importance of these variables has been known a very long time, by Aristotle and by Galvani
and Volta, all of whom were as much biologists (really physiologists) as they were
physicists. In a particularly vital example, the heart beat is sensitive to changes in the type
and concentration of Na+, K+, Ca2+, and Cl− ions (among many others). Quite small changes
in these concentrations make large changes in function and large changes in concentration
are incompatible with normal function: The heart stops.

Na+, K+, Ca2+, and Cl− ions make the plasma needed to sustain the life of cells and proteins.
Ions in water are the ‘liquid of life’, without hyperbole. Anyone who has placed a protein, a
tissue or a cell in distilled water has watched the tissue, cell, or protein quickly die or
denature. Biological experiments on any scale show that ions in water—not water itself—
are the liquid of life. Simulations must then include ions with reasonable realism because
ions are needed to keep living things alive, whether the things are proteins, nucleic acids,
cells or tissues. Living systems require ions.

Simulating ions in water—as they are necessary for life—is particularly difficult. Most
biological systems require mixtures of ions (‘Ringer solutions’) to exist. Ringer solutions
must have Na+, K+, Cl− and Ca2+ each within a certain concentration range. If the ions are
absent, or are outside this concentration range, the function of the system is compromised, or
in fact the system changes (nearly) irreversibly. Simulations must include realistic
concentrations of ions if they are to reproduce experiments. It is not just enough to have one
or two ions present. One or two samples of a random variable obviously cannot represent the
properties of that variable. That is the entire point of probability theory. ‘All’ the members
of the ensemble must be considered because each member differs from the other. That is
what is meant by stochastic. Studying one or two members of that ensemble do not reveal
the properties of the ensemble.

One or two ions cannot represent the properties of an ensemble of ions. An ensemble of ions
must be simulated if the average properties of an ionic solution are to be computed.
Computing the properties of a protein in a Ringer solution, or a mimic of an intracellular
solution, requires computation of the (experimentally significant) ions in the solution in the
presence of all the others, in realistic concentrations and with statistical reliability.

In fact, gradients of concentration of these ions are the energy sources for an enormous
range of cellular signals and processes. The ions have to be present with the right free
energy (per mole) in the right place. Ion concentrations are dramatically different outside
and inside cells, with “10:1” gradients of K+ and Na+ between the inside and outside of
cells, but 104:1 gradients of Ca2+. Ca2+ is less than 10−7 M inside cells but (say) 2 × 10−3 M
outside. Ca2+ concentration is an important control variable for most proteins that are
exposed to the intracellular environment. Variations of a factor of 10× have dramatic often
irreversible effects on many of these proteins.

All electrical signaling and a very large fraction of all signaling in cells and tissues are
driven by gradients of electrical and chemical potential and not by more ‘chemical’
processes involving ATP hydrolysis. ATP hydrolysis is used to create these gradients but is
rarely used as control signals themselves. A separate set of ‘pumps’ and transporters is used
by biology to maintain gradients of electrochemical potential just as an automobile uses one
system (an alternator) to create gradients of electrical potential, and another (battery) to store
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and allow their use. Gradients of electrochemical potential are used by nearly every cell and
organelle in an animal.

In general, MD simulations must deal with thermodynamic variables, including
concentration and electrical potentials and ionic currents. Why? Because the concentrations
and electrical potentials and ionic currents are the actual function of channel proteins. The
channel proteins use concentrations and (average macroscopic) electrical potentials to
control (macroscopic) ionic currents that in turn control the electrical signals across nerve
and muscle cells, the contraction of cardiac and skeletal muscle, secretion of hormones and
an enormous range of biological functions. Concentrations determine the chemical and
electrical potentials that are found inside and outside cells. Membranes define cells and
separate compartments with different chemical and electrical potentials. Nanovalves called
ion channels control the flow of material through the otherwise impermeable membranes
that define cells.

Gradients of chemical and electrical potential drive the movement of ions through these
nanovalves (nearly picovalves, since the diameter of their charged pore is typically 600 pm,
and changes in diameter and charge location of 10 pm are significant) called ion channels.
Ion channels are specialized proteins with a hole down their middle that control the flow of
ions and electricity through otherwise impermeable membranes. Ion channels have much the
same role in living systems that transistors have in engineering systems.4 Transistors are the
fundamental control elements of our digital technology. Ion channels are the fundamental
control elements of biology.

Simulations must include the concentrations and conditions in which ion channels work.
Simulations must deal realistically with ion channels if they are to be useful. If channels do
not function in a particular set of conditions, successful simulations in those literally deadly
conditions cannot show them alive. For example, most ion channels ‘inactivate’ (nearly
irreversibly) if the electrical potential across them (the transmembrane potential) is kept near
zero. The properties of inactivated channels are difficult to study (if they are inactivated too
much) and of limited interest even if they can be studied because they are not functioning
the way channels do in real biological situations. MD simulations with zero transmembrane
potential must produce inactivated channels if they reproduce the properties of real channel
proteins. MD simulations done at equilibrium are likely to have zero transmembrane
potential.

Everyday experience and experiments show that these are the variables that biology uses and
so these are the variables needed in a direct simulation of ion channel function. The role of
electrical potential in nerve conduction and (stimulating) muscle contraction was more
obvious to Galvani and Volta than its more physical roles. That is why Galvani and Volta
studied nerve muscle preparations. The role of chemical potential (concentration) is just as
obvious to every physician. Small changes in K+ concentration, for example, are enough to
stop the heart. The concentrations of ions and their free energy per mole (called their
‘activity’) must be simulated correctly with some precision, as it turns out, because living
processes are sensitive to quite small changes in activity of ions.

Scaling in Concentrations of Ions
The concentrations of Na+, K+, and Cl− range across a large scale. Inside and outside cells,
concentrations range from millimolar to 500 millmolar. Inside ion channels or active sites of
enzymes, however, the concentration of ions is very much larger.

Ion channels and active sites of enzymes typically contain cracks or crevices say 300 Å3 in
diameter lined by amino acids with acidic (negative) or basic (positive) side chains. The
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concentration—by which I mean number density in molar units—is some 20 molar,
compared to the concentration of H2O in of some 55 molar in distilled water. Nucleic acids
are surrounded by narrow regions with enormous densities of ions (typically 10 molar). This
enormous density of charge in active sites, channels, and nucleic acids means that the most
important locations in proteins are crowded with ions.

Channels and active sites (and the region immediately outside nucleic acids) are very special
environments in which the forces of excluded volume and electrostatics are extraordinarily
large.

Indeed, any biologist looking at such a special situation on a macroscopic scale would
instantly recognize it as an evolutionary adaptation. Just as evolution uses the special
properties of certain cells to make a transparent lens, or a rapidly conducting squid axon, so
it can use the special properties of crowded ions. The special properties of ions crowded into
channels or active sites, or near DNA, can be used to make a nanovalve (ion channel) or a
chemical factory (enzyme). The special properties of crowded ions have useful properties
that are responsible for the characteristics of channels and enzymes. The special properties
of channels and enzymes create biological functions that allow an animal to reproduce more
successfully. The special properties of crowded ions are thus a biological adaptation used by
evolution. Evolution selects structures that use these properties and makes them an
adaptation useful for function.

Biologists start the scientific process of “Guess and Check” with an evolutionary guess.
They guess the adaptation and see if that guess leads to useful understanding of function and
structure. Biologists think this way for good reason. When they observe unusual structures,
they can often guess function, and then design efficient experiments to check that guess.
Seeing that a hip joint is a ball and socket leads to an immediate hypothesis about how that
joint works, which is far more efficient way to study the joint than writing general
mechanical equations for bone.

Most physical scientists are uncomfortable with the idea of adaptation and that is the
audience I am writing to, so perhaps I need to be more formal. In my view, unusual
adaptations provide productive working hypotheses to investigate, using well defined
physical and chemical models, theories and simulations, then checked by direct experiment.

In the “guess and check” of science, good guesses are far more productive than poor ones.
Unusual properties of a biological system provide good initial guesses. The crowded ions
near DNA, RNA, active sites, and in ion channels should not be ignored. It seems certain to
a biologist that evolution has put such special conditions there for a special reason, namely
to help the molecules perform their functions. Structural biology provides guesses,
experimental biology provides checks. Computational biology is the link between structures
and experiments.

(I should add parenthetically that many of the difficulties of doing science arise because the
human characteristics of a good guesser are nearly orthogonal to the human characteristics
of a good checker. Both wild imagination and compulsive analysis are required to do good
science. Both are rarely found in one person. Indeed, one type of person often does not
understand the other and finds the other hard to deal with. Guessers and checkers do not
always get along.)

Molecular dynamics must then deal with concentration scales from millimolar to many
molar, a range of 104. This is the range of concentration of the metal ions Na+, K+, and Cl−
that energize so much of life.
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Scaling in Concentrations of Messengers
But biology uses ions in another quite different way. It uses some ions as signals, not just as
energy sources. Ca2+ is used by literally hundreds, probably thousands, of different and
distinct signaling pathways in a cell, as a glance at the experimental literature of will quickly
show. Thousands of papers are written on signaling molecules every year. Nearly all of
these signaling molecules are ions.

