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Abstract

The rat is the preferred experimental animal in many biological studies. With the recent derivation of authentic rat
embryonic stem (ES) cells it is now feasible to apply state-of-the art genetic engineering in this species using homologous
recombination. To establish whether rat ES cells are amenable to in vivo recombination, we tested targeted disruption of
the hypoxanthine phosphoribosyltransferase (hprt) locus in ES cells derived from both inbred and outbred strains of rats.
Targeting vectors that replace exons 7 and 8 of the hprt gene with neomycinR/thymidine kinase selection cassettes were
electroporated into male Fisher F344 and Sprague Dawley rat ES cells. Approximately 2% of the G418 resistant colonies also
tolerated selection with 6-thioguanine, indicating inactivation of the hprt gene. PCR and Southern blot analysis confirmed
correct site-specific targeting of the hprt locus in these clones. Embryoid body and monolayer differentiation of targeted cell
lines established that they retained differentiation potential following targeting and selection. This report demonstrates that
gene modification via homologous recombination in rat ES cells is efficient, and should facilitate implementation of
targeted, genetic manipulation in the rat.
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Introduction

The rat was first domesticated for scientific research over 100

years ago and rapidly became one of the most important

experimental animal models in biomedical sciences [1]. Its size,

physiology, intelligence and reproductive characteristics make it a

particularly useful model to study most facets of mammalian

biology, including human disease. Despite these advantages,

progress in applying forward genetic approaches to dissect the

genetic and molecular basis of biological processes in rats has

languished behind the rapid advances made in mice, particularly

those made through applying homologous recombination in

embryonic stem (ES) cells. A limiting step in applying this

technology to rats has been the lack of genuine germ line

competent rat ES cells. However, a novel serum-free culture

system using small molecule differentiation inhibitors was recently

shown to support the derivation and propagation of genuine rat

ES cell lines [2,3]. These cell lines can be transmitted through the

germ line and provide an opportunity to apply contemporary in-

vivo DNA recombination based methods to deliver targeted

genetic engineering in the rat.

To evaluate the potential of these novel rat ES cell lines for

introducing targetedmutations in therat,wehavetested theircapacity

for homologous recombination at the hprt locus. The hprt enzyme

catalyses a key step in the scavenger pathway for purine synthesis and

its inactivation can be selected for directly, either positively or

negatively, by chemically manipulating nucleotide biosynthesis. The

gene encoding HPRT is located on the X-chromosome and was

amongst the first genes to be successfully targeted by homologous

recombination in mouse, in an attempt to model the mutation that

causes Lesch-Nyhan syndrome in humans [4,5].

Manipulation of the hprt gene also has direct applications in

genetic engineering [6,7,8,9]. The hprt locus, with its ubiquitous,

low level, constitutive transcriptional activity can be exploited as a

‘‘safe haven’’ for expressing exogenous transgenes [10]. Targeted

integration of transgenes within the hprt locus, using, for example,

recombination mediated cassette exchange [11,12], permits both

comparative analysis of genes placed at the identical genomic site,

as well as tight experimental control of conditionally regulated

transgenes [13,14,15]. In addition, hprt-deficient ES cells provide a

host background in which recombination-mediated reconstruction

of hprt minigenes can be used in chromosome engineering [8,9,16].

In this report we demonstrate efficient homologous recombina-

tion at the hprt locus in ES cells derived from inbred and outbred

strains of rats. We compared the targeting efficiencies in these lines

with those previously obtained with ES cells of other species, and

evaluated the differentiation potential of correctly targeted clones,

to assess the feasibility of gene targeting in the rat using ES cells.
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Results and Discussion

Based on previous reports describing targeted disruption of the

hprt gene in mouse and human ES cells, the hprt targeting vector

was designed to delete exons 7 and 8 of the rat gene, thereby

ensuring its complete inactivation (Figure 1). A 7 kb fragment

spanning this region was amplified from Fischer 344 (F344) rat

genomic DNA by PCR, using oligonucleotide primers based on

genomic sequence information available for the Brown Norway

(BN) strain. Sub-fragments of this amplicon, flanking exons 7 and

8, provided the 59 and 39 homology arms used to encompass a

dual positive/negative selection cassette within the hprt targeting

vector. This cassette contains a PGK-neo transcription unit to

allow positive selection of G418 resistant transfectants, and a

MC1-thymidine kinase (TK) minigene that enables negative

selection using gancyclovir, thereby facilitating substitution of the

entire cassette by recombination-mediated cassette exchange via

flanking heterospecific LoxP and Lox511 sites (Figure 1).

