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Coarse-grained (CG) modeling approaches arewidely used to simu-
late many important biological processes involving DNA, including
chromatin folding and genomic packaging. The bending propensity
of a semiflexible DNA molecule critically influences these pro-
cesses. However, existing CG DNAmodels do not retain a sufficient
fidelity of the important local chainmotions, whose propagation at
larger length scales would generate correct DNA persistent
lengths, in particular when the solution’s ionic strength is widely
varied. Here we report on a development of an accurate CG model
for the double-stranded DNA chain, with explicit treatment of
mobile ions, derived systematically from all-atom molecular
dynamics simulations. Our model generates complex local motions
of the DNA chain, similar to fully atomistic dynamics, leading also
to a quantitative agreement of our simulation results with the
experimental data on the dependence of the DNA persistence
length on the solution ionic strength. We also predict a structural
transition in a torsionally stressed DNA nanocircle as the buffer
ionic strength is increased beyond a threshold value.

molecular simulations ∣ polymer chain ∣ one-step renormalization ∣
chemical coarse graining ∣ explicit ion electrostatics

To successfully model many biological processes involving
DNA, atomistic or coarse-grained (CG) DNA force fields

should reproduce the bending rigidity of a semiflexible DNA
chain, which is a large-scale polymer property of critical signifi-
cance (1, 2). In particular, the response of the DNA persistence
length to the change in the surrounding ionic environment is of
major biological importance. For example, even a slight change
in the persistence length of a linker DNA segment connecting
adjacent nucleosomes in the chromatin fiber, induced by the var-
iation of the ionic strength of the solution, may result in signifi-
cant conformational changes of a chromatin in a compact state
(3). Current structure-based DNA models (4, 5) do not generate
DNA persistence length values that are fully consistent with those
measured experimentally in a wide range of ionic concentrations,
c ∼ ½0.1–100� mM (6–8). These and other DNA models differ in
resolution in terms of representing both the DNA structure and
also the surrounding ionic environment.

The discrete nature of mobile ions and spatial correlations
among them may significantly affect structure, dynamics, and the
electrostatic atmosphere of many biomolecules, such as DNA
and RNA (9–15). Thus, explicit inclusion of the monovalent
mobile ions into the CG model of DNA is desirable from the
physical standpoint. Another vital aspect of DNA modeling is
a choice of the parametrization protocol. Many prior one-bead
DNA models were based on use of the phenomenological worm-
like chain Hamiltonian (16, 17). In more detailed structure-based
models, parameters are often derived by combining the statistical
information from the available crystal structures with some
specific experimental data (4). However, this parametrization
approach, which is focused on matching a small number of
integral experimental characteristics (for example, the melting
temperature or free energies of denaturation), does not guaran-
tee the fidelity of specific local motions. On the other hand, large-
scale polymer chain behavior is generated by propagation in the
scale of local motions.

In our recent works on modeling double-stranded DNA, we
used a different strategy of parameterizing a DNA potential,
on the basis of coarse graining of high-resolution all-atom (AA)
force field, in particular, using refined AMBER Parmbsc0 para-
meters for nucleic acids (18). A similar technique was applied
to coarse-grain electrolyte solutions, where recently developed
AMBER 10 ionic parameters were used (19). This method, which
we called molecular renormalization group coarse graining
(MRG-CG), is based on simultaneously matching the moments
of all physical “observables” that enter the CG Hamiltonian,
between the CG and AA systems. Each of these observables is
associated with a specific type of CG effective interaction, such
as DNA bond or bending angle potentials. In this approach, the
transition from the detailed AA to simplified CG representation
is seen as a one-step renormalization, which is further elaborated
in Materials and Methods.