The biological systems that use Ca2+ as a signal are as different and distinct as the different
wires in a computer. And the consequences of cross talk between wires in a computer are
replicated in biology. If wires talk to each other loudly in a computer, the computer stops.
We say “The computer died” by reflexive analogy to life. If Ca2+ signals of different
systems are confused in cells, cross talk between otherwise disjoint systems results, and
illness and death are a likely consequence. Thus, many biologists study the mechanisms that
ensure the integrity of Ca2+ signals and that keep different Ca2+ signals separate.

Indeed, some of these signaling molecules (particularly Ca2+) are necessary for life as well
as for function. What I mean is that many intracellular proteins stop functioning—
sometimes irreversibly, usually for seconds, minutes, or hours—if they are exposed to
unnatural concentrations of Ca2+. In general, enzymes, binding proteins, and channels are
damaged if their substrate is entirely removed, certainly if there is nothing to replace the
substrate in the binding sites. Many, even most channel proteins, ‘die’, in the sense that they
drastically (and more or less irreversibly) change properties if they do not have the right
mixture of chemicals surrounding them or if they are not maintained with the right electrical
potential across them.

In fact, there are hundreds of hormones, vitamins, messengers, and other organic ions that
control the function of proteins, enzymes and ion channels. These go by many names: they
were called enzyme cofactors in Mark Ratner’s undergraduate years as summarized in the
classic tome5. The important point is not what they are called. The important point is that the
concentration of these signaling molecules controls biological function and the
concentrations of these signaling molecules are small, ranging from 10−7 M to 10−11 M.

Finding the right conditions to ensure survival of (function in) proteins is the art of much
experimental biology, from microbiology (growing bacteria), to immunology (where it is
particularly hard to establish reproducible conditions for various immune responses), to
enzymology, to channel biophysics.

Simulations must establish the same conditions for survival as experiments, if one wishes to
simulate living functioning proteins. Simulations if successful must reproduce the
phenomena of life. Thus, simulations must reproduce the essential conditions of life. If
experiments require less than 10−6 M calcium to maintain function, then simulations must
contain less than 10−6 M calcium. If a channel requires a maintained electrical potential
close to −90 mV across it, the simulation must maintain that potential. Simulations of
protein folding are likely to be confusing if they do not include the ions needed to allow
normal folding in an experimental system. If conditions are unphysiological, the living
system will die (i.e., change irreversibly into another system that does not function).

Simulations of channel proteins are likely to give strange results if they do not maintain a
resting potential. Maintaining a resting potential across a channel protein is a challenge in
simulations using equilibrium assumptions that preclude flow: in real biological systems
membrane potentials are nearly always accompanied by flow. In biological jargon6, not all
permeable ions have the same reversal (i.e., equilibrium) potential. Most real proteins
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require a maintained potential. Most real proteins ‘inactivate’ more or less irreversibly to a
nonfunctional state if there is no electrical potential across them, as we have mentioned.

What are the implications for scaling? The scaling requirements required to deal with trace
concentrations of controlling molecules are severe. Concentrations of 10−7 M Ca2+ must be
simulated for many systems. Concentrations of 10−11 M must be simulated to deal with a
range of hormones.

Simulating concentration this small requires a staggering number of water molecules. For
example, if a simulation needs 103 Ca2+ to have a decent estimate of concentration, then a
simulation needs 55 moles of water for every 10−7 moles of Ca2+, meaning one needs 6 ×
1011 molecules in the simulation, along with the 103 Ca2+ ions. Simulations of proteins that
depend on Ca2+ as a signaling molecule typically need 2 × 1013 if all atoms of water are
included. Hormones might need as much as 2 × 1017 atoms.

Scaling for Electrical Potential
Scaling requirements for the electrical potential are hard to specify since the electric field is
both short and long range. The electric field that controls nerve function, for example,
extends millimeters in vertebrate nerve. There can be no ambiguity about this experimental
reality. The electrical potential at one location in a nerve fiber controls the function of
individual channels in the membrane of the nerve millimeters away. Measurements of a
single channel in a nerve fiber demonstrate this experimental fact, as verified everyday by
laboratories doing patch clamp experiments.7

The electric field of nerve cells is not screened in a Debye length any more than the
electrical signal in a telegraph cable under the sea is screened. The assumptions used in the
calculation of screening in equilibrium ionic systems do not apply. ‘Sum rules’8 for infinite
equilibrium systems without charge on their boundaries do not apply to membrane potentials
of cells because cells are finite size nonequilibrium systems with significant charge on their
boundaries. Life and experiments occur in finite size systems and living systems and
experimenters go to enormous lengths to control the properties of the boundary of these
systems. Theorems that ignore boundary conditions may not apply to experiments and living
systems with finite boundaries.

Systems without important boundaries occur in biology. The bulk solutions outside cells do
not have important boundaries, for the most part. Electrical potentials in bulk solutions also
spread very long distances on short time scales, before the screening phenomena of the sum
rules comes into play. Sum rules and screening typically take tens of picoseconds to
develop. Before then, the spread of potential is more or less that in a dielectric, and details of
the shape and type of boundary conditions very far from an atom are important.

The time scales on which screening develops are easily measured experimentally. These are
the time scales that determine the linear electrical properties of an ionic solution, its
conductance and admittance (in the language of electrical engineering), and its conductance
and dielectric coefficient in the language of classical electrochemistry. Many volumes of
such measurements have been published, for example, for ions in water9,10 in many
concentrations of many types of ions. Fewer measurements of properties of mixtures are
reported because they are so hard to interpret, I suspect.

There is little discussion of the time course of screening in the MD literature. Most of the
calculations of MD are executed in a time scale of femtoseconds, far faster than
picoseconds. Thus, at the times involved in every MD calculation, electric fields spread very
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far; at long times, achieved only recently (i.e., the last decade) in MD simulations, electric
potentials spread a tiny distance.

At long times ionic solutions are screened, and potentials spread only a few Debye lengths
(say 1 nm in typical biological extracellular solutions). The spatial resolution needed in
simulations of ionic solution then is very different at short and long times. At short times the
spatial resolution needed is very coarse but the spatial domain is macroscopic and must
include boundary conditions on the electric field. At long times, the spatial resolution
needed is very fine but the spatial domain is small and does not need the boundary
conditions required at short times. It is interesting that numerical methods used in
simulations of MD or Brownian dynamics have not taken advantage of these screening
properties of electrolytes, as far as I know. One would imagine an integrator could be
constructed with coarse spatial resolution at short times and fine spatial resolution at long
times. Combining the two methods would, of course, be a problem, but the fact that the long
time integrator would not depend on far (spatial) field boundary conditions might be a great
help. A natural multiscale integrator and treatment might result.

Most MD simulations involve short times, before screening is established. The electric field
involves macroscopic numbers 1023 of ions. The electric field also involves macroscopic
numbers whenever it is involved in functions of life in nerve and muscle cells, for example,
because those functions are known experimentally to extend over macroscopic distances,
even meters in extreme cases, like the motor or sensory nerves of large mammals.

These macroscopic effects of the electric field are customarily handled in MD by periodic
boundary conditions implemented with Ewald sums of various types that are supposed to
compute the macroscopic electric field correctly even though they compute in an atomic
scale domain (involving say 50,000 atoms and say cubes 100 Å on a side). These procedures
are difficult to extend to nonequilibrium situations where gradients of electrical potential are
important. Nonequilibrium systems have flows. Equilibrium systems calculated in most MD
simulations do not have flows. Flows are found in channels, membrane transporters, and
membrane proteins, in nearly all cells, under nearly every natural condition.

Nonequilibrium conditions cannot be easily finessed. Flows are directly involved in a wide
range of biological function. Ion channels almost always work away from equilibrium.
Transporters and pumps are far from equilibrium. Many enzymes work away from
equilibrium. If MD wishes to simulate ion channels, transporters, pumps, many enzymes and
living systems, it must include flows of ions and charge, and so it must be extended to
nonequilibrium systems. Extension of equilibrium analysis to near equilibrium by a Green-
Kubo type treatment is not very helpful if nonlinear behavior is used to create a device with
properties distinct from an equilibrium linearized system. That is the reason Green-Kubo
treatments of transistors are not prominent in the semiconductor literature. Transporters,
pumps, and channels with significant coupling behavior between fluxes (e.g., ‘single file’
channels) are likely to be too far from equilibrium to allow simple analysis. Simple channels
with nearly linear IV relations might be better targets for this approach. However, most
channels show quite nonlinear IV relations in some sets of ionic solutions and those are
often the solutions most useful in solving the inverse problem, namely in measuring the
distribution of fixed charge in a channel.11

Nonequilibrium simulations in computational electronics
Semiconductor physics and computational electronics12–14 have studied nonequilibrium
situations in particle simulations for a very long time. Semiconductor physics and
computational electronics have simulated swarms of holes and electrons, using entirely
classical approaches, in which quantum mechanics does not appear at all, since the 1980s.
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It is striking that periodic boundary conditions are never used in the calculations of
computational electronics12. The reason is clear. Devices cannot be (spatially) periodic
systems if they have inputs and outputs. The essence of a device is its distinct inputs and
outputs. The potential is not the same at the input and output (nor is the current flow).
Spatially nonuniform boundary conditions are needed to describe devices. Semiconductor
simulations are designed to deal correctly with inputs and outputs, to be sure the boundary
conditions are always simulated correctly—because those boundary conditions are the
essence of a device, its inputs and outputs and power supply—even when the simulations are
done with swarms of interacting particles.

