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Abstract
Magnetic resonance imaging (MRI) is a sophisticated and versatile medical imaging modality.
Traditionally, MR images are reconstructed from the raw measurements by a simple inverse 2D or
3D fast Fourier transform (FFT). However, there are a growing number of MRI applications where
a simple inverse FFT is inadequate, e.g., due to non-Cartesian sampling patterns, non-Fourier
physical effects, nonlinear magnetic fields, or deliberate under-sampling to reduce scan times.
Such considerations have led to increasing interest in methods for model-based image
reconstruction in MRI.

1. INTRODUCTION
The inverse fast Fourier transform (FFT) has served the MR community very well as the
conventional image reconstruction method for k-space data with full Cartesian sampling.
And for well sampled non-Cartesian data, the gridding method [1] with appropriate density
compensation factors [2] is fast and effective. But when only under-sampled data is
available, or when non-Fourier physical effects like field inhomogeneity are important, then
gridding/FFT methods for image reconstruction are suboptimal, and iterative algorithms
based on appropriate models can improve image quality, at the price of increased
computation. This paper reviews the use of iterative algorithms for model-based MR image
reconstruction. The references give pointers to some recent work but are by no means a
comprehensive survey★.

2. MRI BACKGROUND
Any signal processing method aimed at forming images from measurement devices such as
MRI scanners must consider the relevant physics. A survey in this magazine [3] and a book
written from a signal processing perspective [4] have described MRI physics well. Here we
review the physics in a somewhat unconventional way that facilitates describing some of the
“non-Fourier” aspects of MRI.

2.1. MRI physics
Standard MRI scanners use a large static magnetic field

(1)

to induce a net magnetization M ⃗ = Mxi⃗ + My j⃗+ Mz k⃗ at each point in space in the body
being imaged, where i⃗, j⃗, k⃗ denote the unit vectors along the x, y and z axes respectively, and
r ⃗ = (x, y, z) denotes 3D spatial coordinates. Ideally the static field strength B0(r ⃗) would be
spatially uniform, i.e., a single constant B0. In practice it is never perfectly uniform, due to
the unavoidable nonuniformities of all practical coil designs and due to the field strength
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variations that are induced by the nonuniform magnetic susceptibilities of different tissue
types[5] [6]. The electron distributions in different molecules also influence the local
magnetic environment experienced by an atom’s nucleus, called chemical shift. Some types
of MRI scans are robust to such spatial variations of B0; others are sensitive to
nonuniformities, necessitating correction methods[7].

At equilibrium (which is established within a few seconds for a stationary object), the
magnetization M ⃗ is aligned with the applied static field and its magnitude is proportional to
the product of B0(r ⃗) and the object-dependent local density of (predominately) hydrogen
protons or “spins.” This proton density alone is of only modest interest in MRI; in practice
one applies time-varying magnetic fields B⃗ (r ⃗, t) that induce time-varying changes in the
magnetization

(2)

These changes depend on time constants (tissue-dependent relaxation parameters) and other
factors, and the goal in MRI is to form images of aspects of this magnetization. By
manipulating the applied field B⃗0(r ⃗, t) appropriately, sometimes in conjunction with injected
or inhaled contrast agents, one can examine a multitude of different tissue properties.

An MRI scan consists of one or more alternations between two stages: excitation and
readout. During the excitation stage, the applied magnetic field B⃗ (r ⃗, t) is designed to tip the
magnetization vectors M ⃗ within some slice or slab away from equilibrium, so that they have
a component in the transverse plane, i.e., the (x, y) plane. It is convenient to represent this
transverse component mathematically using a complex function defined as follows:

(3)

where . Note that the field components Mx and My are real physical quantities; the
“transverse magnetization” M(r ⃗, t) is complex solely by definition. The excitation process
can be quite complicated to model and is beyond the scope of this paper. See [3] for an
introduction to the role that signal processing plays in the design of excitation pulses, and
[8] [9] [10] for some recent model-based RF pulse design methods.