To establish the general applicability of gene targeting in rat ES

cells we decided to disrupt the hprt gene in cell lines from two rat

strains. The Fischer F344 strain was selected as representing an

inbred rat that is frequently used in biomedical studies, and was

the source of genomic DNA for the homology arms in the

targeting vector. The outbred Sprague Dawley (SD) strain was

chosen because SD ES cells have previously been shown to

contribute to the germ line in chimaeric rats [2]. Cell lines from

both strains were derived de novo from rat blastocysts using 2i

medium and DIAM feeder support cells as described previously

[2] (Table 1). Consistent with previous experiments [2] (Buehr and

Meek unpublished observations), F344 cell lines grew slower than

comparable SD cultures. To stimulate growth of these cultures we

tested whether reducing the oxygen tension would aid establish-

ment of F344 cell lines, as this approach had been reported to

promote growth of other types of ES cells [17]. Indeed, cell lines

from F344 embryos were established more efficiently in 2% than

21% oxygen and expanded more rapidly from embryo out-

growths, indicating that lowering the oxygen tension improves cell

proliferation or survival in F344 stem cell cultures (Table S1,

Figure S1).

Based on their robust growth and karyotype we selected male

Fischer (RIF5.2) and SD (RISD10) ES cell lines for the gene

targeting experiments (Table 2). The cell lines were transfected

with linearised vector DNAs using a standard electroporation

protocol previously validated in rat ES cells [2]. After approx-

imately 10 days selection in medium containing the aminoglyco-

side G418, the antibiotic resistant ES colonies cells were switched

to medium containing 6-TG, which eliminates any cells expressing

hprt. Untransfected, parental control cells under these conditions

were completely eliminated within 3–4 days. In contrast, a small

number of G418 resistant colonies, that had been electroporated

with the targeting vectors, continued to expand in 6-TG medium,

indicating that the endogenous hprt gene was inactive in these cells.

To establish directly that the hprt gene had been disrupted by

vector-mediated recombination, we analysed genomic DNA

prepared from sample 6-TG resistant clones. PCR amplification

with primer combinations using 59 or 39 primers located outside

the homology arms, produced the expected product sizes of 6.5 kb

and 2.7 kb, respectively (Figure 1C). A Southern Blot hybridised

with a probe upstream of the 59 homology arm, confirmed

accurate insertion of the targeting vector to delete the region

encompassing exons 7–8 in SD and F344 clones (Figure 1D). The

efficiency of hprt targeting achieved with the rat cells in four

independent electroporations, using either the dual selection

vector or a simpler neo cassette (Figure S2), was similar to those

originally reported for mouse and human ES cells [18,19,20]

(Table 3). Chromosome counts identified targeted clones with

karyotypes close to that of the parental cell lines, indicating that

the process of gene targeting and clonal growth under selection is

compatible with stable expansion of rat ES cells (Table 2).

However, the recovery of aneuploid clones amongst our targeted

lines is consistent with an underlying genetic instability in rat ES

cell cultures, noted previously [3].

To establish whether pluripotency was maintained in the

targeted clones, we evaluated the stem cell marker profile and in

vitro differentiation capacity of F344 and SD targeted clones

(Figure 2 and Figure S3). This analysis showed that the RNA and

protein expression patterns of the stem cell markers Oct4, Nanog,

etc was equivalent to that of the parental cell line. Moreover, RT-

PCR, and immunohistochemical analysis of cells differentiated

either in suspension or in monolayer confirmed that targeted cells

were capable of giving rise to cells from all three embryonic germ

layers, ectoderm (TuJ, Nestin staining) endoderm (Sox17, AFP)

and mesoderm (Flk1).