The periodic boundary conditions used in MD may or may not adequately represent the
electric field over long ranges in equilibrium systems. I cannot tell because I cannot find
simple checks of Gauss’ law that analyze these conditions. The semiconductor community
checks its computation of the electric field by verifying Gauss’ law on a variety of scales,
some comparable to the particle size, some much larger. Gauss’ law is checked with
surfaces that are not parallel to the natural surfaces of the system or to surfaces assumed in
periodic boundary conditions. It would be comforting if the various Ewald sum methods
were shown to satisfy Gauss’ law on scales comparable to atoms, on scales comparable to
the period assumed in the periodic boundary conditions, and on scales much larger than that
period.

These uncertainties in the treatment of the electric field in MD are large and so I will not
consider problems of scale arising from the electric field further: I do not want to speculate
in an argumentative way. I confine my scaling arguments to simple cases where it is clear
what is involved.

Summary of Biological Scales
Aside from the electric field, we are thus confronted with scale issues of 107 in linear
dimension, 1021 in three dimensions, 109 in resolution, 1011 in time, and 1013 in particle
number (to deal with concentrations of Ca2+).

All scales appear at once
These many and different scales occur all at once in functioning biological systems. Indeed,
typical proteins, channels and nucleic acids involve all these scales in their typical function.
Thus MD simulations must be able to deal with all these scales at once. This seems a
daunting problem, probably one that cannot be solved. If one imagines the computational
issues produced by interactions among this many particles with this spatial resolution on
these spatial scales over this duration of time, one is chastened. These seem in principle
uncomputable, if long range forces are involved. Electric fields are long range, and nearly all
biomolecules bristle with charge15 that can produce long range electric fields. In that case,
one must deal with numbers of calculations beyond astronomical, involving the factorial of
the number of particles over these spatial and temporal scales. It is natural that simulations
have tried to do parts of a problem, dealing with pieces of the biological situation, doing
what they can, hoping to find some way or other to deal with the other pieces, and with the
totality of the scaling and sampling problems of MD

In my view, MD has reached the point where an explicit multiscale analysis is needed.
Certainly, if simulations are to confront biological reality, they must deal with the scales
found in the real systems. MD simulations in full atomic detail of biological function are not
likely to succeed quantitatively until they are embedded in multiscale analysis in my view.
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This is not to argue that MD simulations of reduced systems and reduced complexity are not
valuable. Indeed, the motivation for this paper is exactly the opposite. I argue that MD is an
irreplaceable—extraordinarily important—tool when used properly.

Role of Molecular Dynamics
MD is properly used as an extension of structural biology in my opinion. MD shows us how
structures move and which motions are important. MD is an essential tool for dealing with
the reality of biological structure and the need to reduce complexity in our models. MD can
help us guess biological adaptation intelligently. MD can tell us what to leave out in reduced
models and what to focus on as we try to make reduced models of biological function.

MD is an essential component of a multiscale approach to computing biological function but
it is only one part of that approach.

What else is needed, beyond Molecular Dynamics?
Some needs are clear and definite in my opinion and some are still vague, a matter of
investigation.

What is clear is that we must include the thermodynamic variables concentration and
electrical, and chemical potentials of ions with reasonable accuracy because experiments
require that accuracy. Biological function in fact depends on and is controlled by
concentration, potential and chemical potential with some sensitivity. Even the names of ion
channels—sodium, potassium, calcium channels—cannot be determined if the chemical
potentials of these ions are unknown. Experiments identify and name channels by comparing
chemical potentials with experimentally determined ‘reversal potentials’, the electrical
potential at which the current measured in a channel reverses direction. Simulations must be
checked and calibrated to be sure that they give estimates of chemical potentials that are
sufficiently accurate for this purpose. Reversal potentials must be measured within a few
millivolts to evaluate channels properly in the laboratory; chemical potentials must be
computed with similar accuracy, i.e., to better than 0.1(kBT/e), or ~2.5 mV.

It seems clear that simulations must be carefully calibrated to be useful. Work in this
direction is just beginning (see reference16 and the literature cited there). A great deal of
attention will be needed to calibrate simulations if they are to deal with experimental and
biological reality, because the calibration must be done over a range of concentrations in
solutions that are mixtures of many ions, including divalent Ca2+.

There are many physical and chemical issues involved in such calibrations and this is not the
place to engage in prolonged speculation concerning the difficulties. There is a general
problem that needs mentioning however, because it seems finally on the way to resolution,
after plaguing biophysics and physical chemistry since their beginnings in the 19thcentury.

Biology occurs in mixtures of ions
Sydney Ringer discovered that the heart, and then muscle, and all cells, require a specific
mixture of ions, chiefly Na+, K+, Ca2+ and Cl− if they are to survive. Mixtures of ions are
particularly hard to calibrate. Physical chemists have shown in innumerable experiments that
the simplest properties of mixtures of ion solutions (i.e., the ‘colligative’ properties of
density, freezing point depression, and boiling point elevation) along with all more subtle
properties (mobility, conductance, free energy per mole, called activity) depend on the
interactions of all ions when solutions are reasonably concentrated, say beyond 20
mM10,17,18. It is crucial to understand that the properties of individual ions depend on the
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concentrations of every other type of ions in these solutions. That is why they are nonideal
solutions, not approximated at all by the properties of ideal gases from which the science of
thermodynamics and statistical mechanics grew. Indeed, scientists who must be able to
predict the properties of mixtures of ionic solutions use descriptions of enormous
complexity, equations of state involving tens sometimes hundreds of parameters19–21.
Mixtures of ions are of such importance that these parameters are measured experimentally
and these unwieldy expressions are used in design by chemical engineers every day.

Ionic solutions have usually been treated as simple fluids 22–24 with complex properties
10,17,18,25 and the enormous literature of ionic solutions and mixtures has been cast in that
mold. I hope I insult no one when I say that theory has been less successful than its authors
would wish. Solutions made from one salt (e.g., one cation and one anion, like NaCl) can be
dealt with some success at equilibrium. More complex solutions, made of mixtures of ions
like Na+ and Cl− and Ca2+ and (two) Cl− are a serious challenge to simple theories even at
equilibrium when one wants only to know the free energy per mole, or the freezing and
boiling points and vapor pressure. Simple theories of nonequilibrium properties like
conductance are a challenge for one salt say Na+ Cl−26 Few theories even try to deal with
the nonequilibirum properties of mixtures like NaCl mixed with CaCl2 in water.

I believe the reason for these difficulties is that those theories treat ionic solutions as simple
fluids in which (in the ideal case) there are no interactions. But interactions dominate the
properties of ionic solutions. Speaking crudely, everything interacts with everything else.
The properties of every ion are affected by all the other ions, not just other ions of the same
type. Interaction terms have to be added into theories of simple fluids, by hand, and the
resulting expressions and parameters are multifaceted in their complexity.

I believe we should take a different approach. We should view ionic solutions as complex
fluids with simple components, not as simple fluids at all. Complex fluids are fluids in
which everything interacts with everything else. We need a mathematics that handles
interactions in general, and then simplifies them to the special cases of biological interest. I
will argue that the variational calculus, specifically the energetic variational approach
EnVarA developed by Chun Liu 27–30 provides much of what we need to deal with ions as
complex fluids.

Ions as Complex Fluids
We should view ionic solutions as complex fluids because ions come ‘in pairs’; that is to
say, electrostatic interactions are so strong that ions come (always) in (strictly) neutral
combinations. The interactions between positive ions (cations) and negative ions (anions)
are so strong that deviations from electroneutrality are always tiny. Strong deviations would
produce electric fields comparable to the electric field between valence electrons and nuclei
inside an atom. Such strong electric fields would destroy these atoms, producing atomic
plasmas incompatible with life.

The salts which dissolve in water to create ionic solutions are always strictly neutral31. If the
salts are made of ions with equal charge (i.e., valence) like Na+Cl−, ions come in pairs; the
neutral combination (which is in fact the definition of a ‘molecule’ in the periodic lattice of
a salt crystal) has two atoms. If the salts are made of elements with unequal charge (like
Ca2+ ), the neutral molecule has three atoms. The macromolecules of life—proteins,
nucleic acids, and lipids—always appear in electroneutral combinations with ions (and/or
each other). The ‘permanent’ charges of DNA and proteins (that chemists call their acid and
base groups) are balanced by an exactly equal number of ions. Molecular biology is the
science of complex fluids with complex elements. The fluids of life are mixtures of ionic
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solutions, and the macromolecular minielements called organic molecules (like glucose or
amino acids), proteins, nucleic acids, and lipids.

In biological and chemical solutions the amount of positive and negative charge in a volume
are nearly the same. Macroscopic and mesoscopic amounts of ionic solutions (e.g., tissues
and cells in the biological context) are equal within a tolerance of the order of 10−15. The
‘sum rules’ of equilibrium statistical mechanics8 are an expression of the enormous strength
of electrostatic interactions that enforce electroneutrality. Even atomic scale systems, active
sites of enzymes or pores in channel proteins where dimensions of 1Å are significant, have
deviations much less than 10−3.

