Human immunoglobulin $C_{\lambda}6$ gene encodes the Kern⁺Oz⁻ λ chain and $C_{\lambda}4$ and $C_{\lambda}5$ are pseudogenes

(isotypes/allotypes/Bence Jones proteins/constant region genes)

P. DARIAVACH, G. LEFRANC, AND M.-P. LEFRANC

Laboratoire d'Immunogénétique, Centre National de la Recherche Scientifique Unité Associée 1191, Génétique Moléculaire, Université des Sciences et Techniques du Languedoc, Place E. Bataillon, 34060 Montpellier Cedex, France

Communicated by C. Milstein, August 3, 1987 (received for review May 28, 1987)

Six nonallelic immunoglobulin λ constant ABSTRACT region genes have been previously characterized on a 40kilobase stretch of DNA. The nucleotide sequences of the three upstream genes of this cluster $(C_{\lambda}1, C_{\lambda}2, C_{\lambda}3)$ have been determined by other workers and shown to encode, respectively, the isotypic Mcg, Kern⁻Oz⁻, and Kern⁻Oz⁺ constant region of the λ chains. In this paper, we report the sequence of the three downstream genes of this cluster and show that two of them $(C_{\lambda}4 \text{ and } C_{\lambda}5)$ are pseudogenes. However, $C_{\lambda}6$ encodes a Kern⁺Oz⁻ chain and corresponds to the fourth isotype described among the λ proteins sequenced so far. A potentially active J_{λ} (joining) segment, with the canonical heptamer and nonamer sequences for rearrangement, is located 1.5 kilobases upstream of $C_{\lambda} 6$. The amino acid sequence encoded by the $C_{\lambda} 6$ gene is compared with the constant region sequences of various monoclonal Bence Jones λ proteins. Allotypic and isotypic differences confirm the polymorphism and complexity of the human C_{λ} locus.

In humans, the constant (C) region of the immunoglobulin λ light chains consists of at least four nonallelic or isotypic forms that differ by limited amino acid substitutions to produce the serological markers Kern (Ke) (1, 2), Oz (3-5), and Mcg (6, 7). Several additional substitutions have been described (8-16), but it is unknown whether these represent allelic variants or distinct isotypes. The human immunoglobulin λ light chain genes have been mapped to chromosome 22 (17) at band q11 (18, 19), and six nonallelic λ C region genes $(C_{\lambda} I \text{ to } C_{\lambda} 6)$ have been characterized on a 40-kilobase (kb) stretch of DNA (20). The number of C_{λ} genes varies between six and nine per haploid genome (21). These variations were detected by restriction fragment length polymorphism (21) and seem to have arisen from unequal meiotic crossing-over with a duplication of the $C_{\lambda}2$ and $C_{\lambda}3$ genes. Moreover, three additional C_{λ} -like genes have been recently identified, which map on different stretches of DNA and are nonallelic (22). One of these is a pseudogene, whereas the two others encode a putative λ chain C region whose sequence differs from that of the λ chains described so far.

Only three C_{λ} genes $(C_{\lambda}I, C_{\lambda}2, \text{ and } C_{\lambda}3)$ belonging to the cluster described by Hieter have been sequenced (20), and they have been shown to encode, respectively, the Mcg, Ke⁻Oz⁻, and Ke⁻Oz⁺ C region of the λ chains. In this paper, we report the sequences* of the three genes located down-stream in this cluster and show that two of them $(C_{\lambda}4 \text{ and } C_{\lambda}5)$ are pseudogenes, whereas $C_{\lambda}6$ encodes a Ke⁺Oz⁻ chain, the fourth isotype described among the proteins sequenced so far. This $C_{\lambda}6$ gene has a potentially active $J_{\lambda}6$ joining region, with the canonical heptamer and nonamer sequences for rearrangement, 1.5 kb upstream of the coding C region.

MATERIALS AND METHODS

Construction of a Phage Library from LY67 DNA. DNA prepared from LY67 cells (a λ -producing Burkitt's lymphoma) (23) was partially digested with *Mbo* I. Restriction fragments 15–20 kb long were ligated into *Bam*HI-digested DNA of phage λ 2001 (24) and packaged *in vitro*. Recombinant phages were screened by the *in situ* plaque hybridization procedure (25).

Probes. A genomic clone (Chr 22 λ 5) in λ gt- λ WES (26) was kindly provided by T. H. Rabbitts (Medical Research Council, Cambridge, England). This clone contains an 8.0-kb *Eco*RI fragment that includes the known nonallelic Ke⁻Oz⁻ ($C_{\lambda}2$) and Ke⁻Oz⁺ ($C_{\lambda}3$) genes and the flanking sequences (20). We subcloned a 700-base-pair (bp) *Bgl* II–*Eco*RI fragment containing only the Ke⁻Oz⁻ $C_{\lambda}3$ gene (Fig. 1), and this C_{λ} probe cross-hybridizes with all the other C_{λ} -like genes (20). It was radioactively labeled with [α -³²P]dCTP by nicktranslation (27) and was used to screen the LY67 phage library.

Subcloning and Sequencing Strategies. One clone, LY67 $C_{\lambda}3$ -6 (Fig. 1), was shown to contain $C_{\lambda}3$ to $C_{\lambda}6$. Appropriate subclones were made in pUC vectors (29). Nucleotide sequence analysis was carried out by dideoxy chain-termination procedures (30) in M13 vectors (31) by deploying exonuclease III-nuclease S1 methods (32) or directed sequencing using known restriction enzyme sites.

Oligonucleotide Synthesis and Hybridization. A 19-mer oligonucleotide 5' GTGTTCGGCGGAGGGACCA 3' corresponding to part of the $J_{\lambda}3$ gene segment sequence (this paper and ref. 28) was synthesized, radiolabeled, and hybridized to the LY67 $C_{\lambda}3$ -6 clone to search for other J_{λ} segments. Lowstringency washes were carried out at room temperature.