In the present work we merge our prior models for the double-
stranded DNA and NaCl bulk solution, derived systematically
from atomistic AMBER10 molecular dynamics (MD) simula-
tions with the MRG-CG technique. Our goal is to accurately
capture the local dynamics of both the DNA and mobile ions,
including coupling between DNA motions and the ionic environ-
ment fluctuations. The model of the two-bead DNA chain sur-
rounded by Naþ and Cl− ions is depicted in Fig. 1. Although it
is structurally similar to our previous DNA model (18), where
electrostatic interactions were treated implicitly, by using simpli-
fied mean-field theory, here the force-field parameters need
to be rederived because mobile ions are explicitly present. The
procedure for estimating the initial parameters for all types
of effective interactions, including structural DNA constraints,
interionic interactions, and the interactions between DNA beads
and mobile ions, is outlined in Materials and Methods. All trial
interaction parameters were then subject to optimization with
the MRG-CG technique. In contrast to many other CG models
of DNA, where generic polymer chain Hamiltonians are used,
our model is designed to reproduce complex, anharmonic
motions of DNA, which emerge as a result of DNA’s chemical
fine structural details. Hence, our Hamiltonian represents many
important aspects of DNA’s stereochemical dynamics, albeit
some other chemical details are omitted because of the particular
resolution of two beads per base pair.

The quality of the CG model derived with the MRG-CG
scheme is determined by the extent of equivalence between
AA and CG partition functions, as determined by the matching
between various moments of physical observables that enter the
CG Hamiltonian (18, 19). In this and prior works, we required
similarity of the first moments, which formally corresponds to
the optimization problem being addressed on the mean-field
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level. However, as elaborated in the SI Appendix, the technique
works beyond mean-field for “elementary” order parameters,
such as bond lengths and angles, as evidenced by matching even
rare fluctuations in these variables (see Fig. 2 below). In addition
to evaluating the numerical differences between these averages
obtained from AA and CG simulations (see the SI Appendix),
the quality of the CG model may also be visualized by comparing
various structural distribution functions generated for both CG

and AA systems. The comparison among some of the DNA
structural distributions is illustrated in Fig. 2, demonstrating how
iterative adjustment of the Hamiltonian parameters with the
MRG-CG technique results in a self-consistent widening of all
initial distributions, morphing them into the desired atomistic
results. In particular, the final CG distributions accurately follow
the asymmetric shapes of the corresponding atomistic curves. In-
terestingly, structural DNA distributions that were not associated
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Fig. 1. Our CG model for the DNA chain in the NaCl salt
buffer is shown. Each DNA base pair is represented by two
beads, each placed in the geometric center of the corre-
sponding atomistic nucleotide. Blue dashed lines indicate
the fan interactions, which represent a superposition of
stacking and base pairing among two polynucleotides.
Labels on beads indicate that fan interactions are between
a given bead i located on one DNA strand and a number of
beads [ðN � 0…5Þ − i] located on the other strand. N is the
total number of particles. There are 11 fan interactions
imposed on each CG bead.
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Fig. 2. Semilog plots for some of the DNA structural distributions: (A) bending angle; (B–F) several of the fan constraints (notations are explained in the
caption of Fig. 1); (G–I) some of the intrastrand distances (1–8, 1–9, and 1–10 stacking interactions) between DNA particles separated by seven, eight,
and nine nucleotides, respectively. Solid black (reference AA), red dotted (initial CG), and blue dashed lines (MRG-CG optimized) structural distributions were
obtained from the corresponding simulations. Additionally, wider distributions that have been generated by uniformly rescaling the optimized CG Hamilto-
nian by 0.7 are shown as green dash-dotted lines (see the text). Note that there are no physical constraints imposed on the DNA chain that correspond to
stacking interactions; i.e., they do not enter into the CG force field. However, the last three panels indicate that these (and other) structural distributions are still
reasonably well-reproduced.
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with any physical observables defining our CG Hamiltonian,
thus, not optimized or biased in any way, turned out to be also
well-reproduced (Fig. 2G–I). These agreements indicate that our
DNA Hamiltonian, elaborated in Materials and Methods, is com-
posed of observables that form a nearly complete basis set.