During the readout stage, the applied field B⃗ (r ⃗, t) is manipulated in ways that help elucidate
the transverse magnetization M(r ⃗, t). For image reconstruction, it is essential to model the
effects of the applied field on the transverse magnetization. The precise relationship is
governed by the Bloch equation [11] [3]. For most image reconstruction purposes, it suffices
to consider just two aspects of the full relationship: precession and transverse relaxation.
The most important equation in MRI is the Larmor relation: ω = γ|B⃗|, which states that the
magnetization precesses (around the axis of the applied field) at a frequency ω that is
proportional to the magnitude of the applied field. The constant of proportionality γ is called
the gyromagnetic ratio and is about 42.6 MHz per Tesla for hydrogen protons. During a
readout, only the longitudinal component of B⃗ is varied usually, i.e.,

(4)
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so the magnetization precesses around k⃗, i.e., within the transverse plane. This property is
why the complex representation (3) is convenient, because precession can be expressed
using a complex phase in this form. In general the applied longitudinal field strength Bz(r ⃗, t)
varies both spatially and temporally, so the Larmor relationship describes the instantaneous
frequency at a given spatial location:

(5)

Without loss of generality, let t = 0 be the time when the excitation pulse is completed, and
consider some time point t > 0 during the readout. The precession of the transverse
magnetization between time 0 and time t corresponds to a net phase that is the integral of the
instantaneous frequency (5), i.e., ideally we would have

In practice, microscopic variations in the magnetic field cause the spins within a given voxel
to become out of phase over time. So the transverse magnetization vector’s magnitude
decreases approximately exponentially with a time constant . Accounting for this decay,
an accurate model for the temporal evolution of the transverse magnetization during a
readout is

(6)

where f(r ⃗) ≜ M(r ⃗,0) denotes the object’s transverse magnetization immediately after
excitation. A typical goal in MRI is to form an image of f(r ⃗). The properties of f(r ⃗) depend
not only on spin density, but also on the type of excitation used. Note that for simplicity of
exposition, we focus here on the case where the object is static so that f(r ⃗) is not a function
of time t. Generalizations to dynamic imaging are very active research areas in MR image
reconstruction[12].

The relaxation factor  varies spatially, and often is on the order of 10 ms. This relatively
rapid decay is a significant limitation in MRI. If  were longer, then a signal excitation
stage followed by a (lengthy) readout stage could be sufficient to form a high-resolution
image of f(r ⃗). In practice, the rapid decay limits how much spatial information can be
recorded in a single readout stage, so such “single shot” imaging, such as echo-planar
imaging (EPI) [13], provides only modest spatial resolution. Therefore, high-resolution
imaging uses multiple alternations between excitation stages and readout stages, each with
different variations of the applied field Bz(r ⃗, t).

2.2. Data acquisition: the MR signal
By Faraday’s law the time-varying magnetization M(r ⃗, t) will induce an electromotive force
(emf) in a nearby coil. The emf will be proportional to the volume integral of the time
derivative of the magnetization M(r ⃗, t) multiplied by the coil response pattern c(r ⃗). The
resulting electrical potential v(t) across the receive coil is
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(7)

where real(·) denotes the real part of a complex number. The coil response c(r ⃗) generally
decreases with distance from the coil. If uncorrected, this nonuniformity causes spatial
variations in signal strength that can be a challenge for image processing methods like
segmentation algorithms. Numerous correction methods have been developed[14] [15] [16]
[17] [18].