RESULTS

Rearrangement of a V_{λ} **III Subgroup Gene to** J_{λ} **3 in the LY67 Cell Line.** One clone (LY67 C_{λ} 3-6) containing a 18-kb piece of genomic DNA was isolated and characterized. A restriction map of this clone is shown in Fig. 1. Comparison of this map with one previously published (20) suggested that this clone contains four C_{λ} genes, namely C_{λ} 3 to C_{λ} 6. The sequence of the 5' end of the LY67 C_{λ} 3-6 clone shows that a V_{λ} gene rearrangement has occurred, joining this gene to the J_{λ} 3 gene segment, which is located 1.5 kb upstream of C_{λ} 3 (28). Fig. 2A shows the partial nucleotide sequence of the rearranged V_{λ} in LY67 and that of a V_{λ} gene assigned to the V_{λ} III subgroup and isolated from the Burkitt lymphoma cell line PA682 (28).

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: C, constant; J, joining; V, variable; Ke, Kern.

^{*}The sequences reported in this paper are being deposited in the EMBL/GenBank data base (Bolt, Beranek, and Newman Laboratories, Cambridge, MA, and Eur. Mol. Biol. Lab., Heidelberg) [accession nos. J03009 ($C_{\lambda}4$), J03010 ($C_{\lambda}5$), and J03011 ($C_{\lambda}6$)].

FIG. 1. (A) Restriction map of LY67 $C_{\lambda}3$ -6 clone. (B) Sequencing strategy. B, BamHI; Bg, Bgl II; H, HindIII; R, EcoRI; S, Sst I. Of the Pst I sites (P), only the one used for subcloning the fragment containing the $C_{\lambda}6$ gene is indicated. The rearrangement V- $J_{\lambda}3$ is indicated by an arrow (V, variable region). An asterisk shows the location of a polymorphic BamHI site present in PA682 DNA (28) but absent from our LY67 clone.

The deduced amino acid sequence of the rearranged V gene of LY67 is also compared to the V region of the protein DEL of the subgroup $V_{\lambda}III$ (33, 34). A 75% sequence identity indicates that the V_{λ} gene rearranged in LY67 is a member of the $V_{\lambda}III$ subgroup gene family, and this is in agreement with the detection of a transcript hybridizing to a $V_{\lambda}III$ probe in the

Α DFLc Glu ... Ala ... ••• ... • • • Pro Ala Ser Gly • { Val Thr Val Leu | GTG ACC GTC CTG GGT ···· ··· ··· b { C.. Leu c Leu С **Jλ6 Jλ1**

LY67 cell line (28). The $J_{\lambda}3$ segment of the LY67 $C_{\lambda}3$ -6 clone, compared to the $J_{\lambda}3$ segment rearranged in PA682, shows two nucleotide differences (one of them resulting in a valine/ leucine amino acid substitution) that may be due to allelic polymorphism. Two other nucleotide differences are observed at the V-J junction and are probably explained by a flexibility in the mechanism by which junctions occur (35, 36).

 $C_{\lambda}6$ Encodes a Ke⁺Oz⁻ Chain. Fig. 2B shows the nucleotide sequence of the $C_{\lambda}6$ gene and the encoded amino acid sequence (106 residues). The residues Ala, Ser, and Thr, found, respectively, at codons 6, 8, and 57 (positions 112, 114, and 163 according to ref. 34) indicate that $C_{\lambda}6$ encodes a Mcg⁻ protein. Arg (codon 83, position 190) corresponds to the Oz⁻ marker, whereas Gly (codon 46, position 152) characterizes the Ke⁺ marker. Therefore the $C_{\lambda}6$ gene encodes the fourth isotype Ke⁺Oz⁻.

 $J_{\lambda}6$ Segment Is 1.5 kb Upstream of $C_{\lambda}6$. Only the $J_{\lambda}1$ (22) and $J_{\lambda}3$ segments (ref. 28 and this paper) have been characterized; they have been localized in genomic DNAs at 1.5 kb upstream of the respective C_{λ} coding regions. We therefore used an oligonucleotide corresponding to the $J_{\lambda}3$ sequence (see Materials and Methods) to search for homologous J_{λ} segments in the LY67 C_{λ} 3-6 clone. As expected, a strong signal was obtained for the $J_{\lambda}3$ -containing fragments, whereas a weaker signal allowed us to detect the $J_{\lambda} 6$ segment in a Sac I-Bgl II fragment upstream of $C_{\lambda}6$. The sequence of this $J_{\lambda}6$ segment (Fig. 2C) showed that it encodes 12 amino acids (among them the characteristic Phe-Gly-Xaa-Gly residues) and that it also possesses the canonical heptamer and nonamer sequences essential to V-J rearrangement (37, 38). No signal corresponding to the putative $J_{\lambda}4$ and $J_{\lambda}5$ segments could be detected in the LY67 C_{λ} 3-6 clone by using either the oligonucleotides $(J_{\lambda}3 \text{ probe})$ or the genomic Sac I-Bgl II fragment ($J_{\lambda}6$ probe), indicating that if these segments exist their homology is too weak to be detected in our conditions of hybridization. Since the $J_{\lambda}3$ and $J_{\lambda}6$ gene segments are 1.5 kb upstream of their respective coding regions, we subcloned fragments located, respectively, at about the same distance upstream of $C_{\lambda}4$ and $C_{\lambda}5$. Although in both cases, we detected some conserved heptamer sequences, we did not