Based on the data reported here, rat ES cells are readily

amenable to gene targeting by homologous recombination using

the basic methodology that has proved so effective in mouse ES

cells. The efficiency of targeted gene insertion at the rat hprt locus

was similar to the first published reports for mouse and human ES

cells. This demonstrates that rat cells derived and maintained in

the 2i growth conditions are readily amenable to genetic

modification, and should encourage efforts to achieve routine

gene targeting in the rat. The important next steps in achieving

this aim will be to refine culture methods in order to maximise ES

cell integrity, and to identify stem cell/embryo strain combinations

that ensure reliable and efficient transmission of genetic modified

cells through the germ line. The availability of hprt deficient rat ES

cell lines also provides reagents with which to develop reliable,

controllable transgene expression in rat ES cells, as well as

accelerating the prospect of using large scale genome engineering

to humanise specific chromosomal regions in the rat.

Materials and Methods

Ethics statement
All animal work conformed to guidelines for animal husbandry

according to the UK Home Office, and ethics were approved by

the Roslin Institute Animal Ethics Committee. Animals were

naturally mated, and sacrificed under schedule 1; procedures that

do not require specific Home Office approval.

Derivation of rat ES cells
Rat blastocysts were harvested at 4.5d.p.c in PB1 containing

10% FCS and the zona pellucida removed with acid Tyrode’s

solution (Sigma, T1788). The blastocysts were then incubated in

20% anti-rat serum antibody (Sigma, R5256) for 3 hours at 37uC,

then rinsed three times in successive drops of PB1 containing 10%

FCS. The trophectoderm was lysed at 37uC for 20 minutes in PB1

containing rat serum, collected in-house, at a dilution of 4:1. The

resulting ICMs were isolated using a fine, glass pipette, then plated

on a layer of gamma-irradiated DIA-M cells in 2i medium [2].

Cells were allowed to attach and outgrow for approximately five

days, then mechanically disaggregated into small clumps using a

fine, glass pipette and moved to fresh DIA-M feeders in 2i

medium.

Culture Procedure
Feeder cells were prepared from gamma-irradiated DIA-M

mouse fibroblasts that express matrix-associated LIF [21,22].

Gene Targeting in Rat ES Cells
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ICMs and passaged cell lines were plated on DIA-M feeders

in 2i medium [2]. Inhibitors were custom-synthesized by the

Division of Signal Transduction Therapy, University of

Dundee. Cell lines were routinely passaged by aspirating the

colonies into fine, glass pipettes and transferring the resultant

disaggregated cells to fresh wells or by dissociation with Cell

Dissociation Buffer.

Monolayer neural differentiation was induced by adherent

serum-free culture for 11 days using laminin as a substrate for

attachment.

DNA Cloning
A 6.9 kb fragment was amplified from F344 genomic DNA

using oligonucleotides flanking Exons 7, 8 and 9 (HPRTintr6for2 -

Figure 1. Targeting of the hprt gene in rat embryonic stem cells. (A) Structure of the HPRT targeting vector (top), the wild-type hprt allele
(middle) and targeted allele (bottom), resulting from replacement recombination at the dotted lines. The null allele was created by substitution of
exons 7 and 8 with a PGKneo/MC1tk selection cassette (green and blue boxes). Exons are depicted by red boxes, non-exon–containing chromosomal,
and cloned, genomic DNA sequence is shown by a thick black line and pBluescript plasmid sequence by a thin black line. Restriction enzyme sites
BamHI (B) BstBI (Bs), EcoRV (E), NdeI (N), SacI (S) and XbaI (X) are indicated. Oligonucleotide pairs (green and orange arrowheads) and 59 probe
sequence (hashed box), consisting of sequence homologous and external to the homology arms, were used for PCR-based and Southern screening
respectively. Sizes of expected products are shown by dotted arrows. (B) Brightfield image of electroporated RIF5.2 cells two days post-
electroporation and prior to selection (left panel), and of a resultant 6-TG-resistant clone 1-B9 (right panel) (Magnification x100). (C) Confirmation of
targeted integration by PCR amplification of (1) water blank, and of genomic DNA from (2) RIF5.2 parental rat ES cell line, (3) 6-TG-sensitive wildtype
clone and (4) 6-TG-resistant targeted RIF5.2 clone using oligonucleotide pairs shown in (A). (D) Confirmation of targeted integration by Southern blot
analysis using 59 probe shown in panel (A), of XbaI digested genomic DNA from (1) SNL feeder cells, (2) RIF5.2 parental rat ES cell line, (3) RIF5.2-
derived 6-TG-resistant clone 1-B9, (4) RIF5.2-derived 6-TG-resistant clone 3-B4, (5) RISD10 parental cell line, (6) RISD10-derived 6-TG-resistant targeted
clone 13, (7) RISD10-derived 6-TG-resistant targeted clone 14 and (8) RISD10-derived 6-TG-resistant targeted clone 16.
doi:10.1371/journal.pone.0014225.g001
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CCTCCCCAATGCCTACAATG and 39FLKrev3 – CCTTTC-

