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The systems controlling the number, size, and hemoglobin con-
centrations of populations of human red blood cells (RBCs), and
their dysregulation in anemia, are poorly understood. After release
from the bone marrow, RBCs undergo reduction in both volume
and total hemoglobin content by an unknown mechanism [Lew
VL, et al. (1995) Blood 86:334–341; Waugh RE, et al. (1992) Blood
79:1351–1358]; after ∼120 d, responding to an unknown trigger,
they are removed. We used theory from statistical physics and
data from the hospital clinical laboratory [d’Onofrio G, et al. (1995)
Blood 85:818–823] to develop a master equation model for RBC
maturation and clearance. The model accurately identifies patients
with anemia and distinguishes thalassemia-trait anemia from iron-
deficiency anemia. Strikingly, it also identifies many pre-anemic
patients several weeks before anemia becomes clinically detect-
able. More generally we illustrate how clinical laboratory data can
be used to develop and to test a dynamic model of human path-
ophysiology with potential clinical utility.
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In healthy human adults, ∼2.5 × 1011 new red blood cells
(RBCs) are released from the bone marrow into the peripheral

circulation per day, and about the same number are cleared. The
cells composing the circulating population are thus continuously
changing, but in healthy individuals (and patients with mild
disease) the characteristics of the population are very stable. In
the clinic, population characteristics such as the volume fraction
of cells in the blood (hematocrit), the average RBC volume
(MCV), the coefficient of variation in RBC volume (RDW), and
the mean intracellular hemoglobin mass (MCH) are routinely
measured in complete blood counts (CBCs) (1). Recently, it has
become possible to identify and characterize very young (hours
or days old) circulating RBCs (reticulocytes) (2). RBCs undergo
a rapid reduction in volume and hemoglobin in the few days after
release from the bone marrow (3). This rapid phase is followed
by a much longer period of slower reduction (4–7) during which
volume and hemoglobin are coregulated (8) (Fig. 1A). A com-
parison of the probability distributions of reticulocytes and of all
circulating RBCs (Fig. 1A) shows that the correlation between
volume and hemoglobin content increases as the cells mature,
from an initial correlation coefficient of ∼0.40 in the reticulocyte
population to ∼0.85 in the full population. Thus, whereas many
of the molecular mechanisms involved are unknown, it is clear
that the average RBC matures in such a way that its hemoglobin
concentration tends toward the population mean corpuscular
hemoglobin concentration (MCHC), shown as an iso-concentra-
tion line in Fig. 1 A and B: the variation in hemoglobin concen-
tration is lower than that for volume and hemoglobin content (8).

Results
The volume and hemoglobin regulation of an individual RBC in
vivo during the course of its lifetime is extremely complex and
difficult to understand. Understanding the average behavior of
a large population of RBCs may be more tractable. To gain in-
sight into this population-level behavior, we developed a model of
RBC maturation and clearance that describes the dynamics of an
RBC population. Our model applies only to the typical behavior

of RBCs in healthy individuals or those with mild anemia and
may not apply to RBCs in more severe disease or even to extreme
behavior of RBCs in healthy individuals. Our model decomposes
the volume (v) and hemoglobin (h) dynamics of an average RBC
over time (t) into deterministic reductions (f) and random fluc-
tuations (ζ) as shown in Eq. 1, where v and h are scaled by their
population means ð�v; �hÞ, and t is scaled by the average cell age ð�τÞ.
On the basis of data from prior reports (3–5, 7), we introduced
two parameters into the deterministic component: a fast change
(β), whose effect dominates until the RBC is close to the MCHC
line, and a slow change (α). The random fluctuation is modeled
as a Gaussian random variable with mean zero and variance
given by a diffusion tensor 2D, as shown in Fig. 1B and Eq. 1:"

dv
dt
dh
dt

#
¼ f þ ζ [1]

f ¼
�
α · eβvðv− hÞ

α · eβhðh− vÞ

ζ ¼
�

Nð0; 2DvÞ
Nð0; 2DhÞ:

