
Hierarchical Clustering Using the Arithmetic-Harmonic
Cut: Complexity and Experiments
Romeo Rizzi1, Pritha Mahata2, Luke Mathieson3,4*, Pablo Moscato3,4

1 Dipartimento di Matematica ed Informatica, University of Udine, Udine, Italy, 2 New South Wales Rural Doctors Network, Newcastle, Australia, 3 Centre for

Bioinformatics, Biomarker Discovery & Information Based Medicine, The University of Newcastle, Callaghan, Australia, 4 Information Based Medicine Program, Hunter

Medical Research Institute, Newcastle, Australia

Abstract

Clustering, particularly hierarchical clustering, is an important method for understanding and analysing data across a wide
variety of knowledge domains with notable utility in systems where the data can be classified in an evolutionary context.
This paper introduces a new hierarchical clustering problem defined by a novel objective function we call the arithmetic-
harmonic cut. We show that the problem of finding such a cut is NP-hard and APX -hard but is fixed-parameter tractable,
which indicates that although the problem is unlikely to have a polynomial time algorithm (even for approximation), exact
parameterized and local search based techniques may produce workable algorithms. To this end, we implement a memetic
algorithm for the problem and demonstrate the effectiveness of the arithmetic-harmonic cut on a number of datasets
including a cancer type dataset and a corona virus dataset. We show favorable performance compared to currently used
hierarchical clustering techniques such as k-MEANS, Graclus and NORMALIZED-CUT. The arithmetic-harmonic cut metric
overcoming difficulties other hierarchal methods have in representing both intercluster differences and intracluster
similarities.

Citation: Rizzi R, Mahata P, Mathieson L, Moscato P (2010) Hierarchical Clustering Using the Arithmetic-Harmonic Cut: Complexity and Experiments. PLoS
ONE 5(12): e14067. doi:10.1371/journal.pone.0014067

Editor: Vladimir Brusic, Dana-Farber Cancer Institute, United States of America

Received July 21, 2010; Accepted October 28, 2010; Published December 2, 2010

Copyright: � 2010 Rizzi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: We acknowledge the support of the Australian Research Council (ARC) Centre of Excellence in Bioinformatics (CE0348221), The University of Newcastle,
and ARC Discovery Project DP0773279 (Application of novel exact combinatorial optimisation techniques and metaheuristic methods for problems in cancer
research). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: luke.mathieson@newcastle.edu.au

Introduction

The problem of finding structure in a set of unlabeled data (the

so-called clustering problem) appears in various domains of research

including bioinformatics, machine learning, image processing and

video processing. In the area of bioinformatics, clustering has

become increasingly important, as finding genetic subtypes of

heterogeneous diseases like breast cancer, ovarian cancer and

multiple sclerosis, may be made easier by using suitable clustering

methods. This work aims to facilitate this line of research by

finding good clusterings of various datasets with known partitions.

The importance of the clustering problem in various areas has

given rise to several greedy algorithms such as k-MEANS,

optimization-based methods such as NORMALIZED-CUT and

neural-net based methods amongst others.

In this work, we will use a top-down approach for hierarchical

clustering, recursively dividing the elements in the data. In each

division step, often a graph partitioning technique is used (a similar

approach is used for NORMALIZED-CUT [1]). However, many graph

(bi)partitioning problems can be formulated as NP-hard optimi-

zation problems, for which there are no polynomial-time

algorithms to find the optimal solution unless P~NP. This is an

indication of the difficulty of the clustering problem and the focus

of research since the work of Wertheimer [2]. In this work, we

propose a new objective function for graph bipartitioning. The

motivation for finding a new objective function for graph

bipartitioning is that the known bipartitioning methods produce

incorrect results for some datasets. For example, two formulations

for clustering by graph partitioning are MAX-CUT [3] and

NORMALIZED-CUT [1]. MAX-CUT is already known to provide

incorrect results for some datasets [1]. We show that NORMALIZED-

CUT also produces some incorrect results for some of the datasets

examined.

To achieve a better clustering than agglomerative hierarchical

clustering and existing graph partitioning formulations, our

proposed objective function seeks to minimize the intra-cluster

distances and at the same time it seeks to maximize the inter-cluster

distances. Our objective function performs well in clustering diverse

types of datasets.

More precisely, we pose the hierarchical clustering problem as a

finite number of instances of a graph partitioning problem, called

ARITHMETIC-HARMONIC CUT (AH-CUT). In the AH-CUT problem,

we start with a distance matrix for a set of objects and compute a

weighted graph in which vertices represent objects and edges are

weighted by the distance between the corresponding vertices. Our

objective function tries to obtain a partition where the weight of the

partition is directly proportional to the sum of the weights on the

edges between the two partite sets and the sum of the reciprocals of

the weights on the edges inside the partite sets. When considered as

an optimisation problem, the goal is to maximise the weight of the

partition. The recursive application of AH-CUT can then be used to

generate a tree-based classification of the data.

As noted many graph bipartioniting problems are NP-hard

at least, so a theoretical examination of any proposed clustering

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e14067

problem is necessary to determine whether it constitutes a prac-

tical approach to clustering. We give such a classification of AH-

CUT and show that although it is NP-hard and hard to

approximate, it is fixed-parameter tractable, and therefore still a

practical method for clustering.