CCTGTCCTACACAC). The PCR was performed using Pfu

UltraII Fusion HS DNA Polymerase (Stratagene, 600672) under

the following conditions; 95uC for 2 minutes, followed by 30 cycles

of 94uC for 30 seconds, 60uC for 30 seconds and 68uC for 10

minutes, with a final extension at 68uC for 10 minutes. PCR

products were cloned into EcoRV digested pBluescript and

sequence integrity confirmed by comparing sequences of four

individual clones from separate PCR reactions with the sequence

for Brown Norway rat (Ensembl, ENSRNOG00000031367).

A 5.4 kb BstBI/SacI fragment was subcloned from the F344

HPRT PCR clone. The 650 bp NdeI/EcoRV fragment containing

exons 7 and 8 was removed and replaced with either a double

selection cassette consisting of PGKneo and MC1tk, flanked by

inverted heterospecific lox sites, loxP and lox511, or an frt-flanked

PGKneo cassette.

Electroporation
The targeting vector containing the neo/tk double selection

cassette was linearised with AhdI. The targeting vector containing

the neo single selection cassette was linearised with XhoI.

Approximately 36106 rat ES cells were electroporated in PBS

containing 50 mg linearised HPRT targeting vector using the Bio-

Rad Genepulser apparatus (0.8 kV, 3 mF). Electroporated cells

were plated into 10 cm2 wells containing 2i medium and feeder

support cells. G418 (150 mg/ml) selection was added 48 h post-

electroporation and the number of G418-resistant colonies

counted 9–10 days post-electroporation. 6-TG selection (5 mM)

was applied at either day 9, or following picking and replica-

plating of individual G418-resistant clones. To reduce HPRT

cross-feeding, 6-TG resistant rat ES cells were selected on HPRT-

deficient SNL feeder cells.

Genomic PCR screening
200 ng of genomic DNA was amplified using oligonucleotides

designed to identify the 59 targeting event (HPRT59FLKfor -

GGTAGTAACAAGTGGTGGAC and HPRT3662R – CCAC-

TTTCGCTGATGACAC) and 39 targeting event (MC1tkfor –

GGGGAATGGTTTATGGTTCG and HPRT39FLKrev –

CAAATGCAGGGAACGACACC). The PCR was performed

using Pfu UltraII Fusion HS DNA Polymerase (Stratagene,

600672) under the following conditions; 95uC for 2 minutes,

followed by 35 cycles of 94uC for 30 seconds, 60uC for 30 seconds

and 68uC for 10 minutes, with a final extension at 68uC for 10

minutes. Products were visualised with ethidium bromide on a

0.8% TBE agarose gel. Expected sizes for 59 screening are 3.5 kb

for wildtype and 6.5 kb for targeted. Expected sizes for 39

screening are no product for wildtype and 2.7 kb for targeted.

Southern Blot
Eight micrograms of genomic DNA were digested with 200

units of appropriate enzyme at 37uC for 30 hours. The resulting

DNA fragments were resolved on a 0.7% TAE agarose gel

overnight at 25 V. The DNA fragments were UV-nicked prior to

transfer to Hybond N+ Nylon membrane (GE Healthcare,

RPN203B) as described in the manufacturer’s instructions.