Analogous comparison for the interionic radial distribution
functions (RDFs) also revealed a good agreement among Naþ
and Cl− distributions in AA and CG systems (see Fig. 1 in the
SI Appendix). The DNA-bead–mobile-ion interactions were de-
rived from a separate series of AA MD simulations of a system
composed of a number of unconnected DNA backbone “mono-
mers,” sodium dimethyl phosphate, and sodium chloride buffers
(20). Interestingly, when those trial interaction potentials were
used in the current model of DNA chain and NaCl salt, the gen-
erated DNA-bead–ion RDFs appeared to be very plausible and
close to the atomistic results (see Fig. 3 A and B). However,
subsequent parameter optimization with MRG-CG technique
allowed achievement of even higher quality of these distributions.

Two-body distributions shown in Fig. 3 A and B do not fully
represent all aspects of the ionic atmosphere around DNA.
Indeed, the tails of distributions shown in Fig. 3 A and B have
contributions from two dissimilar sources: (i) the ions located
far away from the DNA chain and (ii) the ions located in DNA
proximity but far away from a particular DNA bead. Because the
modulation of DNA dynamics by surrounding mobile ions is
important, we explored finer details of ionic atmosphere around
DNA by computing three-point correlation functions for ions
with respect to two different beads of DNA chain. Such distribu-
tions for Naþ ions are shown in Fig. 3 C–E. They demonstrate
that spatial correlations of the counterion atmosphere around
DNA are well-reproduced in the CG system.

Having found close agreement among a multitude of CG and
AA structural distributions, we investigated the dependence of
DNA persistence length on the ionic strength of the solution.
The central results of this study are presented in Fig. 4. It turned
out that DNA persistence lengths generated by optimized Hamil-
tonian parameters were systematically larger than the corre-
sponding experimental values (see Inset in Fig. 4A), producing
a stiffer DNA at physiological conditions with a persistence
length of lp ∼ 75 nm. However, the success of the MRG-CG pro-
cedure is determined not by directly matching to experimental
data but by fiducially reproducing the underlying reference
atomistic Hamiltonian. Interestingly, Mazur used an independent
technique based on elasticity theory to estimate persistence
lengths of various DNA segments with alternating AT and GC
sequences, finding values between 75 and 80 nm by using atomis-
tic AMBER simulations (21). Hence, we found not only a close
agreement between the CG structural distributions to those mea-
sured in the AA system, but also large-scale polymeric properties
are accurately reproduced. Furthermore, a uniform rescaling of
MD simulation results by a factor of ∼0.7 led to nearly exact
agreement with the experimental data (see Inset in Fig. 4A),
showing that the experimental trend is also well-reproduced.

However, in practical applications, such as modeling chroma-
tin folding or genome packaging, it is desirable to have a struc-
ture-based DNA model that produces persistent lengths in nearly
absolute agreement with the experiment. One such possibility is
to soften the AMBER Parmbsc0 force field, which might require
significant effort, and, subsequently, reoptimize the CG Hamilto-
nian. It is likely that tenths of kBT per monomer error in the
atomistic force field could propagate in scale, resulting in several
tens of nanometers error in persistence length. Up to this step our
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B

Fig. 3. Distributions of mobile ions around DNA are plotted. The Upper panels show one-dimensional RDFs for Naþ (A) and Cl− (B) ions around a single DNA
bead (main panels) and the whole DNA chain (Insets); line coloring is the same as in Fig. 2. (C–E) The Lower panels show two-dimensional RDFs for Naþ ions
defined by two distances between the mobile ion and two different beads of DNA; it is seen that agreement with the reference AA distribution is improved
after the MRG-CG optimization (see the text).
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CG force field was derived from the atomistic dynamics; however,
the previous discussion motivates a physically plausible calibra-
tion on the basis of one experimental data point. Hence, we chose
a simpler alternative strategy of uniformly rescaling all CG DNA
structural parameters by 0.7, leaving the rest of the CG force
field unchanged. Fig. 2 shows that such rescaling affected mostly
the “fan” DNA distributions, making them slightly wider (i.e.,
increasing local fluctuations) but preserving the main features
of atomistic results, such as asymmetric shapes of the curves.
Using this new CG force field, we recomputed DNA persistence
lengths for a wide range of NaCl concentrations, c ∼ ½0.1–
100� mM. These results agree well with experimental estimates
without any further adjustment, as shown in Fig. 4B. It has to
be noted that different experimental techniques lead to a notice-
able scatter of DNA’s persistent length estimates, most likely
because of systematic errors and model-dependent interpretation
of raw data. Hence, our computational results agree with experi-
ments within the experimental error.