Related Objective Functions for Hierarchical Clustering
The k-Means Algorithm. The k-MEANS algorithm is one of

a group of algorithms called partitioning methods; Given n objects in a

d-dimensional metric space, we wish to find a partition of the

objects into k groups, or clusters, such that the objects in a cluster

are more similar to each other than to objects in different clusters.

The value of k may or may not be specified and a clustering

criterion, typically the squared-error criterion, must be adopted.

The k-MEANS algorithm initializes k clusters by arbitrarily selec-

ting one object to represent each cluster. Each of the remaining

objects are assigned to a cluster and the clustering criterion is used

to calculate the cluster mean. These means are used as the new

cluster points and each object is reassigned to the cluster that it is

most similar to. This continues until there is no longer a change

when the clusters are recalculated. However, it is well-known that

depending on the initial centres of the clusters, clustering results

can change significantly. We use Gene Cluster 3:0 [4] for

comparing our method with k-MEANS.

Max Cut, Ratio Cut and Average Cut. Graph biparti-

tioning algorithms are also used for clustering [5]. Given a graph

G~(V ,E) and perhaps a weighting function v : E?S(R, a

graph bipartitioning problem asks for a partition S] S’~V such

that some function on the (weights of the) edges between S and S’
satisfies the given bound, or in the case of an optimisation pro-

blem, is optimised. One of the most common formulations is

essentially an NP-hard combinatorial problem, called WEIGHTED

MAX-CUT, which is a simple weighted extension of the MAX-CUT

problem. If we denote the edges between S and S’ as ESS’ then

the function fm(S,S’) to be optimised in the case of WEIGHTED

MAX-CUT is:

fmc(S,S’)~
X

e[ESS’

v(e):

Although good algorithms exist for WEIGHTED MAX-CUT, Shi and

Malik [1] and Wu and Leahy [5] show that (Weighted) MAX-CUT ’s

objective function favours cutting small sets of isolated nodes in the

graph. Furthermore, during bipartitioning, sometimes it may also

cut small groups and put two parts of the same small group into

different partite sets.

RATIO-CUT uses the objective function:

frc(S,S’)~

P
e[ESS’

v(e)

minfDSD,DS’Dg :

In this case v is taken as a similarity metric. RATIO-CUT (and its k-

way extension) has also been employed for image segmentation [6]

and circuit partitioning for hierarchical VLSI design [7].

AVERAGE-CUT employs the following objective funtion:

fac(S,S’)~
X

e[ESS’

v(e)

0
@

1
A 1

DSD
z

1

DS’D

� �
:

If v is a similarity metric, the the problem becomes a mini-

misation problem, v expresses distance the goal is maximisation.

It turns out that even using the average cut, one cannot

simultaneously minimise the inter-cluster similarity while maxi-

mizing the similarity within the groups.

Normalized-Cut. In the context of image segmentation, Shi

and Malik [1] introduce NORMALIZED-CUT. They use a similarity

metric for v, and thus NORMALIZED-CUT is typically expressed as a

minimisation problem with the following objective function:

fnc(S,S’)~
X

e[ESS’

v(e)

0
@

1
A 1P

i[S,j[V v(ij)
z

1P
i[S’,j[V v(ij)

 !
:

It is well-known that by negating weights the MAX-CUT problem

is equivalent to the corresponding MIN-CUT problem where one is

supposed to minimise the sum of the weights (given by some

similarity measure) between the two partitions (S,S) of a set of

vertices V in a graph G~(V ,E). It is straightforward to see that

the same argument holds in case of NORMALIZED-CUT as well,

which allows the negation of a distance matrix to be used a

similarity matrix, facilitating comparisons for datasets for which

only distance matrices are available. However, Shi and Malik [1]

start with a Euclidian distance matrix D and then compute e{D as

their similarity matrix. We use both approaches and demonstrate

that the performance of this algorithm varies depending on the

dataset and the two similarity measures.

Furthermore, Shi an Malik’s [1] implementation relaxes the

NORMALIZED-CUT problem into a generalised eigen-value problem

by allowing the vertices v to take real-values, instead of taking

values from just the set f0,1g where v~0 denotes that v[S and

v~1 denotes that v[S’. Then, for bipartitioning, the second

smallest eigenvector of the generalized eigen system is the real-

valued solution to NORMALIZED-CUT. Finally, they search for the

splitting point as follows: first choose l equidistance splitting points,

compute NORMALIZED-CUT’s objective value for each of these

splits, then choose the one for which NORMALIZED-CUT’s objective

value is the smallest. In fact, the implementation also allows k-way

NORMALIZED-CUT, Yu and Shi [8] examine this further. It con-

siders the first k eigen vectors and yields k partite sets from a

discretisation step following it.

Notice that MAX-CUT and RATIO-CUT do not cluster by intra-

cluster similarity and this results in a poor clustering results for

image segmentation in comparison to NORMALIZED-CUT [1].