Following transfer, the DNA was UV cross-linked on to the

membrane. Probes were prepared by PCR amplification of HPRT

sequence flanking the 59 and 39 homology arms (Intr6F2 –

CCTCCCCAATGCCTACAATG and HPRT289R – GAAAAA-

GGAAGCAAGTGTGG, and HPRT6125F – GTGCTGTTTT-

CCTCATGGGC and HPRT6373R – GCTACCTTCTGG-

CTTTGTTAG for 59 and 39 probes respectively).

25 ng of probe DNA was radioactively labelled with a–dCTP

P32 using High Prime (Roche, 11 585 592 001), then hybridised to

the membrane overnight at 65uC in Church solution containing

10 mg/ml sonicated Herring Sperm DNA and 10 mg/ml tRNA.

Non-specific binding was removed by washing in 2xSSC/0.1%

SDS at 65uC.

Immunohistochemistry
Cells were fixed in 4% paraformaldehyde (10 minutes at room

temperature), washed four times with PBST (PBS, 0.03%

TritonX-100), then incubated with blocking solution (PBST, 3%

goat serum, 1% BSA) for one hour at room temperature. Primary

antibodies were diluted in blocking solution and applied overnight

at 4uC, followed by four washes with PBST. Secondary antibodies

were diluted 1:1000 in blocking solution and applied for one hour,

at room temperature in the dark. The cells were washed four times

with PBST, with the final wash containing 10 mg/ml DAPI. The

antibodies used were Oct4 (C-10) primary antibody at 1:200

(Santa Cruz, sc5279) with goat-anti-mouse IgG2b secondary

antibody, Nanog primary antibody at 1:200 (Abcam, Ab21603)

with goat-anti-rabbit IgG secondary antibody, bIII-tubulin

primary antibody at 1:500 (Covance, mms-435P) with goat-anti-

mouse IgG2a secondary antibody, and Nestin primary antibody at

1:20 (Developmental Studies Hybridoma Bank, Rat-401) with

goat-anti-mouse IgG1 secondary antibody.

RT-PCR
RNA was purified from around 50 colonies using RNeasy Mini

Kit

(Qiagen) and cDNA subsequently generated by Oligo-dT

priming using

SuperScript First-Strand Synthesis System (Invitrogen). The

resultant cDNA was diluted to 200 ng/ml, and 2 ml PCR amplified

on a PTC-200 thermocycler (MJ Research) using Taq DNA

Polymerase (Invitrogen) for 30 cycles. Details of the annealing

Table 1. Rat embryonic stem cell derivation efficiency.

Strain Oxygen (%) Outgrowths Established Lines Efficiency (%)

SD 21 13 13 100

F344 21 10 7 70

F344 2 11 10 91

doi:10.1371/journal.pone.0014225.t001

Table 2. Karyotype of targeted rat ES cell clones.

Cell Line
Oxygen
(%) Passage

Karyotype
(%)#

Plates
counted

RIF5.2 2 6 60 50

RIF5.2, 1-B9 2 22 63 38

RIF5.2, 3-B4 2 21 0 36

RISD10 21 10 69 52

RISD10, 6.7, tg13 21 13 68 22

RISD10, 6.7, tg14 21 12 0 20

RISD10, 6.7, tg16 21 13 69 16

RISD10, 2.2, tg14 21 12 64 42

#Percentage of metaphase plates containing euploid chromosome number of
42.

doi:10.1371/journal.pone.0014225.t002
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Table 3. Comparison of HPRT targeting frequency in ES cells.