Because the time constant  is on the order of milliseconds whereas the phase variations in
(6) are many MHz, it is very reasonable to use a narrow-band approximation when
evaluating the time derivative of M(r ⃗, t) as needed in (7). The time derivative of a narrow-
band signal is well approximated by a constant scaling factor: . We
absorb this constant into the coil response pattern and rewrite (7) as

(8)

The receive coil’s signal is amplified and demodulated using some center frequency ω0.
Ideally one would use ω0 = γB0 if the static magnetic field had uniform strength B0. Usually
quadrature demodulation is used, yielding separate in-phase I(t) and quadrature Q(t)
baseband signals. In the literature, the demodulated “MR signal” s(t) is defined (implicitly)
as

(9)

where the lowpass operation selects the baseband component of the demodulated signal.
This complex analog signal is just a mathematical definition; in practice, the I(t) and Q(t)
signals are each sampled and digitized yielding two digital signals. (One can use two
separate A/D converters, or a single A/D converter running at twice the normal rate to avoid
I/Q imbalance.) Digitally, these two signals can be combined and stored as complex values,
i.e., we record samples

where ΔT denotes the sampling rate (typically around 1 μs) and nd denotes the number of
recorded samples, typically 64-512 for a given readout stage. Again, the physical quantities
are real, but complex quantities are defined in terms of those physical quantities for
convenience. (In some systems, digital demodulation is used, but the modeling remains
identical.)

2.3. Signal model
To improve signal to noise ratio (SNR) and reduce acquisition times, the use of multiple
receive coils has become increasingly popular in MRI. Although originally called phased
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array imaging [19], a term that resonates with other signal processing applications involving
multiple receivers, today the use of multiple receive coils in MRI is usually called parallel
imaging [20] [21] [22].

Let cl(r ⃗) denote the sensitivity (response pattern) of the lth coil, for l = 1, …, L, where L
denotes the number of coils. Let sl(t) denote the demodulated “MR signal” associated with
the lth coil, defined as in (9). Substituting (6) into (9) and simplifying yields the following
general forward model for the MR signal associated with the lth coil:

(10)

where the space- and time-varying phase is

(11)

In practice multiple such signals are recorded, one for each excitation/readout pair (“shots”).
For simplicity of notation we consider “single shot” imaging; the extension to multiple shots
is conceptually straightforward but notationally cumbersome. Note that the phase variations
(11) are common to all receive coils; only the coil response patterns {cl(r ⃗)} differ between
coils.

2.4. Measurement model
The recorded measurements in a MR scan consist of noisy samples of the MR signal (10)

(12)

where yli denotes the ith sample of the lth coil’s signal at time ti and nd denotes the number
of time samples. Usually the ti values are equally spaced, and often there are one or more
time values where the signal is particularly strong due to alignment of the magnetization’s
phases; these values are called echo times. The measurement errors εli are very well modeled
by additive, complex, zero-mean, temporally white gaussian noise [23] [24] [25]. However,
there can be coupling of the noise values between different coils for the same time points,
i.e.,

(13)

where δ denotes the Kronecker impulse, and the L × L matrix Σ characterizes the noise
covariance between coils [26] [22].

3. LINEAR RECONSTRUCTION PROBLEM
Using the measurement model (12) and the signal model (10), the “typical” image
reconstruction problem in MRI is to estimate the object f(r ⃗) from the measurement vector y
= (y1, …, yL), where yl = (yl1, …, yl,nd). (All vectors are column vectors here.) We first
consider model-based image reconstruction for this “basic” linear formulation. Because
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parallel imaging is of considerable interest, we continue to consider the general case of L
receive coils. A standard single receive coil is a simple special case.

This is an ill-posed problem because the given measurements y are discrete whereas the
object f(r ⃗) is an unknown continuous-space function. To facilitate parametric estimation, we
approximate the object f(r ⃗) using a “finite series expansion” as follows:

(14)

where b(·) denotes the object basis function, r ⃗j denotes the center of the jth translated basis
function, and N is the number of parameters. Such approximations are classic in the
tomographic image reconstruction literature [27] and are slowly taking root in the MR
community. Minimum  norm methods [28] can postpone the discretization (14) until the
final step of displaying the image, but it is unclear if this approach provides image quality
benefits that outweigh its computational requirements. For simplicity, hereafter we use rect
basis functions b(r ⃗) = rect(r ⃗/Δ), i.e., square pixels of dimension Δ, so N is the number of
pixels, or voxels in 3D scans. Many other possible basis function choices can be considered,
all of which are imperfect because the true object never satisfies the parametric model (14)
exactly. Nevertheless simple basis functions can provide useful approximations.