Therefore, among these three algorithms, we consider only

NORMALIZED-CUT for comparison with our algorithm.
Graclus. Graclus [9] implements a multilevel algorithm that

directly optimizes various weighted graph clustering objectives,

such as the popular ratio cut, normalized cut, etc. This algorithm

for multilevel clustering consists of three steps: (a) iteratively

merging nodes of the graph (using various criteria of merging) and

creating supergraphs with fewer nodes; (b) applying some base-

level clustering on the resulting supergraph; and (c) restoring the

clusters of original graph iteratively from the clustering of the final

supergraph. This algorithm does not use eigenvector computation,

and is thus notably faster than existing implementations of

normalised and ratio-cuts. However, in most of the examples

shown in this paper, Shi and Malik’s [1] implementation of

NORMALIZED-CUT results in a better clustering than Graclus.

Outline of the Paper
In this paper, after introducing the problem, we first examine

the approximability of AH-CUT. In fact, we prove that AH-CUT is

APX -hard (and NP-complete) via a reduction from the MAX-CUT

problem, which is already known to be APX -hard [3]. Therefore

Arithmetic-Harmonic Cut

PLoS ONE | www.plosone.org 2 December 2010 | Volume 5 | Issue 12 | e14067

AH-CUT has no polynomial time approximation scheme unless

P~NP. We then demonstrate that AH-CUT is fixed-parameter

tractable via a greedy localisation algorithm. Such a complexity

analysis provides an indication of what practical methods are

suitable for application to the problem. In this case the complexity

results indicate that there is unlikely to be a polynomial time

algorithm (or even approximation), but that the exponential

component of the running time is at worst only a function of a

small independent parameter and therefore the problem is likely to

still have effective algorithms.

Given the complexity result we use a meta-heuristic approach

(namely, a memetic algorithm) for AH-CUT (an outline of which was

presented previously [10]). We compare the performance of our

algorithm on four diverse types of datasets and compare the results

with two recent and highly regarded clustering algorithms:

NORMALIZED-CUT; and k-MEANS. The results indicate that AH-

CUT gives a robust and broadly useful hierarchical clustering

method.

Preliminaries
Graph Notation and Problem Definition. We consider

only simple, undirected graphs, which may or may not be

associated with a weight function on the edges. Given a graph G
unless otherwise specified we denote the vertex set of G by V (G)
and the edge set of G by E(G). We denote an edge between

vertices u and v by uv.

Given a graph G and two vertex sets X and Y we denote the set

of edges with one endpoint in X and the other in Y by EXY (G).
When the graph is clear from context we write EXY .

ARITHMETIC-HARMONIC CUT (AH-CUT)

Instance: A graph G~(V ,E), two positive integers k and d

and a weight function v : E?½1,d�.
Question: Is there a partition of V into two sets B and W such

that

X
uv[EBW

v(uv)

0
@

1
A X

uv[E\EBW

1

v(uv)

0
@

1
A§k?

Given a graph G and two disjoint vertex sets X and Y , for

convenience we denote

X
uv[EXY

v(uv)

0
@

1
A X

uv[E\EXY

1

v(uv)

0
@

1
A

by

fG(X ,Y):

The optimisation verion of AH-CUT is identical except that we

maximise the function f .

Approximation and Complexity. If a maximisation pro-

blem P with objective function f has an polynomial time

algorithm which given an instance I with optimal solution S
guarantees a solution S� where f (S�)ƒ(1{e)f (S) for some ew0
then we say P has a constant factor approximation algorithm. If there is

an algorithm that guarantees such a bound for every ew0, P has a

polynomial time approximation scheme (ptas). APX is the class of all

problems which have constant factor approximation algorithms. If

a problem P is APX -hard, then P has no ptas unless P~NP.

We refer to Ausiello et al. [11] for further reading.

Parameterized Complexity. A parameterized problem is a

(decision) problem equipped with an additional input called the

parameter. Typically the parameter will numeric and should be

independent of the size of the instance and relatively small. A

problem P is fixed-parameter tractable if there is an algorithm that

solves the problem in time bounded by f (k)p(n) where k is the

parameter, n is the size of the input, f is a computable function

and p is a polynomial.

As we do not require the parameterized notion of hardness, we

refer the reader to Flum and Grohe [12] for complete coverage.

Results and Discussion

The Complexity of AH-Cut
We first turn to theoretical results for AH-CUT. We show that

the optimisation version of the problem is APX -hard, and cons-

quently that the decision version is NP-complete, indicating that

AH-CUT is not has no polynomial time algorithm, but has no

polynomial time approximation scheme, under standard com-

plexity theoretic assumptions. Under the parameterized complex-

ity framework however we show that AH-CUT is fixed parameter

tractable with a 2O(dk)zDV D3 time algorithm.

NP-Completeness and APX-Hardness
We demonstrate the NP-completeness for AH-CUT via an

APX -hardness reduction from MAX-CUT which is known to be

APX -hard [3] and NP-complete [13].

MAX-CUT

Instance: A graph G~(V ,E), a positive integer k.

Question: Is there a set S(V , where S’~V \S such that

DESS’D§k?