Statistical mechanics arose from the treatment of ideal gases of uncharged particles that
hardly interact. Statistical mechanics has been extended to deal with simple fluids with great
success even when they are nonideal22–24. These nonideal fluids have significant hard core
interactions caused by the finite volume of molecules that do not overlap. Statistical
mechanics has been less successful in dealing with the experimental properties of ionic
solutions 10,17,18,32. Theories of even the fundamental property of solutions (the free energy
per mole of each component) have not been particularly successful (see 32 for references)
even in solutions of one salt (e.g., NaCl in water). In mixed solutions, like those of living
systems, success is even more limited and descriptions used in technological applications
(which have to get their predictions right!) often involve large numbers of empirical
parameters.19–21,33

Molecular dynamics simulations have not escaped these difficulties. These difficulties are
not restricted to macroscopic ‘mean field’ type models. Molecular dynamics uses force
fields that are nearly always calibrated under ideal conditions of zero concentration. The
force fields of molecular dynamics are not designed to deal with finite concentrations of
ions, or mixtures of different types of ions because they are not designed to deal with three
body (or n body) problems. It is a matter of mathematics that two body forces cannot
uniformly approximate three body interactions; indeed they cannot approximate three body
interactions over a wide range of conditions or concentrations, as occur in biology. When
atomic scale simulations are used to compute macroscopic systems, they must be
calibrated34 to show that they compute properties actually measured in the nonideal
solutions of chemical and biological interest. This may be possible but attempts are just
starting.

Variational Approach
I believe a variational approach designed to deal with strong interactions might be a useful
alternative approach to the historical tradition35–37, particularly if it can be modified to
include interactions defined by simulations of molecular dynamics as seems possible
(personal communication, Chun Liu). Ionic solutions in fact are a relatively simple complex
fluid in some ways, because in the most important biological cases their microelements are
hard spheres (Na+, K+, Ca2+) or nearly hard spheres (Cl−). Water can often be successfully
described as a continuum, as it is in implicit solvent models of ionic solutions (also called
‘the primitive model’) and proteins.10,17,18,32 The theory of complex fluids has dealt with
systems with complex microelements: liquid crystals, polymeric fluids38,39, colloids and
suspensions40 and electrorheological fluids41; magnetohydrodynamics systems42; systems
with deformable electrolyte droplets that fission and fuse28; and suspensions of ellipsoids.
The theory deals also interfacial properties of these complex mixtures, such as surface
tension and the Marangoni effects of ‘oil on water’ and ‘tears of wine’40.

It seems worthwhile to see how well the theory of complex fluids can deal with the key
biological ions in water, Na+, K+, Ca2+ and Cl−. These ions are more (cations) or less
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(anions) hard spheres. They seem likely to have much less complex properties than the
deformable charged droplets already treated by the theory of complex fluids.

But living solutions are not all that simple. Real extracellular solutions contain other
components and the molecular detail of water can be important. Living solutions inside cells
also contain proteins, nucleic acids, lipids, and organic ions (like free amino acids), that are
complex microelements, that form the macromolecules of life. It will be interesting to see if
the theory of complex fluids can be extended to them (in references35–37 and forthcoming
work involving membranes (Ryham, Liu, Eisenberg, and Cohen, personal communication)
and tissue structures (Mori, Liu, and Eisenberg, personal communication).

We use35 a theory of complex fluids based on the energy variational approach EnVarA of
the mathematician Chun Liu who has actually provided the existence and uniqueness
theorems needed to make this approach mathematics, as well as applying EnVarA to a
variety of complex real systems43–45. We try to create a field theory of ionic solutions that
uses only a few fixed parameters to calculate most properties in flow and in traditional
thermodynamic equilibrium, both in bulk and in spatially complex domains like pores in
channel proteins.

The Energy Variational Principle can be written as

(1)

The energy E we use to describe finite size ions in a bulk solution is

(2)

The dissipation Δ is not hard to derive but is too complex to present in detail because of the
finite size effects. It is described in full in35,36.

The variational principle EnVarA combines the maximum dissipation principle and least
action principle into a force balance law that expands the conservative conservation laws to
include dissipation, using the generalized forces in the variational formulation of mechanics
(p. 19 of reference46; also47). This procedure is a modern reworking of Rayleigh’s
dissipation principle—eq. 26 of reference48—motivated by Onsager’s treatment of

Eisenberg Page 15

J Phys Chem C Nanomater Interfaces. Author manuscript; available in PMC 2011 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dissipation49,50. EnVarA optimizes both the action functional (integral) of classical
mechanics51 and the dissipation functional52. The stationary point of the action is
determined with respect to the trajectory of particles. The stationary point of the dissipation
is determined with respect to rate functions (e.g., velocity). Both are written in Eulerian
(laboratory) coordinates. These functionals can include entropy and dissipation as well as
potential energy, and can be described in many forms on many scales from molecular
dynamics calculations of atomic motion, to Monte Carlo MC simulations44,53,54 to—more
practically—continuum descriptions 55 of ions in water. We use a primitive
model10,17,18,25,56 of ions in an implicit solvent57–61, adopting self-consistent treatments of
electro-diffusion62–65—in which the charge on ions help create their own electric field—and
introducing the repulsion energy of solid spheres66,67, using the variational calculus to
extend the primitive model to spatially complex, nonequilibrium time dependent situations,
creating a field theory of ionic solutions.

Energy functional integrals and dissipation functional integrals are written from specific
models of the assumed physics of a multi-component system, as did27,28. Components of the
potential energy and dissipation functions are chosen so the variational procedure produces
the drift diffusion equations of semiconductor physics68—called the Vlasov equations in
plasma physics—or the similar biophysical Poisson Nernst Planck equations—named PNP
by reference62—and used since then by many biophysicists11,63,64,69–77 and physical
chemists65,78. The energy of the repulsion of solid spheres can be included in the energy
functionals in different ways using different forms for the interaction energy, giving similar
but not identical results. It is included as Lennard-Jones spheres79 giving (as their Euler-
Lagrange equations) a generalization of PNP for solid ions. The energy of repulsion (for
uncharged spheres) is included alternatively as in the density functional theory of fluids80–
82. Boundary conditions tell how energy and matter flow into the system and from phase to
phase and are described by a separate variational treatment of the ‘interfacial’ energy and
dissipation. The resulting Euler Lagrange equations are the boundary value problems of our
field theory of ionic solutions. They are derived by algebra and solved by mathematics—
without additional physical approximations—in spatially complex domains, that perhaps
produce flow of nonideal mixtures of ions in solution.

EnVarA does not produce a single boundary value problem or field equation for ionic
solutions. Rather, it produces different field equations for different models (of correlations
produced by screening or finite size, for example), to be checked by experiment. In the
biological and chemical context EnVarA derives—it does NOT assume—systems of partial
differential equations (i.e., field theories) of multiple interacting components and scales.

If a new component of energy (or dissipation) is added to a variational principle like
EnVarA, the resulting Euler Lagrange equations—the field theory of electrolytes—change.
The new field theory is derived by algebra and involves no further assumptions or
parameters. The new field theory automatically includes all the interactions of the old and
new components of the energy (and dissipation). This is an enormous advantage of
variational principles and is probably the reason they are used so widely in physics. I am
unaware of any other mathematical approach that forces field equations to be consistent with
each other. The contrast with the usual approach to mixtures of ionic solutions, with their
plethora of coupling coefficients, is striking. It is very difficult to determine those coupling
coefficients, and even worse, the coupling coefficients are functions or functionals that
depend on all the other parameters of the system, usually in an unknown way.

The variational principle can be applied to a primitive model of ionic solutions with a
Lennard Jones treatment of excluded volume, and a selfconsistent computation of the
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electric field as described in detail in35–37. A regularized repulsive interaction potential is
introduced as

(3)

for the ith and jth ions located at x⃗ and y⃗ with the radii ai, aj, respectively, where εi, j is an
empirically chosen energy constant,. Then the contribution of repulsive potential Ψ to the
total (free) energy is

(4)

where ci, cj are the densities of i th, j th ions, respectively.

For the sake of simplicity in this derivation, we consider a two-ion system with the charge
densities, cn, cp. All derivations and programs have been written for a multiple ion system,
with ions of any charge35–37. Then, the total repulsive energy is defined by

(5)

Now we take a variational derivative with respect to each ion, (δErepulsion/δci) = 0 to obtain
the repulsive energy term and put it into the system of equations. This leads us to the
following Nernst-Planck equations for the charge densities, cn, cp:

(6)

(7)

The details of the derivation of the repulsive terms in the chemical potentials are presented
in 35–37 We now have the coupled system including finite size effects. We here call the
system a modified PNP system. One advantage of the variational approach is the fact that
the resulting system, the modified PNP, naturally satisfies the energy dissipation principle,
the variational law eq. (1)
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(8)

where Ψi, j = 12Ψi, j for i = j, and Ψi, j = 6Ψi, j for i ≠ j.

These variational principles derive field equations as we have seen that address and I believe
will probably some day solve major problems in computational biology. The field theory
EnVarA represents an ionic solution as a mixture of two fluids83, a solvent water phase and
an ionic phase. The ionic phase is a primitive model of ionic solutions. It is a compressible
plasma made of charged solid (nearly hard) spheres. The ionic ‘primitive phase’ is itself a
composite of two scales, a macroscopic compressible fluid and an atomic scale plasma of
solid spheres in a frictional dielectric. Channel proteins are described by primitive
(‘reduced’) models similar to those used to analyze the selectivity of calcium and sodium
channels84–86 and to guide the construction (using the techniques of molecular biology) of a
real calcium channel protein in the laboratory87,88. Similar models predicted complex and
subtle properties of the RyR channel before experiments were done in >100 solutions and in
7 mutations, some drastic, removing nearly all permanent charge from the ‘active site’ of the
channel (see references in89,90).