Substituting the basis expansion (14) into the signal model (10) and simplifying leads to the
discrete forward model

(15)

where the elements {alij} of the system matrix Al associated with the lth coil are given by

(16)

In practice the basis functions are usually highly localized (e.g., voxels), so “center of
voxel” approximations like the following are nearly always used, often implicitly:

(17)

For exceptions, see [29] [30].

Typically the decay due to  is ignored, or it is assumed implicitly that the total readout
time tnd− t1 is small relative to  in which case one can make the approximation

. Under this approximation, we can absorb the -weighting effect of
 into the unknown image f(r ⃗).

Combining (12) and (15) in matrix-vector form yields:
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where f = (f1, …, fN) is the vector of parameters (pixel values) that we wish to estimate from
the data y. Stacking up all L measurement vectors as y = (y1, …, yL) and defining the (ndL) ×
N system matrix A = (A1, …, AL) yields the linear model

(18)

At first glance this linear model appears amenable to a variety of iterative solution methods.
However, a significant challenge that arises is that in general the elements of A can be quite
complicated in the form above, yet A is too large to store for typical problem sizes. Most
iterative algorithms require matrix-vector multiplication by A and its transpose; there are
fast algorithms for these operations (without storing A explicitly) in many special cases of
interest [31] [30] [7].

Thus far we have allowed the phase function φ(r ⃗j, ti) to be quite general, without the
traditional focus on “Fourier encoding.” Recently there has been interest in investigating
nonlinear magnetic field variations Bz(r ⃗, t) in (4), and reconstruction algorithms have been
proposed that use much of the generality in (16) [32] [33]. These are currently specialized
research topics, so we now focus on the more common case of linear field gradients.

3.1. Fourier encoding
In typical MR scanners, the longitudinal component of the applied field Bz(r ⃗, t) in (4)
consists of three components:

(19)

The constant B0 denotes the advertised field strength of the main static field. The function
ΔB0(r ⃗) denotes the spatial deviations of the field strength from this nominal value. This
function is often called a field map, and in general it is unknown, but it can be estimated by
suitable types of acquisitions and data processing methods [34] [35]. The field gradients G ⃗(t)
= G⃗x(t)j⃗ + G⃗y(t)j⃗ + G⃗z(t)j⃗ consist of three user-controlled functions that are the historical key
to providing spatial information in standard MR imaging[36]. Many different types of MR
scans are possible by changing G ⃗ (t).

Substituting (19) into (11) using ω0 ≜ γ B0 and simplifying yields

or equivalently

(20)
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where Δω0(r ⃗) ≜ γ ΔB0(r ⃗) denotes the off-resonance frequency and the k-space trajectory is
defined by

(21)

Usually the phase accrual e−i Δ ω0(r ⃗)t due to off resonance is undesirable and can distort
reconstructed images if ignored[37]. Therefore some image reconstruction methods,
particularly in fMRI, account for its effects [38] [30]. In some cases the map Δω0(r ⃗) is found
from a separate “pre-scan;” in other cases it is estimated jointly with f [39] [40] [41]. In
chemical shift imaging, e.g., to separate fat and water components, the term Δω0(r ⃗) includes
both useful information about the chemical shift effect as well as the undesirable variations
due to field inhomogeneity [42] [43].

For the linear field gradients (19), substituting (20) into (17) yields simpler expressions for
the system matrix:

(22)

where we define the “rate map” z(r ⃗) by combining the relaxation and field maps:

(23)

When this rate map is assumed to be zero, i.e., if relaxation and off resonance are ignored,
then alij is the product of a Fourier encoding matrix having elements e−i2πk⃗(ti) ·r ⃗j with a
diagonal sensitivity encoding matrix having elements cl(r ⃗j).