B														
CAG	GGT	CAG	ccc	AAG	GCT	المحما	CCA	a TCG	GTC	10 ACT	CTG	TTC	CCC	<u> </u>
0.00	Gly	Gln	Pro	Lys	Ala	Ala	Pro	Ser	Val	Thr	Leu	Phe	Pro	Pro
	_			-		20								
	TCC	TCT	GAG	GAG	CTT	CAA	GCC	AAC	AAG	GCC	ACA	CTG	GTG	TGC
	Ser	Ser	Glu	Glu	Leu	Gln	Ala	Asn	Lys	Ala	Thr	Leu	Val	Cys
	OTTO	, 30		6 16		m) a						40		
	Lou	TIO	AGT	GAC Non	TTC	TAC	Dee	GGA	GCT Ala	W-1	AAA	GTG Wal	GCC	TGG
	Deu	TTC	Det	46	File	TÄT	FIU	GTÀ	AIG	Var	цуз	Val	AId	тrр
	AAG	GCA	GAT	GGC	AGC	ccc	GTC	AAC	ACG	GGA	GTG	GAG	ACC	ACC
	Lys	Ala	Asp	Gly	Ser	Pro	Val	Asn	Ala	Gly	Val	Glu	Thr	Thr
	57		_	60						-				70
	ACA	ccc	TCC	AAA	CAG	AGC	AAC	AAC	AAG	TAC	GCG	GCC	AGC	AGC
	Thr	Pro	Ser	Lys	Gln	Ser	Asn	Asn	Lys	Tyr	Ala	Ala	Ser	Ser
	መልሮ	CTC	200	CTC	ACG	COT	CNC	C1C	TCC	80	mee	cac	202	200
	Tvr	Leu	Ser	Leu	Thr	Pro	Glu	Gln	Tro	LVS	Ser	His	AGA	Ser
	-1-			200				• • • •		210			ing	1001
	TAC	AGC	TGC	CAG	GTC	ACG	CAT	GAA	GGG	AGC	ACC	GTG	GAG	AAG
	Tyr	Ser	Cys	Gln	Val	Thr	His	Glu	Gly	Ser	Thr	Val	Glu	Lys
		100)											
	ACA	GTG	GCC	CCT	GCA	GAA	TGT	TCA	TAG					
	Inr	vai	AIA	Pro	Ala	GIU	cys	Ser	Fuq					

Asn Val Phe Gly Ser Gly Thr Lys Val Thr Val Leu As G<u>GG TTT GTG T</u>GC AGG GTT ATA T<u>CA CAG TGT</u> ATAT GTG TTC GGC AGT GGC ACC AAG GTG ACC GTC CTC GGT Al TG. .CT GA. CC. CAG T. ... T. ... A. ... Tyr Thr Thr Thr

FIG. 2. Nucleotide and amino acid sequences. (A) Partial sequence of the LY67 V_{λ} - $J_{\lambda}3$ rearranged gene. (B) Sequence of the $C_{\lambda}6$ gene. (C) Sequence alignment of $J_{\lambda}6$ and $J_{\lambda}1$ (22).