The goal of the optimisation version of MAX-CUT is to maximise

DESS’D.
Let (G,k) be an instance of MAX-CUT with m~DE(G)D and

DV (G)DƒmƒDV (G)D2 (we may assume that there is at least one cycle,

as the maximum cut of any forest is trivially E(G)), we construct an

instance (G’,k’) of AH-CUT where V (G’)~V (G)|fa,b,cg and

E(G’)~fuvDu,v[V (G’)g (i.e., G’ is a complete graph). The elements

of E(G’) are weighted as follows: if uv[E(G), then we set

v(uv) : ~m6, if u,v[fa,b,cg we set v(uv) : ~1 and for all other

edges uv we set v(uv) : ~m3. We set k’ : ~3km6. Clearly we can

obtain G’ in polynomial time.

Before moving to the hardness proof, we first prove some

auxilliary lemmas.

Lemma 1. Let S(V (G) and S’~V (G)\S where DESS’D§k, then

fG’(S,S’’)§3km6 where S’’~S’|fa,b,cg.
Proof. Consider the objective function

fG’(S,S’’)~
X

uv[ESS’’

v(uv)

0
@

1
A X

uv[E\ESS’’

1

v(uv)

0
@

1
A

and let A~
P

uv[ESS’’
v(uv)

� �
and B~

P
uv[E\ESS’’

1

v(uv)

� �
.

Each of the edges between S and S’’ that are also in E(G)
contribute m6 to A, and all other edges that are also in E(G)

contribute
1

m6
to B. As a, b and c are in S’’, the edges ab, ac and

Arithmetic-Harmonic Cut

PLoS ONE | www.plosone.org 3 December 2010 | Volume 5 | Issue 12 | e14067

bc contribute 3 to B. The edges between fa,b,cg and S contribute

3m3DSD to A. Therefore

fG’(S,S’’)~AB~ 3m3DSDz
X

uv[ESS’’

m6

0
@

1
A 3z

X
uv[E\ESS’’

1

m6

0
@

1
A:

As DESS’’D§DESS’D§k,

fG’(S,S’’)§km6 3z
X

uv[E\ESS’’

1

m6

0
@

1
A§3km6:

Lemma 2. Assume DE(G)D§3. Let T be a subset of V (G’) and

T ’~V (G’)\T . If ETT ’\fab,ac,bcg= 6 0 then fG’(T ,T ’)v
3

2
m7.

Proof. Assume ETT ’\fab,ac,bcg= 6 0, without loss of generality

(by switching T and T ’) we may assume that DT\fa,b,cgD~2.

Let R~T\fa,b,cg, R’~V (G)\R and t~DERR’(G)D. Let

A~
P

uv[ETT ’
v(uv)

� �
and B~

P
uv[E\ETT ’

1

v(uv)

� �
.

As DT\fa,b,cgD~2 we know DETT ’\fab,ac,bcgD, which

contributes 2 to A. The edges in ERR’ contribute tm6 to A. As

two vertices from fa,b,cg are in T , the edges between those two

vertices and R’ contribute 2DR’Dm3~2(DV (G)D{DRD)m3 to A. The

third vertex in fa,b,cg contributes DRDm3 to A.

One of the edges of fab,ac,bcg is not in ETT ’ and thus

contributes 1 to B. There are m{t edges in E(G) that are not in

ERR’ (and thus not in ETT ’) and so contribute
m{t

m6
to B. The

edges between the two T\fa,b,cg vertices and R contribute
2DRD
m3

to B. Finally the edges between the T ’\fa,b,cg vertex and R’

contribute
DV(G)D{DRD

m3
to B. Thus in total we have

A~(2ztm6z2(DV (G)D{DRD)m3zDRDm3)

and

B~ 1z
m{t

m6
z

2DRD
m3

z
DV (G)D{DRD

m3

� �
:

As m§DV (G)D,t and DRDƒDV (G)D we have

fG’(T ,T ’)~AB

ƒ(2zm7z2m4) 1z
1

m5
z

2

m2

� �

ƒ2zm7z2m4z
2

m5
zm2z

2

m
z

4

m2
z2m5z4m2

ƒ2zm7z2m4z1zm2z1z1z2m5z4m2

ƒ5zm7z2m5z2m4z5m2

ƒm7 5

m7
z

2

m2
z

2

m3
z

5

m5

� �
:

As we assume that m§3,

fG’(T ,T ’)ƒ
3

2
m7:

Lemma 3. Assume DV (G)D§3. Let S be a subset of V (G’) and

S’’~V (G)\S such that fG’(S,S’’)§3km6. In polynomial time we can

obtain an S�5V (G) such that DESS�D§k(1{
5

3m
).

Proof. If kƒ

m

2
we may apply the greedy algorithm of Mahajan

and Raman [14] which returns a set X such that DEX (V (G)\X)D§
m

2
.

Therefore we may take X as S� and we have

DES�(V (G)\S�)D§
m

2
§k§k 1{

5

3m

� �
.