If the k-space sample locations k⃗(ti) lie on an appropriate subset of a Cartesian grid, then
FFT operations provide efficient multiplication by A and its transpose. If non-Cartesian k-
space sampling is used, then a nonuniform FFT (NUFFT) is needed [44].

When z(r ⃗) in (22) is nonzero, then the elements (22) no longer correspond to a standard
Fourier transform. Approximations are needed to provide fast computation of matrix-vector
products. In particular, often one can approximate the exponentials in (17) using an
additively separable form:

for various choices for the basis functions bik and coefficients ckj [7]. With this type of
approximation, we can rewrite matrix-vector multiplication as follows:

The inner sum is simply a FFT or NUFFT so this approach is relatively fast. Free software
for this is available [45].
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3.2. Reconstruction cost function
Having specified the linear model (18), we now turn to solution methods. Because the noise
in MRI measurements is gaussian, a natural approach is to estimate f by minimizing a
regularized least-squares cost function:

(24)

For a single coil, the noise variance in the k-space data is white (uncorrelated with uniform
variance), so the usual Euclidian norm ||·|| is appropriate. For parallel MRI, noise is
stationary across time samples (i), but the norm should include the inverse of the L × L
covariance matrix Σ in (13) that describes the noise correlation between receive coils [26]
[22].

If the k-space samples lie on an equally-spaced grid (Cartesian sampling) with appropriate
sample spacings relative to the object field of view, and if the rate map z(r ⃗) is zero (i.e., we
ignore relaxation and field inhomogeneity), and if we consider just a single coil (L = 1) and
treat the sensitivity pattern as uniform, i.e., c1(r ⃗) = 1, then the system matrix Al is
orthogonal. In this special case, no regularization is needed and  and the solution is

simply , which can be evaluated by an inverse FFT. This is the most common MR
image reconstruction method. However, if any of these conditions do not hold, then
typically the system matrix A is not well conditioned, and the unregularized LS solution can
lead to undesirable noise amplification. To avoid this problem, some form of regularization
is needed.

3.3. Regularization
An open problem in most image reconstruction problems, including MRI, is how to best
choose the regularizer R(f). If this term is not included, then the image estimate f ̂ will suffer
from noise and artifacts for under-sampled and/or non-Cartesian data, because this inverse
problem is ill-conditioned. The approach for iterative reconstruction that has been adopted in
commercial PET scanners is to use an unregularized algorithm[46], initialize it with a
uniform image, stop iterating just as the image gets unacceptably noisy, and then perhaps
apply a bit of post-filtering to reduce the noise. One could adopt a similar approach for MR
imaging[47]. However, introducing regularization can ensure that the iterative algorithm
converges to a stable image, and can enforce prior information that improves image quality
particularly for under-sampled data.

The simplest choice is Tikhonov regularization R(f) = ||f||2 or R(f) = ||f − f ̄||2, where f ̄ is
some prior or reference image (possibly zero). The disadvantage of this choice is that it
biases the estimate towards the reference image f ̄. In particular, if the reference image is
zero, then all pixel values in f ̂ are diminished towards zero, possibly reducing contrast.

Another choice is a quadratic roughness penalty function, which in 1D would be written

(25)

This choice biases the reconstruction towards a smooth image where neighboring pixel
values are similar. It is convenient for minimization [30], but it has the drawback of
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smoothing image edges, particularly if the regularization parameter β in (24) is too large.
One can prove that using (25) guarantees that the cost function (24) has a unique minimizer.