As with inverse problems in general and human pathophysiology
in particular (9), this problem is ill posed in the sense that similar
in vivo dynamics can result from different functional forms of f.
We find that the precise functional form of f is less important to
the behavior of this model than the qualitative combination of fast
and slow deterministic dynamics and random fluctuations. See SI
Text (Functional Forms, Figs. S1–S4, and Table S1) for details.
In our model, the random fluctuation and deterministic dis-

sipation or reduction of volume and hemoglobin content for
a typical individual cell are described by a Langevin equation,
commonly used to model Brownian motion in a potential (10).
The dynamics of the entire circulating population of RBCs may
then be described by a master equation for the time-dependent
joint volume–hemoglobin probability distribution (Pðv; h; tÞ)
which can be approximated by a Fokker–Planck equation (10,
11). Eq. 2 describes the drift (f), diffusion (D), birth (b), and
death (d) of probability density for this joint volume–hemo-
globin distribution:

∂P
∂t

¼ −∇ ·
�
Pf

�þ ∇ ·
�
D ·∇P

�þ b
�
v; h; t

�
− d

�
v; h; t

�
P [2]
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D ¼
�
Dv 0
0 Dh

�
:

The birth and death processes account for the RBCs that are
constantly added to and removed from the population. In states
of health and mild illness, the total number of cells added equals
the total number removed:

Ð Ð
dðv; hÞP dv dh ¼ Ð Ð

bðv; hÞ dv dh.
The precise trigger and mechanism for RBC removal are not
fully understood (12), but empirical measurements such as those
shown in Fig. 1A suggest that there is a threshold (vc) along the
MCHC line beyond which most RBCs have been cleared. See
Clearance Function in Materials and Methods for details. CBC
measurements vary from person to person but do not change
significantly for a healthy individual (13), indicating that these
dynamic processes reach a steady state in vivo, P∞, where
lim
t→∞

Pðv; h; tÞ→P∞ðv; hÞ; i:e:; ∂P∞=∂t ¼ 0. See Movie S1 for an

example of a numerical solution to Eq. 2. With appropriate
choice of parameters (α, β, D, and vc), our model faithfully
reproduces the observed distribution of RBC populations in
healthy individuals. See Movie S2 for a comparison of a fitted
and an observed distribution.
To test whether the model can distinguish the dynamics of

RBC populations in healthy individuals from those in anemic
individuals, we obtained CBC and reticulocyte measurements
for individuals with three common forms of anemia with dif-
ferent underlying etiologies: anemia of chronic disease (ACD),
an inflammatory condition; thalassemia trait (TT), a genetic
disorder; and iron deficiency anemia (IDA), a nutritional con-
dition (14). We selected mild cases of each anemia where RBC
population characteristics appeared stable and a quasi-steady-
state assumption was reasonable; we also selected several ap-
parently healthy controls. See Blood Samples in Materials and
Methods for details on sample collection, data collection, and
diagnosis. For each patient sample, we identified an optimal
parameter set (α, β, D, and vc) that reproduces the steady state
observed for that patient. We used a least-squares fit between
the simulated steady-state distribution and the measured CBC
distribution to identify the best fit. Where repeat tests were
available for the same individual, we found that any variation in
fitted parameters was explained by analytic variation in the CBC
measurement. See Parameter Fits in Materials and Methods and
Movie S2 for details. Fitted parameters for healthy and anemic
individuals are shown in Fig. 2 and median fitted parameters are
listed in Table 1.
We find clear differences between the best-fit parameters

derived for healthy individuals and those with anemia, and we
also find that the different anemic conditions have different
characteristic parameter sets. For example, healthy individuals
and ACD patients have high βv and βh and low α; i.e., they lose
relatively more of their volume and hemoglobin during the fast
phase than they do during the slow phase. In contrast, patients
with TT and IDA lose relatively more volume and hemoglobin
during the slow phase than in the fast phase. Patients with ACD
show slightly elevated Dv and slightly reduced Dh relative to
healthy individuals, whereas TT is associated with a larger in-
crease in Dv along with a substantially reduced Dh. IDA patients
have a Dv similar to that of healthy individuals and show dra-
matic elevation in Dh with most individuals >10 times higher than
normal. The normalized critical volume, vc, in healthy individuals
and those with ACD is ≈80% of �v, or ∼72 fL. Most patients with
TT or IDA typically have a reduced �v and reduced �h. Fig. 2 shows
that in addition to absolute reductions in �v and �h, the vc for these
patients is further reduced and shows much greater variability
across different individuals.