We further tested our CG model on yet another important
class of systems, where a delicate balance between elastic and
electrostatic interactions determines the chain’s structural beha-
vior. Particularly, we have built and simulated a 90-base-pair
nanocircular DNA, overtwisted by one helical turn (see Fig. 5A),
to investigate whether such torsionally stressed DNA chain will
undergo a structural transition upon changing the NaCl concen-
trations in the c ∼ ½0.1–500� mM range. The importance of
studying the topologically constrained DNA chains subject to
torsional stress has been recently pointed out in the literature
(22, 23). For example, it was experimentally shown that DNA
supercoiling may inhibit the process of nucleosomal assembly
(22). A recent computational work suggested that supercoiling
of torsionally stressed DNA nanocircles depends strongly on
the salt concentration, because intrachain electrostatic repulsion
opposes elastically induced buckling (23). It should be noted, how-
ever, that because of very large system sizes used in explicit solvent
atomistic simulations, the systems corresponding to the current
work were studied for only 5 ns, which is less than sodium ion
equilibration time around DNA, over 50 ns (10, 14). In addition,
only a single Naþ concentration was investigated, corresponding
to the DNA neutralization condition, with no additional salt.
On the other hand, the DNA model developed in this work is
well suited for interrogating the role of explicit mobile ions in
modulating the DNA circle’s structural behavior as the salt
concentration is broadly varied. Sufficiently long equilibration
times, around 500 ns for each simulation, allows achievement

of equilibration and prediction of the corresponding phase
diagram.

Next, we introduce a structural order parameterQ that charac-
terizes DNA circle’s supercoiling (see Materials and Methods
for its definition). The resulting dependence of Q on the ionic
strength is shown in Fig. 5B. Our CG model predicts that a
sharp phase transition occurs from a planar circular DNA to a
strongly buckled DNA conformation with the transition midpoint
located within a narrow physiological range of salt concentrations,
c ∼ ½50–200� mM (see Fig. 5B). Our predictions cannot be directly
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Fig. 4. Dependence of the DNA persistence length on the ionic strength of the solution are shown for various CGmodels. The main panel (A) shows the actual
dependence produced by MRG-CG optimization of the AA AMBER Parmbcs0 force-field for the DNA (34) and the latest AMBER10 ionic parameters (35); this
plot corresponds to the blue dashed DNA distributions of Fig. 2. The Inset of A is derived by a uniform rescaling of a red curve in the main panel by a factor of
0.7. (B) Response of the DNA persistence length to the change in ionic concentration generated by a CG Hamiltonian, which is uniformly scaled by a factor of
0.7, is shown; this plot corresponds to the green dash-dotted DNA distributions of Fig. 2. Experimental values are taken from ref. 6 (solid squares) and ref. 7
(open square). An additional set of experimental points (blue circles) derived by Baumann et al. (8) for a smaller range of ionic concentrations, c ∼ ½2–100� mM,
is shown in the Inset. Persistence lengths were calculated as elaborated in Materials and Methods. The error bars represent standard deviations.
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Fig. 5. Phase behavior of the overtwisted 90-base-pair circular DNA chain in
explicit NaCl salt. (A) Steps of the initial structure preparation are shown.
(B) The degree of the superhelical twisting at various NaCl concentrations is
characterized by the structural order parameter Q. See Materials and
Methods for details. Our CG model predicts a pronounced phase transition
at physiological conditions, c ∼ ½50–200� mM.
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compared to the analogous AA simulations of the 90-base-pair
DNA nanocircle investigated in ref. 23, because of the reasons
outlined above. Nevertheless, Harris et al. found circle bending
for dðGCÞ90 and dðATÞ90, at approximately 140 mM of Naþ coun-
terion concentration (no Cl− coions were present). Their results
are qualitatively consistent with the behavior of the DNA chain
in the very beginning of our simulation at an equivalent salt con-
centration. However, we find that the DNA nanocircle buckles
on longer time scales. On the other hand, it should be noted that
the nanocircle becomes nearly planar in our CG simulations
already at half of the concentration used in ref. 23, c ∼ 70 mM
(see Fig. 5B). In light of significant differences between the
corresponding simulation box sizes, ionic conditions, and time
scales, these comparisons suggest that our simulation results
might be broadly consistent with the fully atomistic models with
explicit ions and water.