More recently, total variation methods have been investigated for MR image reconstruction
[48]. In 1D, these methods replace the squared differences between neighboring pixels
above with absolute differences:

(26)

In 2D continuous space, the analogous functional is

The advantage of this type of regularization is that it biases the reconstructed image towards
a piecewise smooth image, instead of a globally smooth image, thereby better preserving
image edges. However it is harder to minimize and can lead to the appearance of “blocky”
texture in images[49]. Numerous alternatives of the form

for various choices of the “potential function” ψ(·) have been proposed in the imaging
literature. Many of these compromise between the quadratic case (25) and the absolute
difference case (26), for example the hyperbola

(27)

is approximately quadratic near 0, which aids noise reduction, yet approximately linear
away from 0, which helps preserve edges[50].

3.4. Algorithms
Iterative algorithms are needed to minimize (24). For differentiable regularizers such as
(25), the conjugate gradient algorithm is a natural choice [26] [30]. For nondifferentiable
regularizers like (26), more sophisticated algorithms are needed and this is an active
research area[51,52] [12].

4. RECONSTRUCTION CHALLENGES
Although a variety of useful problems can be solved in MRI using the formulation (24),
there are numerous challenges that provide research opportunities.
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4.1. Regularization parameter selection
A practical challenge with regularized methods is selection of the regularization parameter β
in (24). For quadratic regularization, there is a well-developed theory for choosing β in
terms of the desired spatial resolution properties of the reconstructed image [53] [54]. This
theory extends readily to MR imaging with reasonably well sampled trajectories (and to
parallel imaging with reasonable acceleration factors) for which the point spread function
(PSF) of the reconstructed image is relatively close to a Kronecker impulse so that simple
measures like full width at half maximum (FWHM) are reasonable resolution metrics[55].
For highly under-sampled trajectories the PSF can have “heavy tails” due to aliasing effects,
and more investigation is needed to extend the above methods to MR applications.

For nonquadratic regularization such as the total variation method (26), the analysis in [53]
[54] is inapplicable so one must resort to other methods for choosing β. Statisticians often
use cross validation [56] [57] for choosing regularization parameters, with a goal of finding
the parameter that minimizes the mean-squared error (MSE) between f ̂ and the unknown f.
However, MSE is the sum of variance and bias squared, and where bias is related to spatial
resolution and artifacts, and it is unclear whether an equal weighting of noise variance and
bias (squared) is optimal from an image quality perspective in medical imaging.

Another method for choosing β is the “L-curve” method[58] [59]. This method is expensive
because it requires evaluating f ̂ for several values of β, and it has some theoretical
deficiencies [60].

In summary, choosing β for nonquadratic regularization remains a nontrivial issue in most
ill-posed imaging problems including MRI, and remains an active research area [61] [62].

4.2. Partial k-space methods
If the object f(r ⃗) were real, then its Fourier transform would be Hermitian symmetric so in
principle only half of k-space would need to be sampled. In practice the magnetization (3) is
complex due to a variety of physical effects. However, in many cases the phase of M(r ⃗, t)
can be assumed to be a smooth function. This property has led to a variety of partial k-space
methods where one samples a bit more than half of k-space, then estimates the phase from
the central portion of k-space (corresponding to low spatial frequencies), and then uses this
estimated phase to reconstruct the entire image [63] [64] [65] [66]. Such methods are used
routinely in many types of MR scans.

4.3. Under-sampled k-space data
The need for some type of regularization is essential when the k-space data is under
sampled, i.e., when the number of measurements Lnd is less than the number of unknown
voxels N. In MRI, the scan time is roughly proportional to the number of measurements, so
collecting fewer samples can reduce scan time, which is particularly desirable in dynamic
imaging.

In the broader field of tomographic image reconstruction, there is a long history of using
prior information, such as assuming objects are piecewise smooth, to reconstruct images
from an under-sampled set of projection views, e.g., [67] [68] [69] [70] [71]. Many of these
methods involve cost functions of the form (24) with a suitable system matrix A for the
application and appropriate regularizers R(f) that capture prior information about the object.