If kw

m

2
, we have that fG’S,S’’§

3

2
m7. Then by Lemma 2,

ESS’’\fab,ac,bcg~ 6 0. Without loss of generality we may assume

that S\fa,b,cg~ 6 0 (by switching S and S’’ as necessary). Denote

S’’\fa,b,cg by S’. As m§DV D§3 we have DV D2§3DV D. We also

have that DV D§DSD. We may then observe that

DESS’(G)D~
X

uv[ESS’(G)

1§

X
uv[ESS’(G)

1{
1

m

� �
1z

1

m

� �

§ 1{
1

m

� � X
uv[ESS’(G’)

m5

m6
z

v(uv)

m6

� �

§ 1{
1

m

� �
1

m6
DV D2m3z

X
uv[ESS’(G’)

v(uv)

0
@

1
A

§ 1{
1

m

� �
1

m6
3DSDm3z

X
uv[ESS’(G’)

v(uv)

0
@

1
A

§ 1{
1

m

� �
fG’(S,S’’)

m6
P

uv[E(G’)\ESS’(G’)
1

v(uv)

:

We know that
fG’(S,S’’)

m6
§3k, and that fab,ac,bcg contributes 3

edges to E(G’)\ESS’’(G’), as k§

m

2
there are at most

m

2
edges of G

that are in ESS’(G’) and there are at most
DV (G’)D

2

� �
{

m

2
{3

edges otherwise unnaccounted for in E(G’)\ESS’’(G’). Therefore:

DESS’(G)D§ 1{
1

m

� �
3k

3z
DV (G’)D

2

� �
{

m

2
{3

� �
1

m3
z

m

2m6

:

As m§DV (G)D§3:

DESS’(G)D§ 1{
1

m

� �
3k

3z
mz3

2

 ! !
1

m3
z

m

2m6

§ 1{
1

m

� �
3k

3z
m2z5mz6

2m3
z

1

2m5

§ 1{
1

m

� �
3k

3z
2

m

§ 1{
1

m

� �
3k

3(1z 2

3m
)

§k 1{
5

3m

� �
:

Arithmetic-Harmonic Cut

PLoS ONE | www.plosone.org 4 December 2010 | Volume 5 | Issue 12 | e14067

We are now prepared to prove the main theorem of this section.

Theorem 4. AH-CUT is APX -hard and NP-complete.

Proof. Assume there is a (1{e)-approximation algorithm A for

AH-CUT. We show that this implies a (1{2e)-approximation

algorithm for MAX-CUT. Let (G,k) be an instance of MAX-CUT

and (G’,k’) be the corresponding instance of AH-CUT derived

from the reduction described above. If DV (G)Dƒ3 or DE(G)Dƒ
5

3e
,

we solve the instance by complete enumeration in constant time.

Otherwise assume the optimal cut of G cuts at least opt edges of

E(G) and induces the partition V (G)~S] S’. By Lemma 1 the

partition V (G’)~S] V (G’)\S induces a solution for AH-CUT

such that fG’(S,V (G’)\S)§3DE(G)D6:opt. Algorithm A will give a

solution with fG’(S,V (G’)\S)§3DE(G)D6:opt:(1{e). Then by

Lemma 3 we have a set S�(V (G) such that

DES�(V (G)\S� (G))D§opt(1{e) 1{
5

3m

� �

§opt(1{e)(1{e)

§opt(1{2e):

It is clear that AH-CUT is in NP. Given a partition, we simply

calculate f for that partition and compare to the target value.

Fixed-Parameter Tractability
We show that AH-CUT is fixed-parameter tractable via a

greedy localisation technique. First we compute a greedy solution

as follows:

1. Pick an edge uv[E such that v(uv)§v(xy) for every xy[E.

Add u to B and v to W .

2. While V6B]W do

(a) Pick a vertex x 6[B]W such that x[N(B]W).

(b) If f (B|fxg,W)§f (B,W|fxg) then set B : ~B|fxg,
otherwise set W : ~W|fxg.

Note that we assume that G is connected. If G is not connected

then all vertices of degree 0 can be discarded, and the initial

selection of vertices must take an adjacent pair from each

connected component, then the algorithm continues as before.

After all vertices have been assigned if f (B,W)§k, then we

answer Yes. If f (B,W)ƒk{1 we make the following claim:

Lemma 5. Let (G,k) be an instance of AH-CUT and B]W a partition

of V such that f (B,W)ƒk{1, then DV Dƒ maxf2dk,2(dz1)(k{1)g
and DEDƒ maxfdk,(dz1)(k{1)g.

Proof. Let (G,k) be such an instance and B]W the partition.

If
P

uv[E\EBW

1

v(uv)
v1, then in particular we know that

1

d

X
uv[EBW

v(uv)ƒk{1, therefore
P

uv[EBW
v(uv)ƒd(k{1) and

we have DEBW Dƒd(k{1). Furthermore if
P

uv[E\EBW

1

v(uv)
v1,

then there are at most d edges in E\EBW . Thus the total number of

edges is at most dzd(k{1) and we have at most 2(dzd(k{1))
vertices in the graph.

If
P

uv[E\EBW

1

v(uv)
§1, then we immediately have thatP

uv[EBW
v(uv)ƒk{1 and therefore DEBW Dƒk{1. The case with

the most edges with both endpoints in the same partite set is then

when there is only one edge between the two partite sets, therefore

P
uv[E\EBW

1

v(uv)
ƒk{1, then DE\EBW Dƒd:(

P
uv[E\EBW

1

v(uv)
),

therefore DE\EBW Dƒd(k{1) and there are at most k{1zd(k{1)

edges and 2(k{1zd(k{1)) vertices in the graph.