In summary, we applied the MRG-CG method to develop a
two-bead model of DNA with explicit mobile ions. This DNA
model, derived by matching molecular correlation functions with
atomistic results and uniformly scaled, generates realistic local
atomistic motions and, simultaneously, accurately reproduces
the large-scale chain dynamics. In particular, quantitative agree-
ment was found with the experimental data on the dependence of
DNA persistence length on the solution ionic strength. In addi-
tion, we used our model to predict the structural transition of a
DNA nanocircle consisting of 90 base pairs as the salt concentra-
tion is varied. Overall, the CG DNA model developed in this
work may be directly used in various biomolecular simulations,
when accessing large length and time scales is desirable, for
example, to represent linker DNA in chromatin-folding simula-
tions or to study genome packaging in viruses.

Materials and Methods
Foundation of MRG-CG Method. There are a number of recognized coarse-
graining strategies used to simulate many important biological processes
(24–29). The optimization scheme used in this work closely follows the RG
Monte Carlo method by Swendsen to compute critical exponents in a
three-dimensional Ising model (30). This technique was later adapted by
Lyubartsev and Laaksonen to simulate several molecular systems with simple
pairwise interactions (31). Recently, we generalized the method (18, 19) by
extending its applicability to complex systems, such as polymers, which are
characterized by more sophisticated interactions (e.g., three-body bending
angle interactions). The MRG-CG scheme relies on representing an effective
Hamiltonian as a linear combination of N relevant dynamical observables,
H ¼ ∑N

α¼1 KαSα, whose (various order) correlation functions hSα…Sβi need
to be reproduced in the CG system. Hence, a “conjugate field” Kα is
prescribed to each observable, playing the role of a Hamiltonian force con-
stant, whose numerical value has to be adjusted appropriately to generate
the desired system dynamics. Because of Hamiltonian linearity, it is possible to
establish a mathematical connection between these conjugate fields and
expectation values of dynamical observables in terms of the covariance
matrix of all observables:

ΔhSαi ¼ −1∕ðkBTÞ∑
γ

½hSαSγi − hSαihSγi�ΔKγ ; [1]

where ΔhSαi≡ hSαiCG − hSαiAA is the difference between the expectation
values of an observable, Sα, averaged over CG and AA systems and the
ΔKγs are corrections to trial CG Hamiltonian parameters fKð0Þ

α g. A similar-
in-spirit formalism was used by Matysiak and Clementi to match protein free
energy changes upon single point mutations with experimental measure-
ments (32). A set of linear equations (Eq. 1) is solved at each CG iteration until
the convergence is reached for all observables: ΔhSαi ≈ 0, α ¼ 1…N. In this
way, the process of parameter adjustment explicitly accounts for cross-corre-
lations among various CG degrees of freedom—a key ingredient that is
responsible for high fidelity of the local CG dynamics. For example, as we
iteratively adjust Hamiltonian parameters for the DNA bending angle poten-
tial, we use the information of what impact that adjustment would have on
all other CG structural degrees of freedom (for example, bond or stacking
dynamical variables).