I believe a variational method is required to deal with real ionic solutions because ionic
solutions are dominated by interactions. Ionic solutions do not resemble the ideal simple
fluids of traditional theory and the interactions between their components are not two body,
as assumed by the force fields of modern molecular dynamics. Indeed, ions like Na+ and
K+ have specific properties, and can be selected by biological systems, because they are
non-ideal and have highly correlated behavior. Screening and finite size effects produce
the correlations more than anything else. Solvent effects enter (mostly) through the dielectric
coefficient. Ionic solutions do not resemble a perfect gas91 of non-interacting uncharged
particles. Indeed, because of screening, the activity (which is a measure of the free energy)
of an ionic solution is not an additive function as concentration is changed (Fig. 3.6 of
reference17; Fig. 4.2.1 of reference 18) and so does not easily fit some definitions of an
extensive quantity (see p. 6 of the book of international standards for physical chemistry92).

Some correlations are included explicitly in our models as forces or energies that depend on
the location of two particles. Other correlations are implicit and arise automatically as a
mathematical consequence of optimizing the functionals even if the models used in the
functionals do not contain explicit interactions of components. Kirchoff’s current law (that
implies perfect correlation in the flux of electrical charge93) arises this way as a
consequence of Maxwell’s equations94 and does not need to be written separately.

Variational analysis is already an area of active research in modern mathematics. Our
methods are also closely related to another exciting area of modern mathematical research,
optimal control. Our EnVarA analysis produces ‘optimal’ estimates of the correlations that
arise from those interactions (p. 42 of Gelfand and Fromin95; p. 11 of Biot47. Note criticism
of Biot in96). All field equations arising from EnVarA optimize both the dissipation and the
action integrals. Inadequate functionals can be corrected (to some extent) by adjusting
effective parameters in the functionals.
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Effective parameters are needed to deal with ions in electrolytes. Effective parameters are
almost always used to describe complex interactions of ions in electrolyte solutions26,97–101,
e.g., the cross coupling Onsager coefficients100–102 or Maxwell-Stefan coefficients103.
EnVarA produces optimal estimates of these parameters, because the mathematics of
variational analysis is almost identical to the mathematics of optimal control. Both use
variational methods that can act on the same functionals. EnVarA becomes optimal control
when the functionals are combined in a more general way than just adding them, e.g., by
using Lagrange multipliers or more sophisticated techniques. Inverse methods11,104,105

could be used to provide estimators of the parameters of EnVarA functionals with least
variance or bias, or other desired characteristics. EnVarA gives the hope that fewer
parameters can be used to describe a system than in models56 and equations of state19–21 of
ionic solutions which involve many parameters. These parameters change with conditions
and are really functions or even functionals of all the properties of the system. (It is
important to understand that in general these coupling parameters need to depend on the
type and concentration of all ions, not just the pair of ions that are coupled.)

Of course, the variational approach can only reveal correlations arising from the physics and
components that the functional actually includes. Correlations arising from other
components or physics need other models and will lead to other differential equations. For
example, ionic interactions that arise from changes in the structure of water would be an
example of ‘other physics’, requiring another model, if they could not be described
comfortably by a change in the diffusion coefficient of an ion or a change in the dielectric
constant of water. Numerical predictions of EnVarA will be relatively insensitive to the
choice of description (of pairwise interactions, for example) because the variational process
in general produces the ‘optimal’ result47,95 for each version of the model. (This is an
important practical advantage of the variational approach to optimal control: compare the
success of the variational density functional theory of fluids81,82 with the non-variational
mean spherical approximation17,18 that uses much the same physics.)

This variational approach can include energies of any type. It has in fact been used by
Liu44,53,54 to combine energies of reduced models and energies computed from simulations.
It will be interesting to see how we can apply this approach to biological systems.

Scaling in EnVarA the Variational Approach
The variational approach deals with issues of scaling in a very different way from direct
simulations. EnVarA has the great advantage of always being consistent. A model in
EnVarA is the statement of energies and dissipation in eq. (1). Once that model is chosen,
the rest is algebra. The resulting Euler Lagrange equations form a well posed boundary
value problem, a field theory of (usually) partial differential equations and boundary
conditions that account for all the behavior of the system described by the energy and
dissipation. The field theory is much more general than the thermodynamic and statistical
mechanical ideas of equilibrium and state. It includes flow and interactions of components
automatically. If two of the components of the energy (and/or dissipation) are on different
scales, EnVarA automatically produces Euler Lagrange equations that combine those scales
selfconsistently. This is an enormous advantage compared to other multiscale methods.
When dealing with interactions on one scale, and conservation laws on another, it is not at
all easy to be sure that the resulting equations (corresponding to the field equations of
EnVarA) are consistent, i.e., that the resulting equations satisfy the overriding constraints
and conservation laws. When including the finite size of ions in classical theories of simple
fluids, for example, it is very easy to use treatments that do not identically satisfy the
equations of electrostatics. If the theory is meant to include electrodiffusion, and thereby
extend to the nonequilibrium phenomena of life, it is very difficult to make the theory
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consistent with the special cases of diffusion of uncharged species (Fick’s law), or the
migration of charged species in systems without concentration gradients (Ohm’s law), even
if the theory ignores bulk flow and the complexities of hydrodynamic coupling.

EnVarA deals with interactions automatically but it does not deal with multiscale issues
nearly as well. We go through them one by one.

Scaling in Space in EnVarA
Spatial scaling and resolution are dealt with in EnVarA without error if the models of energy
and dissipation include all scales at perfect resolution. Of course, that never happens! What
typically happens is that part of the system is known well at one scale, part at another, and
parts of the system are left out. Typically, one part of the system must be resolved on one
scale and the other on another. Applying EnVarA to these situations is (reasonably)
straightforward but the accuracy of the results can only be assessed after the fact by
comparison with experiments. The basic approach is to write the energy and dissipation of
each component of the model, of each scale, and combine them using Lagrange
multiplier(s), or other penalty functions of optimal control. EnVarA guarantees that
interactions will be dealt with correctly. EnVarA automatically deals with boundary
conditions (once they are described with a model) and flow. These are important features not
shared by many other methods. But EnVarA cannot deal with phenomena that are not
present in the models of the energy and dissipation and these can be important. EnVarA
(particularly when implemented numerically) may not be able to resolve steep phenomena
and gradual phenomena well enough to estimate their interactions correctly. EnVarA will
double count phenomena that are described in more than one component of a model. For
example, if an equation of state is used to deal with the finite volume of ions (on the
macroscopic scale) and Lennard Jones potentials are used to deal with the finite volume of
ions (on the atomic scale), double counting can be expected. The Lagrange multipliers (or
penalty functions of optimal control) and variational process minimizes the effect of the
double counting (by choosing optimal parameters that minimize the functionals) but the
residual effects may be significant. We are in unknown territory here. We know how to
investigate but we do not know the results of the investigation.

Scaling in time in EnVarA
Time dependence in EnVarA is produced by the dissipation function and so depends on the
accuracy of the model of dissipation. It is obvious that the linear frictional model used in
EnVarA (and in Rayleigh and Onsager’s dissipation principles) is inadequate. Friction is not
proportional to velocity in general. The consequences of the oversimplified model of
dissipation are not known. At this stage, the time dependence computed with EnVarA seems
to be that of the slowest ‘time constant’ of the system. Our working hypothesis is that the
linear friction assumption produces a decent estimate of the (final) approach to equilibrium.
It obviously cannot deal with complex time dependent phenomena that occur with complex
friction. One way to deal with such phenomena is to include them as a separate component
with a separate time scale and then to allow the variational process to do the matching
between scales. This seems a different way of doing matching than in classical matched
asymptotic expansions106 but the literature has not been searched to verify that view. The
issues involved in this approach are rather similar to those just discussed about spatial
scales. Consistency is guaranteed between scales by the variational process, but double
counting of some sort will occur. Investigation is needed and is underway.

One important characteristic of EnVarA arises from its time dependence and is both a curse
and a blessing. The blessing is that EnVarA computes time dependence at all. The curse is
that it must compute time dependence starting at time zero. Steady states only arise from
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transient computations. This property of the Euler Lagrange equations makes computation
much less efficient. One must approach the steady state. One cannot just arrive there.

Scaling of Parameters in EnVarA
Parameters arise in EnVarA from the models of energy and dissipation and in general appear
as parameters in the Euler Lagrange equations that specify the resulting field problem.
Parameters are handled as well or as badly as they are in other partial differential equations.
Analytically, parameters of any scale are handled ‘perfectly’, but numerical issues of
stiffness and dynamic range can easily arise and be limiting. Each case must be studied as a
separate numerical system because each case can have quite different qualitative behavior.
The numerical schemes must be adapted to the qualitative behavior.

The very generality of the EnVarA approach causes considerable difficulty. The behavior of
the system with all its interactions is often unknown in initial calculations. If reduced models
with effective parameters are used (as they should be in early survey calculations), it is hard
to know what ‘region of phase space’, i.e., what qualitative range of behaviors one is seeing.
Dealing with an EnVarA calculation is much like a survey experiment in biology. You have
to determine what is going on and you have to learn to simplify the calculation or
experiment by choosing parameter ranges or setups in which the interesting phenomena
dominate.