Recently it has become very popular to express prior information in terms of some type of
sparsity of the object. Notions of sparsity have deep roots in statistical signal processing [72]
[73] [74] [75]. Sparsity is especially apparent in MR angiography [76]. The moniker of
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compressed sensing or compressive sampling has become widespread for such techniques,
and recently entire sessions at MR conferences are devoted to this topic [77] [12]. Some
compressed sensing formulations ignore the noise in the data. In the presence of noise, a
typical formulation is

where Ψ transforms the image f into a domain (such as wavelet coefficients) where one
postulates that the signal is sparse.

Often this optimization problem is solved using a Lagrange multiplier approach:

which corresponds to a particular regularizer in (24). Rarely is the ℓ1 norm implemented
exactly; in practice usually a continuously differentiable approximation is used, such as:

(28)

for some small value of δ > 0. This approximation is equivalent to the hyperbola (27) used
frequently for edge-preserving image reconstruction. Non-convex methods that enforce
sparsity even more strongly are also under investigation[78]. In the usual case where A
corresponds to an under-sampled discrete Fourier transform (DFT), a variety of algorithms
are available that have numerous potential applications in MR [12]. Challenges with this
approach include choosing the sparsifying transform Ψ and regularization parameters β and
δ appropriately. Furthermore, when δ is small, the regularizer (28) has very high curvature
near 0, which can slow convergence. Choice of the k-space sampling pattern is also
important. Nonuniform sampling has a long history in MRI, e.g., [79].

5. NONLINEAR RECONSTRUCTION PROBLEMS
The linear image reconstruction problem (24) is just one of many estimation problems of
interest in MRI. Returning to the elements of the system matrix (22), there has been research
on estimating essentially every component therein, as summarized below.

5.1. Field map estimation
For scans with long readout times, the effect of field inhomogeneity Δω0 in (22) is
important. In practice the field map ω(r ⃗) is not known a priori but rather it must be
estimated from noisy MR scans. One can examine the phase differences between two scans
having different echo times to determine Δω0. If these two scans have short readouts, then
there are simple image-domain methods for estimating Δω0, which is known as B0 field
mapping [80] [35]. Errors in the field map estimates may cause artifacts in reconstructed
images that are based on models like (22).

In addition, object motion that occurs between the field map scans and subsequent scans of
interest, e.g., in fMRI, will lead to an inconsistency between the actual scan data and the
assumed model (22) used by the reconstruction algorithm. This possibility has motivated the
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development of dynamic field mapping methods that estimate the field map separately for
each frame in a dynamic study, e.g., [38] [81] [82] [41]. For scans with long readout
durations, the appearance of Δω0 in a complex exponential in (22) makes this a somewhat
complicated nonlinear estimation problem.

5.2. Relaxation map estimation
In some MR applications, it is useful to estimate tissue relaxation parameters, particularly T2
or , on a pixel-by-pixel basis[83] [84] [85] [86]. One approach to measuring such
relaxation parameters is to acquire a “baseline” scan of the object and then acquire one or
more additional scans having different echo times. One then reconstructs images from each
of those scans, and then performs linear regression on a voxel-by-voxel basis using the
logarithm of the image voxel values. This approach can be adequate if the readout durations
are sufficiently small. But for acquisitions with long readouts, the effect of time ti in the
e− z(r ⃗j) ti in (22) should be considered, i.e., we should account for relaxation during the signal
readout[86]. This requires methods that estimate the relaxation map directly from the k-
space data. These are more challenging nonlinear estimation problems because  appears in
an exponent in (22). Several methods for jointly estimating , Δω0, and f (r ⃗) have been
investigated [87] [88] [40] [89] [82].