Discussion
These parameters show that RBCs in patients with TT and
IDA remain in the periphery with much smaller volumes and
lower hemoglobin contents, in both absolute and relative
terms, than they would under normal conditions. Their per-
sistence may reflect a compensatory delay in clearance in re-
sponse to the less efficient erythropoiesis of these anemias.
Thus, mechanisms must exist that can alter the behavior of the
trigger for RBC clearance. Comparing RBC clearance in TT
and IDA with that of healthy individuals or ACD patients may
provide a route to identifying the trigger. The variation in vc is
much smaller than the variation in �v for healthy individuals
(14), suggesting that the trigger is highly correlated with po-
sition on the MCHC line.
Our model offers a potential way to identify patients with la-

tent or compensated IDA before it leads to clinical anemia, by
looking for signs of clearance delay. We tested this possibility in
an independent set of patients who had normal CBCs followed at
least 30 and no more than 90 d later by either another normal
CBC or clinical IDA. For each patient sample, we projected the
(v, h) coordinates of all cells onto the MCHC line and integrated
the probability density along this line below 85% of the mean

B

A

Fig. 1. Empirical measurement (A) and dynamic model (B) of coregulation
of volume and hemoglobin of an average RBC in the peripheral circulation.
The reticulocyte distribution is shown as blue iso-probability density con-
tours and the population of all RBCs as red. The diagonal line projecting to
the origin in A and B represents the average intracellular hemoglobin con-
centration (MCHC) in the population. An RBC located anywhere on this line
will have an intracellular hemoglobin concentration equal to the MCHC. Fast
dynamics (β) first reduce volume and hemoglobin for the typical large im-
mature reticulocytes shown in the upper right of A and B. Slow dynamics (α)
then reduce volume and hemoglobin along the MCHC line. Because bi-
ological processes are inherently noisy, we suggest that small random var-
iations during the events required for reduction of volume and hemoglobin
cause individual cellular hemoglobin concentrations to drift about the MCHC
line, fluctuating with magnitude (D) around the MCHC line as shown in the
Inset in B until reaching a critical volume (vc in B) when cells are removed.
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(P0.85). Fig. 3 A–C shows the evolution of one patient’s CBC
from normal to latent IDA and ultimately to IDA. The CBC
shown in Fig. 3B was clinically unremarkable, but the P0.85 was
abnormal, predicting anemia that did not come to medical at-
tention for 51 d. Fig. 3D shows values of P0.85 for 20 normal
CBCs from patients who remained healthy and 20 normal CBCs
from those who developed IDA between 30 and 90 d later. The
value of P0.85 predicted IDA with a sensitivity of 75% and
a specificity of 100%. See Predicting Iron Deficiency Anemia in
Materials and Methods for details. Common existing approaches
have a sensitivity of 0% because all CBCs were “normal.” This

model-based prediction relies on only a single CBC measure-
ment at one point in time, in contrast to statistical regression
approaches that often rely on the integration of multiple meas-
urements and types of information from different sources and
different time points (15). IDA is often the initial presentation in
serious conditions such as colon cancer (16) and childhood
malnutrition (17). Earlier detection of IDA via this method
would enable a faster response to such conditions. If a reduced vc
represents an adaptive physiologic response to offset the anemia,
then perhaps one would expect the normal vc seen here for
ACD, where the anemia itself may represent an adaptive phys-
iologic response (18).
Fig. 2 shows that Dh differentiates IDA and TT, the two most

common causes of microcytic anemia. TT is one of the most
commonly screened conditions in the world, but existing di-
agnostic methods either are too expensive or have unacceptably
low diagnostic accuracy, with false positive rates of up to 30%
(19, 20). Our model provides a possibly more accurate way to
distinguish these conditions. We first established a threshold
value for Dh of 0.0045 by analyzing 10 training samples. We then
analyzed 50 independent patient samples where diagnosis of
either mild IDA or TT could be confidently established and
calculated Dh. Fig. 4 shows that this Dh threshold had a di-
agnostic accuracy of 98%, correctly identifying 22/22 cases of
IDA and 27/28 cases of TT and outperforming other published
approaches by between 6% and 41% (20). See Diagnosis of
Microcytic Anemia in Materials and Methods for details.
Our mathematical model, although simple in concept, cap-

tures important features of the complex pathophysiology of
circulating RBCs and allows us to identify quantitative differ-
ences in the dynamics of health and disease, using readily avail-
able clinical measurements. This model also provides a useful
framework for thinking about the dynamical processes governing
physiological homeostasis and shows how an understanding of
these dynamics motivates diagnostic tests and generates patho-
physiological hypotheses.