Computations of current flow through channels for example using EnVarA always produce
charging phenomena at short times (because such must be present in any calculation that
includes the electric field consistently), flow through the channel at intermediate times, and
accumulation of ions outside the channel as the flow continues into long times. The charging
phenomena and accumulation are peripheral to one’s initial main interest in the channel
itself, but the numerical procedures must deal with them correctly and efficiently.
Experimental scientists may have taken years to learn to isolate the phenomena of interest.
Numerical analysts using EnVarA face similar prospects.

A physical example may be helpful. Imagine trying to calculate the conductivity of a salt
solution (or its ‘dielectric constant’ if you prefer an equilibrium property). In EnVarA one
cannot assume good stirring or uniform temperature, unless one includes ‘apparatus’
(boundary conditions like stirrers or heat baths) that will do the stirring or supply the heat.
The real system always has gradients of concentration and temperature, and EnVarA will
always compute those because it is unable to calculate inconsistently even if we know the
errors produced by the inconsistency are unimportant under the conditions of interest. Even
worse, EnVarA computes these epi-phenomena in their full time dependent glory, even if we
only want to know the steady state.

This power of EnVarA is again a blessing and a curse. It is a blessing because it forces the
theorist to deal with phenomena well known in the laboratory (i.e., the difficulty of actually
keeping solutions well stirred at constant temperature) but often not advertised in
experimental papers. The curse is the difficulty of computation and the efforts needed to
isolate important special cases.

Despite these difficulties, which are described here in vivid detail so we do not mislead the
reader into thinking EnVarA is a magical solution for all problems, computations with
EnVarA of real systems are possible. Many have been done in physical systems28,38,39,42

and a substantial number have been done with some success in ionic solutions.35–37 Once a
system is understood, the difficulties just described are left behind, just as an experimental
system goes quickly from ‘impossible’, to novel, to easy, to taken for granted after a few
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years of success. (Consider the history of single channel recording from 1975 to 1990 for
example.)

Scaling of the protein
The above discussion does not deal with the multiscale issues of describing the protein,
whether channel or enzyme. I do not know how to do that in a general way even for
channels, where covalent bond changes and orbital delocalization are not involved, let alone
for enzymes where covalent bond changes are what the system is all about. (See
reference107 for a discussion of ‘Channels as Enzymes’ and reference4 for a discussion of
channels as transistors.) Reduced models have been built in many ways, using quantum
mechanics (references in108), reduced models with water detail (references in109,110), and
reduced models with implicit models of water67,75,111–115 and I apologize for the many
references I have unknowingly omitted.

There seems to be no a priori way to choose between the different reduced models of
channel proteins. I would use the fits to experimental data as the test for such models,
although others prefer a more reductionist approach, arguing (understandably enough) that
considerable structural detail is needed to deal with water and side chains of proteins. Each
perspective emphasizes what the investigator can best do. My collaborators and I find that
we can deal with nearly the whole range of experimental data on both calcium and sodium
channels using a single model, with three parameters that never change value (the dielectric
coefficients of protein and solution and the diameter of the channel) in a wide range of
mixed solutions of different types and concentrations of ions of ions, using crystal radii of
ions, even though calcium and sodium channels have very different properties84–86,116. This
treatment uses grossly oversimplified models of the channel protein and its side chain but
that simplification allows it to compute the Boltzmann distribution of structures of ions and
side chains using Metropolis Monte Carlo methods. These methods show that the structure
of the system changes significantly even dramatically as ions are changed in concentration
or type. They show that the free energy of binding varies drastically as conditions are
changed. Indeed, the model is used is a version of the self organized theory of proteins in
which the fit of the ions to the active site and the fit of the active site to the ions is induced.
The induced fit is determined as an output of the Monte Carlo simulations, as is the
distribution of the fit. The model seems to work in a wide variety of conditions because it
computes accurately, and guesses (with more luck than wisdom) the forces and energies
actually used by biology to determine the selectivity of these channels to these ions.

The role of biology
The question arises: how can as complicated a system as a channel protein in a biological
membrane surrounded by mixtures of ions be so simply described? The question is
particularly vexing when one remembers that mixtures of ions in bulk solutions (without
channel proteins) cannot be so simply described.

The reason seems to me biological and evolutionary.

Biological systems are not general physical systems. Biological systems have been built by
evolution to have definite functions. Evolution acts by mutating genes and genes make
proteins. Proteins are coded amino acid by amino acid, and mutations change individual
amino acids. It seems obvious that a system like this will discover ‘controls’ which produce
useful functions. (Useful functions are those that allow their host organism to survive natural
selection.) Individual amino acids will control individual functions in such a system. These
thoughts are hardly rigorous, but they provide motivation to accept the experimental fact
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that individual amino acids do control function in many important cases. In many cases a
few amino acids or a particular structural domain of a protein controls overall function.

Viewed from an engineering perspective, this biological simplicity is not a surprise. Devices
are built so they can be controlled. The control of a device is often far more important than
its efficiency. An easy way to ensure robust control is to put that control in a separate system
distinct from the rest of the device. Evolution seems to use that approach. Evolution has
found ways to use only a few amino acids to control biological function. The physics does
not force this. Evolution has.

Reduced models that describe so many properties of dissimilar calcium and sodium channels
with so few parameters should be viewed as the expression of evolution. These models must
be describing the energies evolution has used to produce these functions. It seems likely that
energies are correct in a model with just two parameters that fits data from two different
types of channels, with quite different properties, in many solutions and concentrations,
using crystal radii of ions, and parameter values that are the same under all conditions and in
both channel types. It seems likely that evolution has chosen to create this kind of selectivity
(for salts) in this kind of channel (Ca2+ and Na+ channels) in this way and the investigators
of these channels could study these energies because they were relatively simple to compute
(although it still took many years and many papers and methods).

There is no guarantee, however, that these energies will be the only energies used to
determine the selectivity of other types of ions or other systems (e.g., the zinc finger binding
system so well studied experimentally117,118). However, it seems likely that these energies
will be involved, along with others.

In that case, it seems safe to say that simulations that try to deal with selectivity or biological
function using a single free energy of binding, that does not vary with ion type or
concentration in the baths, will be inadequate, unable to deal with the essentials of biological
function.

The binding data we have computed is an incomplete description of biological reality in an
important way. The Monte Carlo method is constrained to equilibrium, in fact to zero
concentration and zero electrical potential gradients in the way we do it. Biology does not
occur under these conditions. Our simple model of binding has been extended to
nonequilibrium systems using a hybrid of the density functional theory of nonelectrolytes
(of Rosenfeld119–123; note this has nothing to do with the density functional theory of
electrons) and the Poisson Nernst Planck theory of ionic solutions, named PNP in
reference62 and used by many workers in chemistry65 and biophysics109,124–128 since then.
The resulting DFT-PNP theory has been applied by Gillespie and co-workers with some
considerable success to the Ryanodine Receptor channel of the heart. They have shown
excellent agreement between experiment and data and have predicted experimental results
before the experiments were performed.82,89,122,129 But there are problems because
electrostatics are added to DFT in an imaginative but ad hoc manner82,122,129 that suffers
fundamental difficulties. In particular,

a. PNP-DFT does not satisfy Gauss’ law or sum rules, as it should.

b. PNP-DFT is not derived from a general variational principle and so is ad hoc and
incomplete as well as imaginative and powerful. PNP-DFT omits the important
electrophoretic, relaxation, hydrodynamic, and osmotic components of current,
found in experiments and in all theories since the 1930’s work of Onsager &
Fuoss26,130.
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In my opinion, PNP-DFT is a useful beginning but EnVarA has a greater future because it is
based on fundamental principles, satisfies sum rules, and yields all interactions of all
species. EnVarA is a superset of DFT (of neutral species) and a super set of PNP-DFT.
EnVarA should be able to do much more. It has not done that yet, but many investigators are
trying.

Conclusions
What can we say then in general about the computation of biological systems? We can say
that

1. simulation in atomic detail is unlikely to succeed because of the scaling issues
shown in Table 1.

2. simulations must be calibrated against experimental data in realistic mixed
solutions because those are the only conditions in which living systems function.

3. reduced models are needed because nothing else is likely to deal with the scaling
issues.

4. reduced models of ionic solutions should be based on a mathematics of interacting
systems, a variational principle like EnVarA, because that automatically deals
consistently with multiple interacting components. It deals with multifaceted
interactions without introducing many underdetermined coupling parameters and
coefficients.

5. reduced models of channel proteins may take on many forms, but they must deal
with the range of ionic conditions in which the channels actually work, even if
these are mixtures of ions uncomfortable to compute because so many ions are so
important over such a wide range of concentrations.

6. a particular reduced model of calcium and sodium channels has been surprisingly
successful. Similar models should be tried in other systems, hoping that their
simplicity will at least point in the right direction to help uncover relevant
computable complexity.

I look forward to the next Festschrift for Mark Ratner and hope my colleagues and I can
show him then how we have dealt with multiscale issues in a variety of new systems.

Acknowledgments
It is a pleasure to thank Mark Ratner for his encouragement and help at a critical point in my transformation from
experimental biophysicist to striving biophysical chemist. Many of my publications would not have been written if
he had not introduced me to Zeev Schuss, Ron Elber, and so much of modern physical chemistry.

This paper reports the work of a wide group of collaborators without whom none of it would have happened. I am
grateful beyond words for the opportunity (and joy) of working with them. The paper was edited with great skill by
Ardyth Eisenberg to whom I owe very much beyond that. This work was supported in part by NIH grant
GM076013.