5.3. Sensitivity map estimation
The coil sensitivity patterns cl(r ⃗) in (22) also must be determined for parallel imaging based
on sensitivity encoding. Normally this is done by acquiring well-sampled data both with
local receive coils and with a reference body coil and dividing the two [22]. Acquiring the
extra reference data can be inconvenient, so normalizing by the square root of the sum of
squares of the local receive coils is also used[90]. A variety of other estimation methods
have been proposed[91] [92] [93], including methods that jointly estimate the sensitivity
maps {cl(r ⃗)} and the image f(r ⃗) [94] [95] [96]. Note that if f(r ⃗) were known, then the
problem of estimating cl(r ⃗) would be a linear estimation problem because cl(r ⃗) appears as a
linear scaling in (22). But when both f(r ⃗) and cl(r ⃗) are to be estimated, the model is bilinear
because f(r ⃗) and cl(r ⃗) appear as a product in (10). This complicates joint estimation.

5.4. Trajectory mapping
The k-space trajectory k⃗(ti), defined as an integral of the gradient waveforms in (21), should
be calibrated carefully to ensure that the system model (22) is accurate. In practice, the field
gradients induced by the gradient coils in the scanner are not exactly proportional to the
waveforms applied to those coils due to eddy currents. Therefore the physical k-space
trajectory realized in the system can depart somewhat from the desired k-space trajectory.
These differences can degrade the reconstructed image, particularly for non-Cartesian
trajectories with long readout durations. Therefore, a variety of techniques have been
developed for mapping the actual k-space trajectory experimentally[97] [98] [99] [100]
[101] [102] [103].

5.5. Within-voxel gradients
The model (23) treats the field inhomogeneity within each voxel as being a constant,
ignoring within-voxel gradients of the off-resonance map. However, these gradients can be
significant in functional magnetic resonance imaging (fMRI) based on the BOLD effect
[104]. Accurate reconstruction of signals near air-tissue interfaces requires compensation for
these within-voxel gradients, which complicates the reconstruction method [105] [106] [29]
[107].
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6. EXAMPLE
To illustrate the capabilities of model-based image reconstruction methods for MRI, we
simulated k-space data for a 4-shot EPI sequence with matrix size 128 × 128 and 5 μsec
sampling so the readout duration was 27.3 msec per shot. The field map ΔB0(r ⃗) appears in
Fig. 2 of [35] and is based on a brain slice above the sinuses and ear canals where
susceptibility effects occur. Fig. 1 shows the true image used in the simulations and images
from three different reconstruction methods. The “uncorrected” reconstruction simply uses
an inverse 2D FFT, with no consideration of field inhomogeneity. The field inhomogeneity
causes spatial distortion in the read-out (vertical) direction (that increases NRMSE
dramatically), as well as significant intensity artifacts above the ears and sinuses where the
susceptibility effects are largest. The classical conjugate phase reconstruction method, which
corresponds to A′y in this single-coil case, reduces the spatial distortion but the intensity
artifacts persist. Applying 15 iterations of a conjugate gradient algorithm with a monotonic
line search [108] [7] to the cost function (24) with the edge-preserving hyperbola (27) yields
the right-most image in Fig. 1. This model-based image reconstruction method yields the
lowest RMS error, but it requires about 30 × more computation than the noniterative
conjugate phase method [7] because each iteration requires multiplication by A and A′. The
software that generated this figure is available online [45].

7. SUMMARY
Image reconstruction is not a single problem in MRI, but rather is a wide family of problems
depending on what physical effects are included in the signal model. The most widely
studied case, particularly in the signal processing community, is when nearly all physical
effects are disregarded and the system model consists solely of sampled of the Fourier
transform of the object. This basic model is amenable to familiar signal processing tools and
is applicable to many MR scans. But there are also many interesting applications where
other physical effects are relevant, and model-based methods that account for those effects
are proving to be beneficial for improving image quality. Model-based methods themselves
depend on estimates of a variety of model parameters, leading to interesting problems where
those parameters are determined either by separate calibration scans or by jointly estimating
the image and those parameters. Despite over 3 decades of MR research, there remain
challenging and intriguing problems in MR image reconstruction.

The published version of this paper (with a short bibliography) is [109].
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Fig. 1.
Comparison of model-based image reconstruction with conventional methods.
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