As the instance is bounded by a function of kzd , we

can exhaustively search the instance in time O(2h) where

h~ maxf2dk,2(dz1)(k{1)g.
This algorithm immediately gives the following result:

Theorem 6. AH-CUT is fixed-parameter tractable with an algorithm

running in time O(2maxf2dk,2(dz1)(k{1)gn3) where k is the optimisation

target value, d is the maximum edge weight and n is the number of vertices in

the input graph.

AH-Cut in Practice
We apply our algorithm to four datasets: (i) melanoma-colon-

leukemia data from National Cancer Institute, U.S [15] (involving

gene expression of 6830 genes for 23 samples); (ii) SARS data of

Yap et al. [16] and (iii) tissue type data given by Su et al. [17]

(involving gene expression of 33689 genes for 158 tissue samples).

We also consider a large synthetic dataset consisting of 1000
samples and 500 features with a known optimal solution with three

clusters. Despite the size of this datasets, our algorithm finds all

three clusters.

In each case we compare our algorithm to NORMALIZED-CUT

and where possible to k-MEANS and Graclus. Implementation

details for the memetic algorithm are given in the Materials and

Methods section.

Melanoma-Colon-Leukemia data from NCI
For the first comparison we use a subset of the data for 60

cancer samples taken for the National Cancer Institute’s (NCI)

screening for anti-cancer drugs [15]. The dataset consists of 6830
gene expressions of 8 melanoma, 7 colon tumour and 8 leukaemia

samples. The reason for taking these three sets of samples is that

others (non-small cell lung cancer, breast cancer, etc.) have

heterogeneous profiles and removing these gives an expected

solution of three clear clusters. Laan and Pollard [18] show that

this simple dataset is already hard to cluster using agglomerative

hierarchical clustering methods. Nevertheless, AH-CUT is able to

cluster the samples of these three diseases effectively, see Figure 1

for the whole dendrogram generated by AH-CUT. We use centred

correlation distance as the distance metric to maintain consistency

with Golub et al. [19].

Figure 1. Dendrogram generated from AH-CUT for the melano-
ma-colon-leukemia dataset.
doi:10.1371/journal.pone.0014067.g001

Arithmetic-Harmonic Cut

PLoS ONE | www.plosone.org 5 December 2010 | Volume 5 | Issue 12 | e14067

Conversely, NORMALIZED-CUT behaves inconsistently in allocat-

ing samples to the partitions. Using the negated distance matrix as

a similarity matrix and choosing two clusters, it either separates

melanoma from colon and leukemia samples, or leukemia from

colon and melanoma samples, or splits the leukemia sample group.

Even when number of clusters is specified as 3, leukemia samples

are split between different clusters. Using e{D as the similarity

matrix, where D is the distance matrix, gives worse results.

On the other hand, k-MEANS performs much better than

NORMALIZED-CUT and successfully separates melanoma from colon

and leukemia samples when k~2 and gives three distinct clusters

of colon, melanoma and leukemia samples when k~3.

SARS
Next we analyse Yap et al.’s [16] dataset for Severe Acute

Respiratory Syndrome (SARS). To explore the exact origin of

SARS, the genomic sequence relationships of 31 different single-

stranded RNA (ssRNA) viruses (both positive and negative strand

ssRNA viruses) of various families were studied. Yap et al. [16]

generate the tetra-nucleotide usage pattern profile for each virus

from which a distance matrix based on correlation coefficients is

created. We use this distance matrix for the following performance

comparison of AH-CUT and NORMALIZED-CUT. See Figure 2 for

the dendrogram generated by AH-CUT for this dataset. It is

interesting to note that SARS virus is grouped in the same subtree

as other corona viruses and is closest to the Feline Corona Virus

(FCoV). Notice that these are all positive strand ssRNA viruses.

This group of SARS and Corona viruses also contains other

viruses (Porcine epidemic diarrhoea virus (PDV), Transmissible

gastroenteritis virus (TGV), Avian infectious bronchitis virus

(ABV), Murine hepatitis virus (MHV)). There is also a group of

positive strand ssRNA viruses, called ‘‘Outliers’’, which exhibit

differences in their tetra-nucleotide usage pattern from the rest.

Yellow Fever Virus (YFV), Avian Encephalomyelitis Virus (AEV),

Rabbit Hemorrhagic disease Virus (RHV), Equine arteritis Virus

(EV1), Lactate Dehydrogenase-elevating Virus (LDV) were also

identified as outliers by Yap et al. [16]. This group also includes

other ssRNA positive strand viruses - Igbo ora virus (IOV), Bovine

viral diarrheoa (BDV), Foot and mouth disease virus C (FMV) and

Simina Haemorrhagic fever virus (SFV). The negative strand

ssRNA viruses are clustered in two subgroups, one unmixed with

the positive strand ssRNA viruses, the remainder in the group

‘‘Mixed’’. The first class (called -ve strand ssRNA viruses in

Figure 2) covers Canine Distemper Virus (CDV) and Tioman

virus (TV2), Reston Ebola Virus (REV), Bovine Ephemeral Fever

Virus (BFV), Hantaan Virus (HV1), Bovine Respiratory syncytial

Virus (BRV), Human Respiratory syncytial Virus (HRV) and

Respiratory Syncytial Virus (RSV).