References
1. Moore, GE. Lithography and the future of Moore’s law. Santa Clara, CA, USA: 1995.
2. Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, JD. Molecular Biology of the Cell.

3. Garland; New York: 1994.
3. Weiss, TF. Cellular Biophysics. Vol. 1 and 2. MIT Press; Cambridge MA USA: 1996.
4. Eisenberg, B. 2005. http://arxiv.org/q-bio.BM, arXiv:q
5. Dixon, M.; Webb, EC. Enzymes. Academic Press; New York: 1979.

Eisenberg Page 24

J Phys Chem C Nanomater Interfaces. Author manuscript; available in PMC 2011 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://arxiv.org/


6. Hille, B. Ionic Channels of Excitable Membranes. 3. Sinauer Associates Inc; Sunderland: 2001.
7. Sakmann, B.; Neher, E. Single Channel Recording. 2. Plenum; New York: 1995.
8. Henderson, JR. Statistical Mechanical Sum Rules. In: Henderson, D., editor. Fundamentals of

Inhomogeneous Fluids. Marcel Dekker; New York: 1992. p. 23
9. Barthel, J.; Buchner, R.; Münsterer, M. Dielectric Properties of Water and Aqueous Electrolyte

Solutions. Vol. 12. DECHEMA: Frankfurt am Main; 1995. Electrolyte Data Collection.
10. Barthel, J.; Krienke, H.; Kunz, W. Physical Chemistry of Electrolyte Solutions: Modern Aspects.

Springer; New York: 1998.
11. Burger M, Eisenberg RS, Engl H. SIAM J Applied Math 2007;67:960.
12. Damocles. Damocles Web Site, IBM Research. 2007.

http://www.research.ibm.com/DAMOCLES/home.html
13. Markowich, PA.; Ringhofer, CA.; Schmeiser, C. Semiconductor Equations. Springer-Verlag; New

York: 1990.
14. Selberherr, S. Analysis and Simulation of Semiconductor Devices. Springer-Verlag; New York:

1984.
15. Tanford, C.; Reynolds, J. Nature’s Robots: A History of Proteins. Oxford; New York: 2001.
16. Zhang C, Raugei S, Eisenberg B, Carloni P. Journal of Chemical Theory and Computation

2010;6:2167.
17. Fawcett, WR. Liquids, Solutions, and Interfaces: From Classical Macroscopic Descriptions to

Modern Microscopic Details. Oxford University Press; New York: 2004.
18. Lee, LL. Molecular Thermodynamics of Electrolyte Solutions. World Scientific; Singapore: 2008.
19. Sengers, JV.; Kayser, RF.; Peters, CJ.; White, HJ, Jr. Equations of State for Fluids and Fluid

Mixtures (Experimental Thermodynamics). Elsevier; New York: 2000.
20. Lin Y, Thomen K, Hemptinne J-Cd. American Institute of Chemical Engineers AICHE Journal

2007;53:989.
21. Jacobsen, RT.; Penoncello, SG.; Lemmon, EW.; Span, R. Multiparameter Equations of State. In:

Sengers, JV.; Kayser, RF.; Peters, CJ.; White, HJ., Jr, editors. Equations of State for Fluids and
Fluid Mixtures. Elsevier; New York: 2000. p. 849

22. Hansen, J-P.; McDonald, IR. Theory of Simple Liquids. 3. Academic Press; New York: 2006.
23. Rice, SA.; Gray, P. Statistical Mechanics of Simple Fluids. Interscience (Wiley); New York: 1965.
24. Barker J, Henderson D. Reviews of Modern Physics 1976;48:587.
25. Durand-Vidal, S.; Simonin, J-P.; Turq, P. Electrolytes at Interfaces. Kluwer; Boston: 2000.
26. Justice, J-C. Conductance of Electrolyte Solutions. In: Conway, BE.; Bockris, JOM.; Yaeger, E.,

editors. Comprehensive Treatise of Electrochemistry Volume 5 Thermondynbamic and Transport
Properties of Aqueous and Molten Electrolytes. Plenum; New York: 1983. p. 223

27. Yue P, Feng JJ, Liu C, Shen J. Journal of Fluid Mechanics 2004;515:293.
28. Ryham R, Liu C, Zikatanov L. Discrete and Continuous Dynamical Systems-Series B 2007;8:649.
29. Zhang J, Gong X, Liu C, Wen W, Sheng P. Physical Review Letters 2008;101:194503. [PubMed:

19113272]
30. Sheng, P.; Zhang, J.; Liu, C. Progress of Theoretical Physics Supplement No. 175. 2008. p. 131
31. Singer A, Schuss Z, Eisenberg RS. Journal of Statistical Physics 2005;119:1397.
32. Fraenkel D. Molecular Physics 2010;108:1435.
33. Pitzer, KS. Activity Coefficients in Electrolyte Solutions. CRC Press; Boca Raton FL USA: 1991.
34. Post DE, Votta LG. Physics Today 2005;58:35.
35. Eisenberg B, Hyon Y, Liu C. Journal of Chemical Physics 2010;133:104104. [PubMed: 20849161]
36. Hyon, Y.; Eisenberg, B.; Liu, C. IMA, University of Minnesota; Minneapolis: 2010.

Communications in Mathematical Sciences (in the press) also available as preprint#; p.
2318http://www.ima.umn.edu/preprints/jun2010/jun2010.html

37. Eisenberg, B. Advances in Chemical Physics (in the press). 2010. also available at http:\\arix.org as
Paper arXiv 1009.1786v1

38. Bird, RB.; Armstrong, RC.; Hassager, O. Dynamics of Polymeric Fluids, Fluid Mechanics. Vol. 1.
Wiley; New York: 1977.

Eisenberg Page 25

J Phys Chem C Nanomater Interfaces. Author manuscript; available in PMC 2011 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.research.ibm.com/DAMOCLES/home.html
http://www.ima.umn.edu/preprints/jun2010/jun2010.html
http:\\arix.org


39. Bird, RB.; Hassager, O.; Armstrong, RC.; Curtiss, CF. Dynamics of Polymeric Fluids, Kinetic
Theory. Vol. 2. Wiley; New York: 1977.

40. Yue P, Feng JJ, Liu C, Shen J. Journal of Fluid Mechanics 2005;540:427.
41. Cheng Y, Chang CE, Yu Z, Zhang Y, Sun M, Leyh TS, Holst MJ, McCammon JA. Biophys J

2008;95:4659. [PubMed: 18689458]
42. Liu C, Liu H. SIAM Journal of Applied Mathematics 2008;68:1304.
43. Lei Z, Liu C, Zhou Y. Commun Math Sci 2007;5:595.
44. Du Q, Hyon Y, Liu C. Journal of Multiscale Modeling and Simulation 2008;2:978.
45. Hyon Y, Kwak DY, Liu C. Discrete and Continuous Dynamical Systems (DCDS-A)

2010;26:1291.
46. Goldstein, H. Classical Mechanics, Second Edition. 2. Addison Wesley; Reading, MA: 1980.
47. Biot, MA. Variational Principles in Heat Transfer: A Unified Lagrangian Analysis of Dissipative

Phenomena. Oxford University Press; New York: 1970.
48. Rayleigh L. previously John William Strutt. Proceedings of the London Mathematical Society

1873;IV:357.
49. Onsager L. Physical Review 1931;37:405.
50. Onsager L. Physical Review 1931;38:2265.
51. Arnold, VI. Mathematical Methods of Classical Mechanics. 2. Springer; New York: 1997.
52. Landau, LD.; Lifshitz, EM. Course of Theoretical Physics, Volume 5: Statistical Physics. 3. Vol. 5.

Butterworth Heinemann; London: 1996.
53. Du Q, Liu C, Yu P. Multiscale Modeling & Simulation 2005;4:709.
54. Yu P, Du Q, Liu C. Multiscale Modeling & Simulation 2005;3:895.
55. Lin FH, Liu C, Zhang P. Communications on Pure and Applied Mathematics 2005;58:1437.
56. Pitzer, KS. Thermodynamics. 3. McGraw Hill; New York: 1995.
57. Warshel A, Russell ST. Quarterly Review of Biophysics 1984;17:283.
58. Gilson MK, Honig B. Biopolymers 1985;25:2097. [PubMed: 3790703]
59. Davis ME, McCammon JA. Chem Rev 1990;90:509.
60. Antosiewicz J, McCammon JA, Gilson MK. Biochemistry 1996;35:7819. [PubMed: 8672483]
61. Roux, B. Implicit solvent models. In: Becker, O.; MacKerrel, ADBR.; Watanabe, M., editors.

Computational Biophysics. Marcel Dekker Inc; New York: 2001. p. 133
62. Eisenberg R, Chen D. Biophysical Journal 1993;64:A22.
63. Eisenberg RS. J Membrane Biol 1996;150:1. [PubMed: 8699474]
64. Eisenberg, RS. Atomic Biology, Electrostatics and Ionic Channels. In: Elber, R., editor. New

Developments and Theoretical Studies of Proteins. Vol. 7. World Scientific; Philadelphia: 1996. p.
269

65. Bazant MZ, Thornton K, Ajdari A. Physical Review E 2004;70:021506.
66. Nonner W, Catacuzzeno L, Eisenberg B. Biophysical Journal 2000;79:1976. [PubMed: 11023902]
67. Eisenberg B. Biophysical Chemistry 2003;100:507. [PubMed: 12646387]
68. Jerome, JW. Mathematical Theory and Approximation of Semiconductor Models. Springer-Verlag;

New York: 1995. Analysis of Charge Transport.
69. Eisenberg B. Physics Today 2006;59:12.
70. Schuss Z, Nadler B, Eisenberg RS. Phys Rev E Stat Nonlin Soft Matter Phys 2001;64:036116.