														•			•			60
cλı	Ļ		ccc	AAG	GCC	AAC	ccc	ACG	GTC	ACT	CTG	TTC	CCG	ссс	TCC	TCT	GAG	GAG	CTC	CAĂ
Cλ2	GGT	CAG	• • •	•••	т	GC.	•••	т	•••	• • •	•••	•••	•••	• • •	• • •	• • •	• • •	•••	T	•••
CV3			•••	•••	• • T	GC.	••;	T	•••	•••	•••	•••	A	•••	•••	•••	•••	•••	T	•••
14-1	• • •	•••	•••	•••	••1	.c.		T	•••	•••		•••		G	•••	•••	•••	•••	•••	•••
16-1						.č.		т					.т.	G						
ψCλ4	•••	c	TGA	GAC				c	т	.TC	TCC	.CT	GAC	•••	AGA	GGC	AG.	•••	•••	•••
Ψ CA5	•••	.c.	.т.	•••	•••	.c.	•••	TT.	• ; •	•••	•••	•••	•••	• • •	•••	•••	•••	••;	•••	•••
Ψ10-1	•••	• • •	•••	•••	•••	GC.				•••	•••			•				•••	•••	120
cλı	GCC	AAC	AAG	GCC	ACA	CTA	GTG	TGT	CTG	ATC	AGT	GAC	TTC	TAC	CCG	GGA	GCT	GTG	ACA	GTG
Cλ2	•••	• • •	• • •	• • •	• • •	G	• • •	• • •	c	A	•••	•••	•••	•••	• • •	• • •	c	•••	•••	· · <u>·</u>
CV3	•••	•••	•••	•••	•••	g	•••	•••	c	A	•••	•••	•••	•••	•••	•••	c	•••	• • •	• • T
14-1		•••	•••	т	•••	G			c	G	 		т	т			ATC	т	G	•••
16-1						G			c	G	.A.			т	.т.		ATC	т	G	•••
		G	•••	•••		A.G	•••	•••	c	Ģ	• • • •	•••	•••	•••	••;	Α	c	A		
ψ CAS	•••	•••	•••	λ	.16		<u>.</u>	 		•••	• • •	•••	•••	•••	T	AT		A. A	GA.	.GA
¥ 10 1	•••	•••	•••						•••	•••	•••	•••	•••	•		••••		•••		180
cγī	GCT	TGG	AAG	ĞCA	GAT	GGC	AGC	ccc	GTC	AAĞ	GCG	GGA	GTG	GAG	ACG	ACC	AAA	ccc	TCC	ааа
CA2	•••	•••	A	• • •	•••	A	•••	•••	•••	•••	•••	•••	•••	•••	c	•••	.c.	•••	•••	•••
C/3		•••	•••	•••	•••	A	•••	•••	•••	•••	λ	G	•••	•••		•••		•••	•••	•••
14-1	A.C		•••			т	.c.		A	.cc	CA.	c			.т.		.cg			
16-1	A.C		• • •			т	.c.		Α	.cc	CA.	c	•••	• • •	.т.	• • •	.CG			• • •
4.01.	_			. –			_				~ `	_					~			
ψCA4		····		AT.	•••• •	•••	.т.	A TA	A		CA.	••••	 > >	•••	C	•••		•••	•••	····
uµ18−1	c				G		.c.	λ	A	.cc	CT.	č	λ	A	T	G	.c.			
				•			•			•				•			•			240
CX1	CAG	AGC	AAC	AAC	AAG	TAC	GCG	GCC	AGC	AGC	TAC	CTG	AGC	CTG	ACG	ccc	GAG	CAG	ŤGG	AAG
CA2	۰.A	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • T	•••	•••	•••	• • •	•••T	•••	•••	•••	•••
cλ6																T				
14-1												• • •	• • •						• • •	.G.
	• • •						እጥ			• • •	•••	•••	•••	• • •	•••	•••				.G.
16-1	•••	•••	• • •	.G.	•••	• • •	MI .													
16-1 4c)4	•••	•••	•••	.G.	•••	•••• •	AI.					A	A		G.A		A			
16-1 ψcλ4 ψcλ5	· · · · · · ·	•••	•••	.G. 	 	T				•••	•••	A	A	•••	G.A	•••	A			•••
16-1 ψcλ4 ψcλ5 ψ18-1	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	.G. A	 c	т т	 A	 	 	 	 	A 	A .A.		G.A	 T.T	A c	· · · · · · ·	 	 . ^G . ₂₀₀
16-1 ψcλ4 ψcλ5 ψ18-1	···· ····	· · · · · · · · · · · · · · · · · · ·		.G. A	 c	T T	A1.	 .TT	· · · · · · ·	••••		A	A 	••••	G.A	 T.T	A			
16-1 ψcλ4 ψcλ5 ψ18-1 cλ1 cλ2	 TCC	 CAC	 Aga	.G. A AGC	 c TAC	T T AGC	AI. A TGC	 .tt cag	GTC	ACG	CAT	A GAA	A .A. GGG	AGC	G.A ACC	 T.T GTG	A C GAG	 AAG	 ACA	
16-1 ψcλ4 ψcλ5 ψ18-1 cλ1 cλ2 cλ3	 TCC	 	 AGA 	.G. A AGC	 C TAC	T T AGC	AI. A TGC	 .TT CAG	GTC	ACG	CAT	A GAA	A .A. GGG	AGC	G.A ACC	T.T GTG	A C GAG	 AAG	 ACA	 .G. 300 GTG
16-1 ψcλ4 ψcλ5 ψ18-1 cλ1 cλ2 cλ3 cλ6	 TCC 	 A CAC	 AGA 	.G. A AGC	 C TAC 	T T AGC 	AI. A TGC	 .TT CAG	 GTC 	ACG	CAT	A GAA 	A GGG	AGC	G.A ACC	T.T GTG	A C GAG	 AAG	 АСА	 .G
16-1 ψcλ4 ψcλ5 ψ18-1 cλ1 cλ2 cλ3 cλ6 14-1	 TCC 	 A CAC 	 AGA 	.G. A AGC	 c TAC 	T T AGC 	A1. A TGC	 .TT CAG	GTC	ACG	CAT	A	A . A. GGG	 AGC	G.A ACC 	T.T GTG	A C GAG 	AAG	ACA	 GTG T
16-1 ψcλ4 ψcλ5 ψ18-1 cλ1 cλ2 cλ3 cλ6 14-1 16-1	 TCC 	 A CAC 	 AGA 	.G. A AGC	 TAC	T T AGC 	A1. A TGC	 .TT CAG	GTC	ACG	CAT	A GAA 	A . A . GGGG 	AGC	G.A ACC 	T.T GTG .CA	A C GAG	AAG	ACA	 GTG
16-1 ψ cλ4 ψ cλ5 ψ 18-1 cλ2 cλ3 cλ6 14-1 16-1 ψ cλ4	 TCC 	 A CAC 	 AGA .A.	.G. A AGC TC.	 TAC 	T T AGC 	A1. A TGC	 .TT CAG	GTC	ACG	CAT	A	A GGGG A	AGC	G.A ACC T	 T.T GTG 	A	AAG	ACA	 GTG
16-1 ψcλ4 ψcλ5 ψ18-1 cλ1 cλ2 cλ3 cλ6 14-1 16-1 ψcλ4 ψcλ5	 TCC 	 A CAC 	 AGA 	.G. A AGC TC.	TAC	T T AGC 	AI. A TGC	 .TT CAG 	GTC	ACG	CAT	A GAA 	A GGGG A 	AGC	G.A ACC T T	T.T GTG .CA	A	AAG	ACA 	 GTG A
16-1 \$\$\psi_c \lambda_1 \$\$ \$\$\psi_1 \lambda	TCC	 CAC 	 AGA .A. 	.G. A AGC TC.	TAC	T T AGC 	A	 .TT CAG	GTC	ACG	CAT	A GAA 	A GGGG A 	AGC	G. A ACC T T	T.T GTG .CA	A	AAG	ACA G G	 GTG A
16-1 ψcλ4 ψ cλ5 ψ 18-1 cλ1 cλ2 cλ3 cλ6 14-1 16-1 ψcλ4 ψ cλ5 ψ 18-1 cλ1 cλ2 cλ3 cλ6 14-1 cλ1 cλ2 cλ3 cλ5 cλ3 cλ3 cλ3 cλ3 cλ3 cλ3 cλ3 cλ3	TCC	 A CAC 	AGA .A. .A.	.G. A AGC TC.	TAC 	T T AGC 	A1. A TGC	 .TT CAG 	GTC	ACG	CAT	A GAA A	A GGGG A 	AGC	G. A ACC T T	T.T GTG .CA A	A	AAG	ACA	 GTG T A
16-1 UCA4 UCA5 UA5 UA-1 CA1 CA2 CA3 CA6 14-1 16-1 UCA4 UCA4 UCA5 UA5 UA5 UA5 CA1 CA1 CA2 CA3 CA3 CA5 UA5 UA5 CA3 CA3 CA5 UA5 CA3 CA3 CA3 CA5 UA5 CA3 CA3 CA5 UA5 CA3 CA3 CA5 CA3 CA5 CA3 CA5 CA3 CA5 CA3 CA5 CA5 CA3 CA5 CA5 CA5 CA3 CA5 CA5 CA5 CA5 CA5 CA5 CA5 CA5	 TCC GCC	 A CAC 	AGA .A. .A. .A. .A. .A. .A.	.G. A AGC TC. GAA	TAC 	T T AGC 	A	 .TT CAG	GTC	ACG	CAT	A GAA A	A GGGG A A	AGC	G. A ACC 	T.T GTG .CA 	A	AAG	ACA	 GTG A
16-1 UCA4 UCA5 U18-1 CA1 CA2 CA3 CA3 14-1 16-1 UCA4 UCA4 UCA4 UCA4 UCA4 CA5 URA5	TCC GCC	 	AGA .A. .A. .A. .A. .A.	.G. A AGC TC. GAA	TAC	T T AGC 	A	 .TT CAG	GTC	ACG	CAT	GAA	A GGG A A	AGC	G. A ACC T T	 T.T GTG A	A	AAG	ACA G G	
16-1 UCA4 UCA5 U18-1 CA1 CA2 CA3 CA3 CA6 14-1 16-1 UCA4 UCA4 UCA4 UCA4 UCA4 UCA5 URA5	TCC GCC	A CAC 	AGA .A. .A. 	.G. A AGC TC.	TAC 	T T AGC 	A	 .TT CAG	GTC	ACG	CAT	GAA	A GGG A A.A	AGC	G.A ACC T T	 T.T GTG A	A	AAG	ACA	
16-1 ψcλ4 ψcλ5 ψ18-1 cλ1 cλ2 cλ3 cλ6 14-1 16-1 ψcλ4 ψcλ5 ψ18-1 cλ1 cλ2 cλ3 cλ6 14-1 16-1 cλ1 cλ2 cλ3 cλ6 14-1 16-1 cλ2 cλ3 cλ6 14-1 16-1 cλ2 cλ3 cλ6 14-1 16-1 cλ2 cλ3 cλ6 14-1 16-1 cλ2 cλ3 cλ6 14-1 16-1 cλ2 cλ3 cλ6 14-1 16-1 cλ2 cλ3 cλ6 14-1 16-1 cλ2 cλ3 cλ6 14-1 16-1 cλ2 cλ3 cλ6 14-1 16-1 cλ2 cλ3 cλ6 cλ2 cλ5 cλ6 cλ2 cλ6 cλ2 cλ2 cλ6 cλ2 cλ2 cλ3 cλ6 cλ2 cλ2 cλ3 cλ6 cλ2 cλ2 cλ2 cλ2 cλ2 cλ2 cλ2 cλ2	TCC		AGA .A. ACA G G	.G. A AGC TC. 	TAC	T T AGC 	A A TGC 	 .TT CAG 	GTC	ACG	CAT	GAA A	A GGG A A.A	 AGC 	G.A ACC T T	 T.T GTG .CA	A	AAG	ACA	
16-1 UCA4 UCA5 U18-1 CA1 CA2 CA3 CA6 14-1 16-1 CA1 CA2 CA3 CA6 14-1 16-1	TCC	 A CAC 	AGA .A. G. G. G.	 A AGC TC GAA	C TAC 	T T AGC TCA	A A TGC TGC 	 .TT CAG 	GTC 	ACG	CAT	A GAA A 	A GGG A A	AGC 	G.A. ACC 	 T.T GTG A	A C GAG 	AAG	ACA G G	
16-1 UCA4 UCA5 U18-1 CA1 CA2 CA3 CA6 14-1 16-1 UCA4 UCA4 UCA4 UCA4 UCA4 UCA4 UCA4 UCA4	 TCC GCC 	 A CAC 	AGA .A. .A. G. G. G.	.G. A AGC TC. GAA	 TAC 	T AGC TCA	A A TGC TGC 	 .TT CAG 	стс FIG.	 ACG 3.	CAT 	A	A GGG A AA 	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	G.A ACC T T	 T.T GTG .CA A 	A C GAG 	••••••••••••••••••••••••••••••••••••••	ACA G G	 GTG T A man C _h
16-1 UCA4 UCA5 UA5 UA1 CA1 CA2 CA3 CA6 14-1 16-1 UCA4 UCA5 UA4 CA2 CA3 CA6 14-1 CA1 CA2 CA3 CA6 14-1 16-1 UCA4 UCA5 UCA5 UCA5 UCA5 UCA5 UCA5 UCA5 UCA5 UCA5 UCA5 UCA5 UCA5 CA3 CA6 IA-1 ICA1 CA1 CA3 CA6 IA-1 ICA1 CA5 CA3 CA6 IA-1 ICA1 CA5 CA5 CA5 CA5 CA5 CA5 CA5 CA5	 TCC GCC 		AGA .A. .A. ACA ACA G. G. G. 	.G. A AGC TC. GAA	C		A	 .TT CAG 	GTC	 ACG 3. s. D	CAT C C	A GAA A ectionindic	A A A A A 	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	G.A ACC T 	 T.T GTG .CA A 	$\frac{A}{C}$	•••• •••• •••• •••• •••• •••• •••• •••• ••••	ACA 	 GTG A man C _λ ndicate