NORMALIZED-CUT mixes positive and negative strand ssRNA

viruses even in the first partition for the majority of runs. Graclus

puts corona viruses in different partitions even when the number

of partition specified is 2. As Graclus requires a distance matrix of

integers we scaled the dataset’s distance matrix by 100 to obtain an

integral distance matrix. As only a distance matrix was available,

k-MEANS was not applicable.

Tissue dataset
Next we present results of applying AH-CUT to Su at al.’s [17]

human tissue dataset. This dataset consists of 33689 tissue specific

genes from 158 samples collected from 46 individuals. The known

origin of tissue samples gives a great advantage in validating

clusterings of this dataset. For brevity we will compare only the

first partitioning of this dataset generated by the different

algorithms. The first partition of AH-CUT consists of:

N brain related tissues;

N eye related tissues;

N face related tissues;

N testis tissues;

N others (including ovary tissue).

The second partition of AH-CUT consists of:

N bonemarrow related cells;

N blood cells;

N heart related cells;

N fœtal cells;

N others (including ovary tissue, uterine tissue and uterine

corpus tissue).

The partitioning for this dataset is quite reasonable except

occurrence ovary tissues in different partitions. This can be due to

the possible outlier nature of ovary tissues. However, NORMALIZED-

CUT repeatedly separates the brain related tissues and thus

performs even worse. Graclus performs similarly to NORMALIZED-

CUT on this dataset.

k-MEANS agrees very well with AH-CUT in the partitions, except

that it clusters placental tissues within the second partition instead

of the first and it puts the two uterine tissues in different partitions.

k-MEANS also puts the two ovary tissues in two different partitions.

Synthetic large-sampled gene expression data
To test the scalability of our algorithm, we show the results of

AH-CUT applied to a large synthetic dataset. Consider 1000
samples of 500 synthetic gene expression profiles corresponding to

three subtypes of some disease, giving a known optimum clustering

with three clusters. To generate the data, we follow Laan and

Pollard’s [18] method. We sample three groups of 700, 200 and

100 samples respectively from three multivariate normal distribu-

tions with diagonal covariance matrices, which differed only in

their mean vector. The number of samples are chosen keeping in

Figure 2. Dendrogram generated by AH-CUT for the SARS
dataset.
doi:10.1371/journal.pone.0014067.g002

Arithmetic-Harmonic Cut

PLoS ONE | www.plosone.org 6 December 2010 | Volume 5 | Issue 12 | e14067

mind that in general there are some predominant subtypes of a

disease and some rarer subtypes. All genes had common standard

deviation log10 (1:6), which corresponds to a 0:75-quantile of all

standard deviations in an actual data set. For the first

subpopulation, the first 25 genes had a mean of log10 (3), genes

25{50 had mean of { log10 (3), and the other 350 genes had

mean zero. Then for the second subpopulation, genes 51{75 had

mean of log10 (3), genes 76{100 had mean of { log10 (3) and the

other 350 genes had mean zero. For the third subpopulation,

genes 101{125 had mean of log10 (3), genes 126{150 had mean

of { log10 (3) and the other 350 genes had mean zero. In other

words, signature of the three types of cancer is related to 50 genes

of which 25 are under-expressed and 25 are over-expressed.

The application of AH-CUT on this dataset first separates the

first group from the rest. A second application on the rest of the

samples yields the second and third group as the two partitions.

When number of clusters is specified as two, NORMALIZED-CUT

clusters the first and third subtypes together and the second

subtype separately. However, specifying number of clusters as

three creates a partitioning which does not correspond to the

expected known grouping.

k-MEANS puts the first subtype in one partition and the other

two subtypes in another partition when k~2, and separates three

subtypes successfully when k~3.

Conclusion
We have introduced a novel objective function for clustering

based on graph partitioning. We show that the resulting problem

AH-CUT is, unfortunately, NP-complete and APX -hard, but is

however fixed-parameter tractable.

We then gave several test cases demonstrating the potential of

the approach using a memetic algorithm. The performance of

AH-CUT based clustering exceeds the performance of NORMAL-

IZED-CUT based clustering across a wide variety of datasets,

including large scale datasets, and notably datasets with known

optimal clusterings. AH-CUT based clustering also has a wider

applicability than k-MEANS based clustering, and at least equal

performance.

There are several avenues for further research from this initial

exploration. The fixed-parameter tractability of AH-CUT promises

the possibility of a practical exact algorithm, which would give

stronger evidence of AH-CUT’s performance, as random elements

would be removed.

Further studies on datasets of all kinds would also be useful to

explore the strengths and weaknesses of AH-CUT based clustering,

especially in comparison to other existing methods.

Tangentially, the quality of the memetic algorithm solutions

suggest that there may be a link between the fixed-parameter

tractability and the performance of the memetic algorithm. As

established by the fixed-parameter tractability of AH-CUT, if a

simple greedy algorithm does not produce a solution with a

sufficiently high objective value, then the instance size must be

bounded by an relatively simple function of the parameters.