In a recent work (18), we interpreted the MRG-CG optimization technique
in light of the field theory (33). Namely, Hamiltonian linearity allows us to
interpret the CG partition function

ZðfKgÞ ∝ ∑ exp
�
−1∕ðkBTÞ∑

N

α¼1

KαSα

�

as a generating functional, whose differentiation with respect to conjugate
fields yields the corresponding auto- and cross-correlation functions of
physical observables:

hS1…Sni ∝
δn lnZ

δK1…δKn
: [2]

Because the optimization is aimed at matching these various order correla-
tion functions in AA and CG systems, the whole procedure is reminiscent of
the central idea of RG theory. Indeed, matching the correlation functions of
relevant physical observables ensures a significant equivalence of (restricted)
AA and CG partition functions, by matching various order derivatives of the
free energy. Additionally, an association with RG theory is strengthened by
thinking of the parameter adjustment as a “flow” in space of Hamiltonians,
spanned by a set of conjugate fields fKαg coupled to the corresponding
observables.

It follows from the last equation that theMRG-CGmethod can be straight-
forwardly generalized by demanding to reproduce not only average values
but also higher-order correlation functions of observables. Particularly, if
AA and CG partition functions generate identical sets of correlation functions
of theordern and less, then the value ofnmaybe seenas aquantitative “mea-
sure”of similarity between two systems. For example, in the case ofn ¼ 2 a set
of linear equations 1will be supplemented by NðN − 1Þ∕2 additional (and still
linear) equations aimed at matching second-order correlators ΔhSαSγi ≈ 0.

CG Model. The model for DNA in the current study is structurally analogous
to the model developed in our prior related work. The effective Hamiltonian
for the double-stranded DNA is the following:

H ¼ Ubond þUang þUfan þUel; [3]

with the first two terms describing bond and bending angle potential ener-
gies (intrastrand interactions), and the third and the last terms representing
interstrand (fan interactions; see Fig. 1) and Coulomb interactions, respec-
tively. Functional forms for individual energetic contributions have been
chosen to be quartic polynomials

Ubond;fan ¼ ∑
4

α¼2

Kαðl − l0Þα; Uang ¼ ∑
4

α¼2

Kαðθ − θ0Þα; [4]

to account for the asymmetric shape of DNA structural fluctuations (see
Fig. 2). Here, l0 and θ0 are equilibrium interparticle separations for bond
and fan interactions and the equilibrium angle for bending angle potential,
respectively. These equilibrium interparticle separations, as well as the trial
coefficients fKð0Þ

α g, were extracted from the fit of the above polynomials to
the corresponding potentials of mean forces obtained from AA MD simu-
lations.

Interionic interaction potentials were taken from our prior work on coarse
graining a bulk NaCl solution (19). Particularly, this part of CG Hamiltonian
has the following functional form:

H ¼ ∑
i>j

�
A
r12ij

þ∑
5

k¼1

BðkÞe−CðkÞ ½rij−RðkÞ�2 þ qiqj
4πε0εrij

�
; [5]

defined by the set of parameters fA;BðkÞ;CðkÞg and the positions of Gaussian
peaks and minima, fRðkÞg (five Gaussian functions were introduced to ac-
count for short-range hydration effects and to accurately reproduce atomis-
tic behavior of ions).

Finally, functional forms for interaction potentials among beads of
DNA and the ions were derived from a separate series of AA MD simulations
of a system comprised of unconnected DNA backbone monomers (sodium
dimethylphosphate) and NaCl salt buffer (20). The latter system was
chosen in an attempt to single out a “typical” DNA-bead–ion interaction
by suppressing correlation effects caused by DNA connectivity (effects from
neighboring DNA beads). These correlation effects were later accounted
for by adjusting Hamiltonian parameters with the MRG-CG technique (see
Fig. 3 A and B). The functional form for these types of effective interactions
is similar to interionic potentials, however, with softer excluded volume
interactions and a lesser number of Gaussian functions to describe hydration
effects:
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H ¼ ∑
i>j

�
A
r6ij
þ∑

3

k¼1

BðkÞe−CðkÞ½rij−RðkÞ �2 þ qiqj
4πε0εrij

�
: [6]