find the characteristic Phe-Gly-Xaa-Gly residues or the expected splice site at a downstream position. It is possible that the heptamer sequences are attached to poorly conserved pseudo J_{λ} segments and we cannot exclude the possibility that the putative $J_{\lambda}4$ and $J_{\lambda}5$ are localized in

		112 114 152
14- 0	a \ 1	6 8 . 46 . 46
Mcg_	CAL	GOPKANPTVTLFPPSSEELQANKATLVCLISDFIPGAVTVAWKADGSPVKAGV
Ke_Oz_	CY5	A.S
Ke_Oz*	СУЗ	A .SS
Ke [•] Oz ⁻	C λ6	
	14-1	T.S
	16-1	T.SL
	#C)4	H*DFTSSD.BGRDMMR.MI.GITIT
	4015	DIAL WN TEG. NTL.T.T
	WCA5	
	18-1	.LA.LDP.1PDE.IIIID.A
		163 190
		163 190 57 • • 833 • •
	CYI	163 ETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
	Cλ1 Cλ2	183 STEKEPSKOSNNKYAASSYLSLTPEOWKSHRSYSCOVTHEGSTVEKTVAPTECS T.
	Cλ1 Cλ2 Cλ3	190 57 ETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS T
	Cλ1 Cλ2 Cλ3 Cλ6	100 ETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS T
	CA1 CA2 CA3 CA6	103 37 ETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
	Cλ1 Cλ2 Cλ3 Cλ6 14-1	100 ETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS T K T K T K
	Cλ1 Cλ2 Cλ3 Cλ6 14-1 16-1	103 100 57 81 57 81 57 100 61 100 62 100 63 100 7 100 7 100 7 100 100 100 110 100
	Cλ1 Cλ2 Cλ3 Cλ6 14-1 16-1	107 100 ETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS T. T. K. T. K. T. A. M.T. R.R. M.T. A. M.T. R.R.
	Cλ1 Cλ2 Cλ3 Cλ6 14-1 16-1 ψCλ4	103 100 57 100 57 100 100 100
	Cλ1 Cλ2 Cλ3 Cλ6 14-1 16-1 ψCλ4 ψCλ4	107 100 ETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS T. T. K. T. K. M.T. R.R. M.T. S.M. R.R. M. T. A. M.T. S.M. R.R. M. T. R.A. T. N. K. RN A.
	CX1 CX2 CX3 CX6 14-1 16-1 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	100 100 57 87 ETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS T. K M.T. K M.T. R.R. M.T. R.R. M.T. A. M.T. S.M. R.R. M. T. R.R. M.T. S.M. R.R. M. M.T. S.M. R.R. M. M.T. R.A. K. RN A. N. KTAT. R. KTAT. R. Stat. S.B.