Materials and Methods
Blood Samples. Blood samples and CBC results were obtained from the clinical
laboratory of a tertiary care adult hospital under a research protocol ap-
proved by the Partners Healthcare Institutional Review Board. Reticulocyte
and CBC measurements were made within 6 h of collection (21) on a Siemens
Advia 2120 automated hemanalyzer.

IDA was defined as mild reduction in hematocrit to no more than 20%
below the lower limit of normal, low MCV, low ferritin, and historical evi-
dence of normal MCV with normal hematocrit. Patients with acute illness,
acute bleeding, transfusion in the prior 6 mo, concurrent hospitalization,
chronic inflammatory illness, or hemoglobinopathy were excluded.

TT was defined as either a high hemoglobin A2 or heterozygosity for the
presence of an α-globin gene mutation, as well as a reduction in hematocrit
to no more than 20% below the lower limit of normal, low MCV, and normal
ferritin. Patients with acute illness, acute bleeding, transfusion in the prior
6 mo, concurrent hospitalization, chronic inflammatory illness, or additional
hemoglobinopathy were excluded.

ACD was defined as a reduction in hematocrit to no more than 20%
below the lower limit of normal, normal or high ferritin, and a low or normal
total iron binding capacity. Patients with acute illness, acute bleeding,
transfusion in the prior 6 mo, concurrent hospitalization, or hemoglobin-
opathy were excluded.
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Fig. 2. Boxplots of model parameters for 20 healthy individuals and
patients with three forms of mild anemia: 11 with anemia of chronic disease
(ACD), 33 with thalassemia trait (TT), and 27 with iron deficiency anemia
(IDA). The upper and lower edges of each box are located at the 75th and
25th percentiles. The median is indicated by a horizontal red line. Vertical
lines extend to data points whose distance from the box is <1.5 times the
interquartile distance. More extreme data points are shown as red plus (+)
symbols. The fast dynamics are characterized by β, the slow by α, random
fluctuations by D, and the clearance threshold by vc.

Table 1. Median values of nondimensional and dimensional fitted parameters (where appropriate)

Normal ACD TT IDA

βv 26 27 14 15
βh 16 15 5 12
α 0.05 (0.09 fL/d and 0.03 pg/d) 0.05 (0.09 fL/d and 0.03 pg/d) 0.13 (0.20 fL/d and 0.07 pg/d) 0.13 (0.20 fL/d and 0.07 pg/d)
Dv 0.014 (2.3 fL2/d) 0.015 (2.4 fL2/d) 0.017 (2.2 fL2/d) 0.013 (1.7 fL2/d)
Dh 0.0014 (0.025 pg2/d) 2.7 × 10−5 (4.9 × 10−4 pg2/d) 2.7 × 10−15 (3.6 × 10−14 pg2/d) 0.019 (0.34 pg2/d)
vc 0.80 (72 fL) 0.80 (72 fL) 0.74 (59 fL) 0.71 (56 fL)
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Clearance Function. On the basis of observations of empirical RBC dis-
tributions, we model probability of RBC clearance as a function of the RBC
volume and hemoglobin content. Each RBC’s position in the volume–
hemoglobin content plane is projected onto the MCHC line, and the prob-
ability of clearance (d) is defined as either a sigmoid or a step function of the

distance from this projected point to a threshold, vc, on this line (Figs. 1 and
5; Fig. S2). Eq. 3 quantifies this relationship:

dðv; hÞ ¼ 1
1þ eΔ

[3]

or

dðv; hÞ ¼
�
1 Δ≤ 0
0 Δ > 0

�

Δðv; hÞ ¼ 100 ·
cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv�vÞ2 þðh�hÞ2

q
− vc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2 þ �v2

p
vc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2 þ �v2

p

θ ¼ tan− 1
	�h
�v



− tan− 1

	
h�h
v�v



:

Description of Simulation and Explicit Numerical Solution. For a given set of
parameters, Eq. 2 was solved numerically using a finite difference approxi-
mation for first-order ðJ ¼ Δk ½f ·P�ðvÞ=k þ Δk ½f ·P ðhÞ=kÞ� and second-order
ðL ¼ Dvðδ2k ½P ðvÞ=k2Þ þ Dhðδ2k ½P ðhÞ=k2ÞÞ��

spatial derivatives with boundary
conditions of vanishing probability at volumes and hemoglobin contents
outside the pathophysiological range and initial conditions equal to the