[PubMed: 11580403]
71. Hollerbach U, Chen DP, Busath DD, Eisenberg B. Langmuir 2000;16:5509.
72. Eisenberg, B. Permeation as a Diffusion Process. 2000.

http://www.biophysics.org/btol/channel.html#5
73. Hollerbach U, Chen D, Nonner W, Eisenberg B. Biophysical Journal 1999;76:A205.
74. Eisenberg RS. Journal of Membrane Biology 1999;171:1. [PubMed: 10485990]
75. Mamonov AB, Coalson RD, Nitzan A, Kurnikova MG. Biophys J 2003;84:3646. [PubMed:

12770873]
76. Corry B, Kuyucak S, Chung SH. Biophys J 2003;84:3594. [PubMed: 12770869]

Eisenberg Page 26

J Phys Chem C Nanomater Interfaces. Author manuscript; available in PMC 2011 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.biophysics.org/btol/channel.html#5


77. Im W, Roux B. Journal of Molecular Biology 2002;319:1177. [PubMed: 12079356]
78. Newman, J.; Thomas-Alyea, KE. Electrochemical Systems. 3. Wiley-Interscience; New York:

2004.
79. Lin FH, Liu C, Zhang P. Communications on Pure and Applied Mathematics 2007;60:838.
80. Davis, HT. Statistical Mechanics of Phases, Interfaces, and Thin Films. Wiley-VCH; New York:

1996.
81. Roth R, Evans R, Lang A, Kahl G. J Phys: Condens Matter 2002;14:12063.
82. Gillespie D, Nonner W, Eisenberg RS. Journal of Physics (Condensed Matter) 2002;14:12129.
83. Liu C, Shen J. Physica D: Nonlinear Phenomena 2003;179:211.
84. Eisenberg, B. Institute of Mathematics and its Applications. IMA University of Minnesota; 2009.

http://www.ima.umn.edu/2008
85. Boda D, Valisko M, Henderson D, Eisenberg B, Gillespie D, Nonner W. J Gen Physiol

2009;133:497. [PubMed: 19398776]
86. Boda D, Nonner W, Valisko M, Henderson D, Eisenberg B, Gillespie D. Biophys J 2007;93:1960.

[PubMed: 17526571]
87. Miedema H, Meter-Arkema A, Wierenga J, Tang J, Eisenberg B, Nonner W, Hektor H, Gillespie

D, Meijberg W. Biophys J 2004;87:3137. [PubMed: 15326033]
88. Vrouenraets M, Wierenga J, Meijberg W, Miedema H. Biophys J 2006;90:1202. [PubMed:

16299071]
89. Gillespie D, Xu L, Wang Y, Meissner G. Journal of Physical Chemistry 2005;109:15598.

[PubMed: 16852978]
90. Gillespie D. Biophys J 2008;94:1169. [PubMed: 17951303]
91. Rowlinson, JS. The Perfect Gas. Macmillan; New York: 1963.
92. Cohen, ER.; Cvitas, T.; Frey, J.; Holmstrom, B.; Kuchitsu, K.; Marquardt, R.; Mills, I.; Pavese, F.;

Quack, M.; Stohner, J.; Strauss, HL.; Takami, M.; Thor, AJ. Quantities, Units and Symbols in
Physical Chemistry. 3. Royal Society of Chemistry Publishing; Cambridge, UK: 2007.

93. Heras JA. American journal of physics 2008;76:101.
94. Nonner W, Peyser A, Gillespie D, Eisenberg B. Biophys J 2004;87:3716. [PubMed: 15465857]
95. Gelfand, IM.; Fromin, SV. Calculus of Variations. Dover; New York: 1963.
96. Finlayson, BA. The method of weighted residuals and variational principles: with application in

fluid mechanics, heat and mass transfer. Academic Press; New York: 1972.
97. Roger, GlM; Durand-Vidal, S.; Bernard, O.; Turq, P. The Journal of Physical Chemistry B

2009;113:8670. [PubMed: 19485401]
98. Dufreche JF, Bernard O, Turq P, Mukherjee A, Bagchi B. Phys Rev Lett 2002;88:095902.

[PubMed: 11864029]
99. Durand-Vidal S, Turq P, Bernard O, Treiner C, Blum L. Physica A 1996;231:123.
100. DeGroot, SR.; Mazur, P. Non-Equilibrium Thermodynamics. North-Holland Publishing Co;

Amsterdam: 1962.
101. Katchalsky, A.; Curran, PF. Nonequilibrium Thermodynamics. Harvard; Cambridge, MA: 1965.
102. DeGroot, SR. Thermodynamics of Irreversible Processes. North-Holland; Amsterdam: 1961.
103. Taylor, R.; Krishna, R. Multicomponent Mass Transfer. Wiley; New York: 1993.
104. Engl, HW.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems. Kluwer; Dordrecht,

The Netherlands: 2000.
105. Kaipio, J.; Somersalo, E. Statistical and Computational Inverse Problems. Springer; New York:

2005.
106. Kevorkian, J.; Cole, JD. Multiple Scale and Singular Perturbation Methods. Springer-Verlag;

New York: 1996.
107. Eisenberg RS. Journal of Membrane Biology 1990;115:1. [PubMed: 1692343]
108. Varma S, Sabo D, Rempe SB. J Mol Biol 2008;376:13. [PubMed: 18155244]
109. Roux B. Biophys J 2010;98:2877. [PubMed: 20550900]
110. Bostick DL, Brooks CL 3rd. Biophys J 2009;96:4470. [PubMed: 19486671]

Eisenberg Page 27

J Phys Chem C Nanomater Interfaces. Author manuscript; available in PMC 2011 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ima.umn.edu/2008


111. Nonner W, Chen DP, Eisenberg B. Biophysical Journal 1998;74:2327. [PubMed: 9591660]
112. Wang Y, Xu L, Pasek D, Gillespie D, Meissner G. Biophysical Journal 2005;89:256. [PubMed:

15863483]
113. Allen TW, Kuyucak S, Chung SH. Biophys J 1999;77:2502. [PubMed: 10545352]
114. Corry B, Kuyucak S, Chung SH. J Gen Physiol 1999;114:597. [PubMed: 10577026]
115. Corry B, Chung SH. European Biophysics Journal 2005;34:208. [PubMed: 15536565]
116. Boda D, Nonner W, Henderson D, Eisenberg B, Gillespie D. Biophys J 2008;94:3486. [PubMed:

18199663]
117. Berg JM. J Biol Chem 1990;265:6513. [PubMed: 2108957]
118. Shi Y, Berg JM. Chem Biol 1995;2:83. [PubMed: 9383408]
119. Rosenfeld, Y. Geometrically based density-functional theory for confined fluids of asymmetric

(“complex”) molecules. In: Laird, BB.; Ross, RB.; Ziegler, T., editors. Chemical Applications of
Density-Functional Theory. Vol. 629. American Chemical Society; Washington, D.C: 1996. p.
198

120. Evans, R. Density Functionals in the Theory of Nonuniform Fluids. In: Henderson, D., editor.
Fundamentals of Inhomogeneous Fluids. Marcel Dekker; New York: 1992. p. 606

121. Goulding D, Melchionna S, Hansen JP. Phys Chem Chem Physics 2001;3:1644.
122. Gillespie D, Nonner W, Eisenberg RS. Physical Review E 2003;68:0313503.
123. Roth R. Journal of Physics: Condensed Matter 2010;22:063102.
124. Fritsch N, Pouquet O, Roux B, Abdelmoumen Y, Janvier G. Ann Fr Anesth Reanim 2010;29:45.

[PubMed: 20080378]
125. Roux B, Yu H. J Chem Phys 2010;132:234101. [PubMed: 20572683]
126. Roux B. J Gen Physiol 2010;135:547. [PubMed: 20513755]
127. Egwolf B, Luo Y, Walters DE, Roux B. J Phys Chem B 2010;114:2901. [PubMed: 20146515]
128. Chakrapani S, Sompornpisut P, Intharathep P, Roux B, Perozo E. Proc Natl Acad Sci U S A.

2010
129. Gillespie D, Valisko M, Boda D. Journal of Physics: Condensed Matter 2005;17:6609.
130. Fuoss RM, Onsager L. Proc Natl Acad Sci U S A 1955;41:274. [PubMed: 16589664]

Eisenberg Page 28

J Phys Chem C Nanomater Interfaces. Author manuscript; available in PMC 2011 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Eisenberg Page 29

Table 1

Computational Scale Biological Scale Ratio

Time 10−16 sec
Vibrations of Bonds

10−5 sec
Action Potential

1011

Space 10−11 m
Side Chains of Protein

10−4 m
Large Cell

107

Volume 1021

Spatial Resolution 109

Solute Concentration 10−11 to 2×101 M 1012

Scaling restrictions implied by the long range electric field are not clear because the accuracy of the Ewald sum treatment of periodic boundary
conditions is not clear. See text.
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