FIG. 4. Protein sequences derived from the human C_{λ} gene sequences. The standard one-letter symbols are used.

fragments that were not sequenced, upstream of the $C_{\lambda}4$ and $C_{\lambda}5$ genes.

 $C_{\lambda}4$ and $C_{\lambda}5$ Are Pseudogenes. Nucleotide sequences and the encoded amino acid sequences of $C_{\lambda}4$ and $C_{\lambda}5$ are shown in Figs. 3 and 4. Both genes are pseudogenes; the third codon of $C_{\lambda}4$ is a stop codon, and $C_{\lambda}4$ displays three deletions. The first deletion of 9 bp spans codons 5 to 7 and the other two deletions excise codons 21 and 64. $C_{\lambda}5$ has an 11-bp deletion (codons 41-44) resulting in a frameshift.

Table 1. Amino acid differences between the four nonallelic forms of the human C_{λ} regions

		Amino acid residue							
Isotype	Gene	112 (6)	114 (8)	152 (46)	163 (57)	190 (83)			
Mcg ⁺ Ke ⁺ Oz ⁻	C,1	Asn	Thr	Gly	Lys	Arg			
Mcg ⁻ Ke ⁻ Oz ⁻	C,2	Ala	Ser	Ser	Thr	Arg			
Mcg ⁻ Ke ⁻ Oz ⁺	C,3	Ala	Ser	Ser	Thr	Lys			
Mcg ⁻ Ke ⁺ Oz ⁻	C,6	Ala	Ser	Gly	Thr	Arg			

Residue numbering is according to ref. 34; parentheses enclose numbering of the codons in the C_{λ} genes.

FIG. 5. Physical map of the human λ light chain C region. $C_{\lambda}1$, $C_{\lambda}2$, and $C_{\lambda}3$ correspond, respectively, to the nonallelic Mcg, Ke⁻Oz⁻, and Ke⁻Oz⁺ chains (ref. 20; see Table 1). $C_{\lambda}4$ and $C_{\lambda}5$ are pseudogenes (ψ), whereas $C_{\lambda}6$ encodes a Ke⁺Oz⁻ chain. $J_{\lambda}1$ (22), $J_{\lambda}3$ (ref. 28 and this paper), and $J_{\lambda}6$ (this paper) have been localized 1.5 kb upstream of $C_{\lambda}1$, $C_{\lambda}3$, and $C_{\lambda}6$, respectively. $J_{\lambda}2$ has not yet been localized in genomic DNA. No J_{λ} gene segment has so far been identified upstream of $C_{\lambda}4$ and $C_{\lambda}5$.

DISCUSSION

In human λ chain C regions, the Mcg marker involves amino acid residues at positions 112, 114, and 163 (numbering according to ref. 34; Table 1) corresponding, respectively, to codons 6, 8, and 57 of the C_{λ} genes. Mcg⁺ proteins have residues Asn-112, Thr-114, and Lys-163, whereas Mcg⁻ proteins have residues Ala, Ser, and Thr, respectively, at these locations. However, the recently sequenced Mor protein is different from the other Mcg⁻ proteins by having Ala-163 instead of Thr-163 (16). The Ke and Oz markers occur at positions 152 and 190, respectively: Ke⁺ proteins have Gly-152 and Ke⁻ have Ser-152; Oz⁺ proteins have Lys-190 and Oz⁻, Arg-190. These markers define four nonallelic forms of human λ chain C regions (Mcg, Ke⁻Oz⁻, Ke⁻Oz⁺, and Ke⁺Oz⁻), which are encoded, respectively, by the $C_{\lambda}I$, $C_{\lambda}2$, $C_{\lambda}3$ (20), and $C_{\lambda}6$ (this paper) genes (Fig. 5).

In Fig. 6, monoclonal Bence Jones proteins have been assigned as products of the C_{λ} genes 1, 2, 3, or 6 on the basis of the presence or absence of residues characteristic for the Mcg, Ke, and Oz markers. In most cases, there is complete concordance between the protein and the deduced amino acid sequence of the corresponding C_{λ} gene. However, other amino acid changes have been found in several proteins (Table 2 and Fig. 6). Since these substitutions have been noted only once, they could represent allotypic differences. However, it is not excluded that some of the proteins Ke⁻Oz⁻ could be encoded by a C_{λ} gene resulting from the duplication of the $C_{\lambda}2-C_{\lambda}3$ region, as has been described in some individuals (21). In such cases these sequences should represent new isotypic differences due to the presence of several nonallelic copies of $C_{\lambda}2$ gene. Differences observed

Table 2.	Sequence var	iations in t	he C region of	human λ	chains
Isotype	Common amino acid	Residue number	Variant amino acid	Protein	Ref.
Mcg	Lys	156	Glu	WEIR	8
Ke-Oz-	Lys	129	Glx Arg	CH NIG68	9 10
			Ser	ATK	11
	Ala	143	Val	MZ	12, 13
	Val	155	Ile	HIL	14
	Lys	156	Glu	SA	11
	Ala	157	Val	WAY	1
	Lys	172	Asn	MZ	12
			Arg	MOR	16
	Lys	187	Gln	ATK	11
	Gln	195	Leu	NIG68	10
Ke ⁻ Oz ⁺	Asp	151	Glu	EV	15

Residue numbers according to Kabat et al. (34).

in the $J_{\lambda}2$ sequences (Fig. 6) might for the same reason be either allotypic or isotypic. Differences in the $J_{\lambda}1$ segment region might represent allotypic differences, although the presence of not yet identified other $J_{\lambda}1$ segments cannot be ruled out.