Fig. 3. Contour plots (A–C) of CBCs for a patient developing IDA after 4 mo.
Each plot shows contours enclosing 35, 60, 75, and 85% of the probability
density. The dashed line from the origin represents the MCHC. The short solid
line perpendicular to the dashed line marks the position along the line cor-
responding to 85% of the mean projected cell. The circle shows the mean
projection. A shows a normal CBC measured 116 d before the patient’s pre-
sentation with iron deficiency anemia. The calculated P0.85 (red area) is nor-
mal. B shows the normal CBC measured 65 d later and 51 d before detection
of iron deficiency anemia. P0.85 is abnormal even though the CBC is normal. C
shows the CBC at the time IDA was diagnosed. D shows boxplots of P0.85 for
20 normal CBCs from patients with a second normal CBC within 90 d and 20
normal CBCs from patients who were diagnosed with IDA up to 90 d later.
P0.85 successfully predicts IDA up to 90 d earlier than is currently possible with
a sensitivity of 75% and a specificity of 100%. See main text and Predicting
Iron Deficiency Anemia in Materials and Methods for more detail.
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Fig. 4. Differentiating TT and IDA as causes of microcytic anemia. This
boxplot shows the distributions of Dh for 5 training cases with TT, 5 training
cases with IDA, 28 test cases with TT, and 22 test cases with IDA.

Fig. 5. Schematic of the projected distance (Δ) used to calculate the prob-
ability of clearance as described in Eq. 3. The cell is projected onto the MCHC
line, and the probability of clearance is a function of the distance from the
projected point to a threshold (vc) along this line.
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empirically measured reticulocyte distribution. The volume–hemoglobin
content plane was discretized with a constant mesh width and represented
as a vector (P) of variables equal to the probability density in each mesh cell.
Simulation results reported here were executed with a mesh width of 1.8 fL
along the volume axis and 1.8 pg along the hemoglobin content axis. This
mesh width was comparable to the analytic resolution of the empirical
volume and hemoglobin content measurements. All results were confirmed
using a smaller mesh width (1.2 fL and 1.2 pg). The convection contribution
(f) was modeled numerically using an upwind finite difference approxima-
tion of the spatial derivative. The resulting linear system of ordinary dif-
ferential equations was integrated using the MATLAB ode15s integrator and
iterated until a steady state (P∞) was reached.

The steady-state distribution for the numerical problem (P∞) was also de-
termined analytically by noting that the numerical approximations of the
evolution (J + L) and clearance (d) terms are linear operators and that the in-
tegral scaling thebirth process is a constant equal to the reciprocal of twice the

mean age ð1=2�τÞ. The linear operators can be inverted, yielding a family of
steady-state distributions indexed by the mean cell age, as show in Eq. 4:

dP∞

dt
¼ 0 ¼ − J ·P∞ þ L ·P∞ þ d ·P∞ þ P0

Ð
h

Ð
v dðv; hÞ

¼ ð− Jþ L þ dÞ ·P∞ þ P0
1
2�τ

⇒P∞ ¼ − ð− Jþ L þ dÞ− 1P0
1
2�τ

:
[4]

We found negligible differences between the steady-state distributions
obtained by each approach.

Parameter Fits. We identified optimal neighborhoods in parameter space for
each patient, using gradient and nongradient optimization methods. We
started with a patient’s empirically measured reticulocyte distribution and
an initial randomly chosen parameter set. We calculated the resulting
steady-state RBC distribution using Eq. 4. This calculated distribution (P∞)
was then compared with the empirical distribution (PCBC). The quality of the
parameter estimates was quantified by computing an objective function
equal to the sum of the normalized squared residuals for the discretized
distributions, as shown in Eq. 5, where i and j represent indices of cells in the
discretized volume–hemoglobin plane:

C
�
P i; j
CBC;P

i; j
∞


¼ ∑

i; j

�
P i; j

CBC −P i; j
∞
�2

P i; j
CBC

: [5]

Fig. 6. Comparison of fitted (red) and empirical (blue) steady-state joint
volume–hemoglobin content probability distributions for a healthy in-
dividual. (Upper) The view projected on a vertical plane through the MCHC
line (Fig. 1). (Lower) Ninety degree rotated view looking toward the origin.