Author Species Strain Homology Expt. Cell No. G418R 6-TGR" Frequency{

Burdon Rat F344 4.7 kb 1 2.76106 58 1 0.461026

2 2.76106 53 1 0.461026

SD 4.7 kb 3 3.06106 43 3 1.061026

4* 3.06106 60 1 0.361026

Capecchi [19] Mouse 9.1 kb N/A 7.86107 30000 32 0.461026

Smithies [18] Mouse 1.3 kb N/A 2.56106 2000 4 1.661026

Thomson [20] Human 11.9 kb N/A 1.56107 350 7 0.561026

"Selection with G418 first, followed by 6-TG selection.
{Number of targeted cells per number of cells electroporated.
*Electroporation with frt flanked NeoR hprt targeting vector.
doi:10.1371/journal.pone.0014225.t003

Figure 2. Characterisation of hprt -targeted rat F344 embryonic stem cells. (A) Immunohistochemical staining of targeted clone 1-B9 for
Oct4 and Nanog (Magnification x100). (B) RT-PCR analysis of (1) Water blank, (2) DIA-M feeder layer, (3) rat E10.5 embryo, (4) E14Tg2a mouse ES cells,
(5) RIF5.2 parental rat ES cell line, (6) 6-TG-resistant clone 1-B9, (7) 6-TG-resistant clone 2 F10, (8) 6-TG-resistant clone 3-B4 and (9) 6-TG-resistant clone
3-C10. (C) Immunostaining for Nestin and Tuj1 following 11 day monolayer differentiation protocol of 6-TG-resistant clone 1-B9 (Magnification x100).
(D) RT-PCR analysis of (1) DIA-M feeder layer, (2) rat E10.5 embryo, (3) 6-TG-resistant clone 1-B9, (4) Embryoid bodies formed from clone 1-B9.
doi:10.1371/journal.pone.0014225.g002

Gene Targeting in Rat ES Cells
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temperatures, oligonucleotide sequences and product sizes are

listed in Table S2. PCR products were resolved on a 2% agarose

gel and visualised with ethidium bromide.

Supporting Information

Figure S1 Effect of oxygen concentration on rat embryonic stem

cell growth. (A) Brightfield images of two F344 cell lines, 23 days

post-derivation, maintained in 2% or 21% oxygen (magnification

x100). (B) Growth rate of six F344 lines, from inner cell mass

isolation to passage four, grown in either 2% or 21% oxygen.

Found at: doi:10.1371/journal.pone.0014225.s001 (0.47 MB

TIF)

Figure S2 Targeting of the HPRT gene in Sprague Dawley rat

embryonic stem cells with a PGK/neo targeting vector. (A)

Targeting diagram as described in Figure 1A, except that an frt

flanked PGK/neo cassette was used to replace exons 7 and 8. (B)

Confirmation of targeted integration by Southern blot analysis of

XbaI digested genomic DNA from (1) RISD10 parental cell line,

(2) RISD10-derived 6-TG-resistant clone 2.2.14 using 59 probe

shown in (A). (C) Brightfield image of RISD10 targeted cell line

2.2.14 (Magnification x100).

Found at: doi:10.1371/journal.pone.0014225.s002 (1.48 MB TIF)

Figure S3 Characterisation of HPRT targeted Sprague Dawley

rat embryonic stem cells. (A) Immunohistochemical staining of

targeted clones 2.2.14 and 6.7.16 for Oct4 and Nanog

(Magnification x100). (B) RT-PCR analysis of (1) Water blank,

(2) DIA-M feeder layer, (3) rat E10.5 embryo, (4) rat ES cell

parental line, (5) 6-TG-resistant clone 2.2.14, (6) 6-TG-resistant

clone 6.7.16. (C) Immunostaining for Nestin and Tuj1 following

11 day monolayer differentiation protocol of 6-TG-resistant clones

2.2.14 and 6.7.16 (Magnification x100). (D) RT-PCR analysis of

(1) Water blank, (2) DIA-M feeder layer, (3) rat E10.5 embryo, (4)

6-TG-resistant clone 2.2.14, (5) Embryoid bodies formed from

clone 2.2.14, (6) 6-TG-resistant clone 6.7.16 and (7) Embryoid

bodies formed from clone 6.7.16.

Found at: doi:10.1371/journal.pone.0014225.s003 (10.38 MB

TIF)

Table S1 Effect of Oxygen levels on rat ES cell growth.

Found at: doi:10.1371/journal.pone.0014225.s004 (0.03 MB

DOC)

Table S2 RT-PCR oligonucleotides.

Found at: doi:10.1371/journal.pone.0014225.s005 (0.05 MB

DOC)
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