If we compare the deduced amino acid sequence of $C_{\lambda}6$ gene with two known Ke⁺Oz⁻ proteins that have identical C_{λ} coding regions, SM (53) and Kern (52), the protein predicted for $C_{\lambda}6$ shows three differences: (*i*) lysine at position 145 (codon 39) instead of threonine, (*ii*) asparagine at position 156 (codon 50) instead of lysine, and (*iii*) alanine at position 212

						Jλ	СУ				
	Dof		KEDN			95 107 112 114		152	163	190	215
,	Rel.	T 11 C 11	KERN	ΟZ	MCG	WUECECENER CORKA UPTUT	EDDEEEEL ON WATL VOL TEDEVOCA	VTUNHENDCE BUENCY	57	NACONI CLADEOUROBENCONTUROCATION	106
(20,22)	JAI-CAI	+	-	+	IVIGIGIAVIVLGQPAANPIVII	PPSSEELQARKAILVCLISUTIPGA	VIVANAADGSFVAAG	LIINPSKUSNAKI	ARSSILSLIPLQWASHRSISCQVIHLGSIVERIVA	APTECS
	(0)	MCG	+	-	+	F C B			• • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••	••••
	(0,15)	WEIR	+	-	+	······································				•••••••••••••••••••••••••••••••••••••••	• • • • • •
	(38)	MOT			+	v		•••		•••••••••••••••	••
	(20)	C \ 2	-	-	-	lλ.s		.	T		
	(39)	NEW	-	-	-	VG		s	T		
	(40)	SH	-	-	-	VLGLA.S		s	T		
(13.421	x	-	-	-	VGRLSA.S		s	.		
•	(41)	HA	-	-	-	VGQLRA.S		s	T		
	(9)	СН	-	-	-	GLRA.S	Z	s	T		
	(14)	HIL	-	-	-	SIGL			T		
(12.131	MZ	-	-	-			'ss	T		
•	(10)	NTG68	-	-	-	.λλ.S		ss		L	
	(43)	BO	-	-	-	FGLRA.S	ZZ.Z.B	ss	T	ZZZZZZ	
	(44)	NET	-	-	-	RGRSA.S	zz	ss	TZ.BB		
	(33)	DEL	-	-	-	VGL	ZZ.ZB	BS	. Z T BB		z
	(45)	BAU	_	-	-	VIGL	ZZ.Z.B	sss.	TZ.BB	ZZZ	
	(46)	TRO	-	-	-	VIGL	ZZ.Z.B	ss	TZ.BB		
	(16)	MOR	-	-	-	LSA.S		sss.	R.		
(This)	paper,										
	20)	JX3-CX3	-	+	-	G		S	T	кк.	
	(5)	oz		+		•				K	
	(47)	SUT	-	+	-	WGLA.S		S	T	к.	
	(48)	THO	-	+	-	WGLA.S		S	T	K	
	(49)	NEWM	-	÷	-	RGLRA.S		S	T		
	(50)	VOR	-	÷	-	PG		S	TZ.BB	ZZKZZZZ	
	(51)	CDNA EB4	-	+	-	GGLA.S		ss	T	кк	
(Thic						* • • • •			-		
	haher)	1 Y P-C Y P	+	-	-	MS	• • • • • • • • • • • • • • • • • • • •	K N	•••••	•••••••••••••••••••••••••••••••••••••••	· · A · · ·
	(52)	KERN	+	-	-	A1	• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	• • • • • •
	(53)	SM	+	-	-	A.S			T		

FIG. 6. Sequences of C regions of human λ chains. The protein sequences encoded by the four "active" C_{λ} genes and associated J_{λ} gene segments are compared with the λ protein C regions. The numbering of the C_{λ} region amino acids is according to ref. 34—e.g., positions 169, 201, and 202 are excluded in the C_{λ} sequences for purposes of alignment with human C_{κ} chains. For an easier alignment, the J_{λ} and C_{λ} gene segments are considered as being spliced and a vertical line is drawn to indicate the V–J junction. The horizontal line in the SM sequence shows a deletion.

(codon 103) instead of threonine (Fig. 6). These differences may represent allotypic variations, although we cannot entirely exclude the possibility that these different Ke⁺Oz⁻ sequences are encoded by nonallelic genes. More sequences of C_{λ} genes or λ proteins should help estimate the extent of the human λ chain polymorphism.

Note Added in Proof. The J_{λ}^2 gene segment has recently been localized upstream of C_{λ}^2 (54).

We are very grateful to Dr. T. H. Rabbitts for providing us with the LY67 cell line and Chr22 λ 5 clone. We thank Dr. P. Fort for his collaboration, which was greatly appreciated. We also thank C. Aymard for synthesizing the oligonucleotide and Véronique Ramond for typing the manuscript. This work was supported by the Centre National de la Recherche Scientifique, the Association pour la Recherche sur le Cancer, the Fondation pour la Recherche Médicale, and the Ministère de la Recherche.