β h 

D v 

v c 

α 

β v 

D h 

Fig. 7. Histograms of optimized parameter values from >200 separate
simulations and the goodness of fit as determined by a sum of squared
residuals objective function. Smaller values of the objective function signify
a better fit. All parameters have well-defined optimal neighborhoods. See
Eq. 5 for objective function.
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New parameter values were then chosen to reduce this objective function.
We used gradient-based (lsqnonlin function) and non-gradient-based
(fminsearch and patternsearch functions) optimization algorithms in MAT-
LAB to search for optimal parameters. We constrained all parameters to be
nonnegative and defined a uniform initial parameter space to exclude mean
cell ages >1,000 or <5 d. We then picked initial parameters from this space,
using latin hypersquare sampling. We imposed one optimization constraint,
limiting α to be small enough that the mean cell age would be >5 d and
large enough that the mean cell age would <1,000 d. Fig. 6 shows that the
model provides a faithful reproduction of PCBC for this healthy patient by
comparing the simulated and measured steady-state probability distribu-
tions. When projected along the MCHC line, the empirical distribution for
this patient has slightly higher density near the mode and slightly lower den-
sity in the regions to either side of the mode. See Movie S2 for more detail.

Fig. 7 shows the smallest local minima for parameters obtained from >200
optimizations for a single patient. Some results had local minima above the
range of the axes. The best fits among all simulations form a small neigh-
borhood of values for all parameters, demonstrating that the parameter es-
timation process reached a well-defined optimal neighborhood for this
patient’s blood sample.

Predicting Iron Deficiency Anemia. We tested the hypothesis that compen-
sated or latent IDA can be predicted up to 90 d earlier than is currently
possible on the basis of an expanding population of cells that project along
the MCHC line closer to the origin than the mean. The projection operation is
pictured in Fig. 5. We first determined the projected position (u) of each cell
with volume (v) and hemoglobin (h) along the MCHC line:

u ¼ v · cosθ− h · sinθ
θ ¼ − tan− 1��h

�v

�
:

We then calculated the fraction of projected cells located between the origin
and 85% of �u, where fMCHC is the probability density of the projected cells as
a function of location on the MCHC line:

P0:85 ¼
ð0:85·�u

fMCHCðuÞdu:
0

The 85% threshold was chosen by comparing the discrimination efficiency
of different thresholds for the steady-state CBCs used in Fig. 2. The 85%
threshold shown in Fig. 8 provided the greatest separation when compared
with other thresholds (70, 75, 80 90, and 100%). We selected a threshold
value for P0.85 of 0.121 on the basis of this training set.

We then identified 40 new and independent patient CBCs, all of which were
normal. Twenty of these normal CBCs came from individuals who had addi-
tional normal CBCs 30–90 d later, and 20 of these normal CBCs came from
individuals who presented with IDA no more than 90 d later. Patients with
acute bleeding or any iron supplementation between the two CBCs were ex-
cluded. See Blood Samples in this section for definition of IDA. Fig. 3 shows
that the threshold of 0.121 for P0.85 is able to predict IDA with a sensitivity of
75% and a specificity of 100% in this independent test group.

Diagnosis of Microcytic Anemia. To assess the diagnostic accuracy of Dh in dif-
ferentiating the two most common causes of microcytic anemia, we fit param-
eters for 10 training cases: 5with IDAand5with TT, as shown in Fig. 4. SeeBlood
Samples for case definitions. The TT training set hadDh ranging from1.7× 10−15

to 2.3 × 10−15. The IDA training set had Dh ranging from 0.009 to 0.043. We
picked a threshold value equal to 0.0045, the average of the lowest Dh among
the IDA training set and thehighest of the TT training set.We then identified50
new and independent cases, 22 with IDA and 28 with TT. All 22 IDA cases were
correctly classified, and 27/28 TT cases were correctly classified for an overall
diagnostic accuracy of 98%.We find this accuracy to be superior to that of four
commonly citeddiscriminant functions (20): TheGreenandKing formulayielded
an accuracy of 92%;Micro/Hypo, 84%; Mentzer, 68%; and England and Fraser,
57%. See ref. 20 for further details on these other discriminant functions.
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Fig. 8. Identifying a threshold for latent IDA. This boxplot shows the dis-
tributions of P0.85 for the steady-state healthy and IDA patients shown in
Fig. 2. On the basis of these results, we picked a threshold value for P0.85 of
0.121 to use in a test of an independent set of patients shown in Fig. 3.
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