CG Hamiltonian as a Linear Combination of Dynamical Observables. It follows
from the structure of our CG Hamiltonian that the behavior of the system
is described by a small number of observables, which may also be seen as
structure-based collective order parameters. For example, according to poly-
nomials (Eq. 4), DNA bond potential energy is described by three collective
observables: Sbond1 ¼ ∑all bondsðl − l0Þ2, Sbond2 ¼ ∑all bondsðl − l0Þ3, and Sbond3 ¼
∑all bondsðl − l0Þ4. Analogously, collectivemodes characterizing ion–DNA inter-
actions (ionic “shells” around a DNA bead) are SGaussα ¼ ∑all pairs½e−Cαðr−RαÞ2 �,
α ¼ 1…3, whereas the corresponding parameters fKαg are given by the set
of constants fBðkÞg; see Eq. 6. As a result, DNA behavior is associated with
NDNA ¼ 39 of structural observables (bond, angle, and fan interactions)
coupled to the corresponding conjugate fields fKαg, whereas the dynamics
of the ionic atmosphere around DNA is described by a total of Nions ¼ 2 × 4 ¼
8 observables (four CG degrees of freedom per interaction of DNA with Naþ

and Cl−, respectively).

Calculation of the DNA Persistent Length. Persistence length lp was calculated
by using the well-known formula for the semiflexible polymers

huiuiþ1i ¼ expð−i · ā∕lpÞ; [7]

defining how a correlation function for tangent vectors decays with the chain
length (1). We have chosen the average length of the segment, ā, to be the
distance between DNA beads separated by 10 nucleotides.

Preparation and Structural Analysis of the Overtwisted Circular DNA. A 90-base-
pair circular DNA chain, overtwisted by one helical turn, was prepared as
shown in Fig. 5. The number of base pairs and the degree of the overtwisting
were chosen to reproduce one of the DNA nanocircles studied recently with
AAMD simulations in ref. 23. First, we imposed a homogeneous stress on the
linear and torsionally relaxed DNA chain (Fig. 5A), which corresponded to the
following excessive twisting angle per base pair:

Δϕ≡ ϕ − ϕ0 ¼ ð360°∕NbpÞΔLk: [8]

Here, ϕ0 and ϕ indicate the dihedral angle between consecutive base pairs in
the torsionally relaxed DNA chain (in AMBER Parmbcs0 force field ϕ0 ≈ 32°)
and in the overtwisted DNA chain, respectively. This difference can be
expressed in terms of the topological quantity known as the linking number,
Lk, which is the number of helical repeats within a DNA chain of Nbp base
pairs. The integer quantity ΔLk ≡ Lk0 − Lk describes the deviation from
the torsionally relaxed circular DNA and amounts to the degree of overtwist-
ing (if positive) or undertwisting (if negative). For our model of interest
the parameters in Eq. 8 were as follows: Nbp ¼ 90 and ΔLk ¼ 1 (overtwisting
by one helical turn), which resulted in Δϕ ¼ 4°. Subsequent bending of such
an overtwisted DNA chain into the closed circle led to the desired initial
structure (Fig. 5A).

To characterize structural rearrangements of the circular DNA as the
concentration of NaCl varied, we introduced the following order parameter:

Q ¼ ð1∕QmaxÞ∑
i>j

0 exp½−ðrij − dÞ2∕ð2σ2Þ�; [9]

which is reminiscent of the structural order parameters used for description
of proteins and spin glasses. The Gaussian functional form is parametrized
by the expectation value d for the distance rij between the DNA beads i
and j and the variance σ. The prime on the sum indicates that only pairs
of beads i and j separated along the chain by more than a certain number
of base pairs are considered. From the structural analysis of the average
buckled DNA conformations at high salt concentrations, we estimated these
parameters to be d ¼ 35 Å and σ ¼ 5 Å, and the separation between beads
along the chain was chosen to be 30 base pairs. This combination of para-
meters ensured a robust characterization of the structural DNA behavior.
For example, it resulted in the zeroth value ofQ at small ionic concentrations,
as indicated in Fig. 5B. Note, finally, that the order parameter was normalized
to unity by scaling with the maximum value Qmax attained at the highest
salt concentration.
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