- 1. Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Hoppe-Seyler's Z. Physiol. Chem. 349, 867-871.
- Hess, M., Hilschmann, N., Rivat, L., Rivat, C. & Ropartz, C. (1971) Nature (London) New Biol. 234, 58-61.
- 3. Ein, D. & Fahey, J. L. (1967) Science 156, 947-950.
- 4. Ein, D. (1968) Proc. Natl. Acad. Sci. USA 60, 982-985.
- Appella, E. & Ein, D. (1967) Proc. Natl. Acad. Sci. USA 57, 1449-1454.
- 6. Fett, J. W. & Deutsch, H. F. (1974) Biochemistry 13, 4102-4114.
- 7. Fett, J. W. & Deutsch, H. F. (1975) Immunochemistry 12, 643-652.
- Jabusch, J. R. & Deutsch, H. F. (1982) Mol. Immunol. 19, 901-906.
- 9. Okada, Y., Nozu, Y., Titani, K., Watanabe, S., Hara, H. & Kitagawa, M. (1972) Immunochemistry 9, 207-210.
- Shinoda, T., Yoshimura, K., Kametani, F. & Isobe, T. (1983) Biochem. Biophys. Res. Commun. 117, 587-592.
- 11. Lieu, T. S., Deutsch, H. F. & Tischendoif, F. W. (1977) Immunochemistry 14, 429-433.
- 12. Milstein, C. (1967) Nature (London) 216, 330-332.
- 13. Milstein, C., Frangione, B. & Pink, J. R. L. (1967) Cold Spring Harbor Symp. Quant. Biol. 32, 31-36.
- Lopez de Castro, J. A., Chiu, Y.-Y. H. & Poljak, R. J. (1978) Biochemistry 17, 1718–1723.
- 15. Fett, J. W. & Deutsch, H. F. (1976) Immunochemistry 13, 149-155.
- Frangione, B., Moloshok, T., Prelli, F. & Solomon, A. (1985) Proc. Natl. Acad. Sci. USA 82, 3415–3419.
- 17. Erickson, J., Martinis, J. & Croce, C. M. (1981) Nature (London) 294, 173-175.
- McBride, O. W., Hieter, P. A., Hollis, G. F., Swan, D., Otey, M. C. & Leder, P. (1982) J. Exp. Med. 155, 1480–1490.
- de la Chapelle, A., Lenoir, G., Boué, J., Gallano, P., Huerre, C., Szajnert, M. F., Jeanpierre, M., Lalouel, J. M. & Kaplan, J. C. (1983) Nucleic Acids Res. 11, 1133-1142.
- Hieter, P. A., Hollis, G. F., Korsmeyer, S. J., Waldmann, T. A. & Leder, P. (1981) Nature (London) 294, 536-540.
- Taub, R. A., Hollis, G. F., Hieter, P. A., Korsmeyer, S., Waldmann, T. A. & Leder, P. (1983) Nature (London) 304, 172-174.
- 22. Chang, H., Dmitrovsky, E., Hieter, P. A., Mitchell, K., Le-

der, P., Turoczi, L., Kirsch, I. R. & Hollis, G. F. (1986) J. Exp. Med. 163, 425-435.

- Lenoir, G. M., Preud'homme, J. L., Bernheim, A. & Berger, R. (1982) Nature (London) 298, 474–476.
- Karn, J., Matthes, H. W. D., Gait, M. J. & Brenner, S. (1984) Gene 32, 219–224.
- 25. Benton, W. D. & Davis, R. W. (1977) Science 196, 180-182.
- Rabbitts, T. H., Forster, A. & Matthews, J. (1983) Mol. Biol. Med. 1, 11-19.
- Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. (1977) J. Mol. Biol. 113, 237–251.
- Sun, L.-H. K., Croce, C. M. & Showe, L. C. (1985) Nucleic Acids Res. 13, 4921–4934.
- 29. Vieira, J. & Messing, J. (1982) Gene 19, 259-268.
- Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. A. (1980) J. Mol. Biol. 143, 161–178.
- 32. Guo, L. H., Yang, R. C. A. & Wu, R. (1983) Nucleic Acids Res. 11, 5521-5540.
- 33. Eulitz, M. (1974) Eur. J. Biochem. 50, 49-69.
- 34. Kabat, E. A., Wu, T. T., Bilofsky, H., Miller-Reid, M. & Perry, H. (1983) Sequences of Proteins of Immunological Interest (Natl. Inst. of Health, Washington, DC).
- 35. Max, E. E., Seidman, J. G. & Leder, P. (1979) Proc. Natl. Acad. Sci. USA 76, 3450-3454.
- Sakano, H., Hüppi, K., Heinrich, G. & Tonegawa, S. (1979) Nature (London) 280, 288-294.
- 37. Early, P., Huang, H., Davis, M., Calame, K. & Hood, L. (1980) Cell 19, 981-992.
- Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol. Immunol. 17, 1407–1414.
- Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Hoppe-Seyler's Z. Physiol. Chem. 349, 945-951.
- Titani, K., Wikler, M., Shinoda, T. & Putnam, F. W. (1970) J. Biol. Chem. 245, 2171-2176.
- Shinoda, S., Titani, K. & Putnam, F. W. (1970) J. Biol. Chem. 245, 4475-4487.
- 42. Milstein, C., Clegg, J. B. & Jarvis, J. M. (1968) Biochem. J. 110, 631-652.
- 43. Wikler, M. & Putnam, F. W. (1970) J. Biol. Chem. 245, 4488-4507.
- 44. Garver, F. A. & Hilschmann, N. (1972) Eur. J. Biochem. 26, 10-32.
- 45. Baczko, K., Braun, D. G., Hess, M. & Hilschmann, N. (1970) Hoppe-Seyler's Z. Physiol. Chem. 351, 763-767.
- 46. Scholz, R. & Hilschmann, N. (1975) *Hoppe-Seyler's Z. Physiol. Chem.* **356**, 1333-1335.
- Frangione, B., Moloshok, T. & Solomon, A. (1983) J. Immunol. 131, 2490–2493.
- Ghiso, J., Solomon, A. & Frangione, B. (1986) J. Immunol. 136, 716-719.
- 49. Chen, B. L. & Poljak, R. J. (1974) Biochemistry 13, 1295-1302.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Hoppe-Seyler's Z. Physiol. Chem. 355, 85-88.
- Anderson, M. L. M., Brown, L., McKenzie, E., Kellow, J. E. & Young, B. D. (1985) Nucleic Acids Res. 13, 2931–2941.
- Ponstingl, H., Hess, M. & Hilschmann, N. (1971) Hoppe-Seyler's Z. Physiol. Chem. 352, 247-266.
- Garver, F. A., Chang, L., Mendicino, J., Isobe, T. & Osserman, E. F. (1975) Proc. Natl. Acad. Sci. USA 72, 4559–4563.
- 54. Udey, J. A. & Blomberg, B. (1987) Immunogenetics 25, 63-70.