Therefore it is possible that under these conditions the local search

component of the memetic algorithm approximates an exhaustive

search, or at least has a greater effectiveness. A definite link of this

kind would be an interesting development for both parameterized

complexity and memetic algorithmics, above and beyond this

application.

Materials and Methods

The complexity analysis of the AH-CUT problem employ

standard complexity theory techniques [11,12].

The NCI60 cancer dataset was drawn from the NCI60 anti-

cancer drug screening program data [20] and the gene expression

data for the cell lines was given by Ross et al. [15].

The tissue dataset is drawn from Su et al. [17].

The synthetic dataset was generated using the methods of Laan

and Pollard [18].

For the comparisons we use Gene Cluster’s implementation

of k-MEANS [4] (http://bonsai.ims.u-tokyo.ac.jp/,mdehoon/

software/cluster/software.htm#ctv), Dhillon et al.’s Graclus

software [9] (http://userweb.cs.utexas.edu/users/dml/Software/

graclus.html) and Shi and Malik’s implementation of NORMALIZED

CUT [1].

All experiments were performed on a Dell laptop with a

1.67GHz processor and 2GB of RAM with the software written in

Java.

A memetic algorithm for AH-Cut
We have implemented AH-CUT via a memetic algorithm

[21,22]. Memetic algorithms provide a population-based approach

for heuristic search in optimization problems. Broadly speaking

they combine local search heuristics with crossover operators used

in genetic algorithms [23–25]. The essence of our algorithm is

similar to the work of Merz and Freisleben [26] for GRAPH BI-

PARTITIONING. Differences arise from the fact that we need to

remove the constraint of equal partitioning of the graph. The

method consists of three main procedures: a greedy algorithm for

initialization of a set of solutions for AH-CUT (detailed in the

parameterized algorithm); a differential greedy crossover for

evolution of the population; and a variable neighborhood local

search, influenced by Festa et al. [27], to improve the newly

generated solutions.

We use a ternary tree for population similar to Buriol et al. [28]

and keep two solutions at each node of this tree. One solution is

the best obtained so far at the node, called pocket solution and the

other one is the current solution. Essentially, if we generate a current

solution by recombination or local search which is better than the

pocket solution, we swap the current solution with the pocket

solution. Furthermore, each parent node of the tree must have

better pocket solution than its children’s pocket solutions. Similar

tree structures were previously employed successfully for various

combinatorially hard problems [28–30].
Differential Greedy Crossover. We allow a crossover of a

parent’s pocket solution with a child’s current solution to ensure

the diversity in the population. All vertices that are contained in

the same set for both the parents, are included in the same set in

the offspring. Then both sets are filled according to a greedy

recombination method similar to the greedy algorithm used for the

parameterized algorithm. Suppose, the parent solutions P and Q
have the partitions SP, S’P and SQ,S’Q respectively (after

interchanging the sets suitably). Then the starting set S (resp. S’)
for the offspring is given by the intersection SP\SQ (resp.

S’P\S’Q), with the remainder of the partition calculated greedily.
Local Search. We employ a variable-neighborhood search (VNS),

first proposed by Hansen and Mladenovic [31] for a local search in

the neighborhood of the new offspring. Contrary to other local

search methods, VNS allows enlargement of the neighborhood

structure. A k-th order neighbor of a paritition giving a solution S
for AH-CUT is obtained by swapping the partite set of k vertices.

In VNS, first local search is done starting from each neighbor S’ of

the current solution S. If a solution S’’ is found which is better

than S, then the search moves to the neighborhood of S’’.
Otherwise, the order k of the neighborhood is increased by one,

until some stop criterion holds. We use maximum value of
1

7
:DV (G)D for k.

Arithmetic-Harmonic Cut

PLoS ONE | www.plosone.org 7 December 2010 | Volume 5 | Issue 12 | e14067

Diversity. Whenever the population stagnates (fails to

improve the objective value), we keep the best solution and re-

initialize the rest of solutions (using the greedy algorithm with a

randomised starting vertex pair) in the set and run the above

process again for certain number of generations (say, 30).

To get the optimal solution for very small sized problems

(graphs containing less than 25 vertices), we used backtracking.

Notice that even though backtracking gives us an optimal solution,

a greedy or memetic algorithm may not. By applying this method

(backtracking, memetic or greedy algorithm depending on the

number of vertices) recursively, we have at each step a graph as

input, and the two subgraphs induced by each of the sets of the

vertex partition as output; stopping when we arrive to a graph with

just one vertex, we generate a hierarchical clustering in a top-down

fashion.

Author Contributions

Conceived and designed the experiments: RR, P. Mahata, LM, P. Moscato.

Performed the experiments: RR, P. Mahata, LM. Analyzed the data:

P. Mahata, P. Moscato. Contributed reagents/materials/analysis tools: RR,

P. Mahat LM. Wrote the paper: P. Mahat LM.

References

1. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE

Transactions of Pattern Analysis and Machine Intelligence 22: 888–905.

2. Wertheimer M (1938) Laws of organization in perceptual forms (partial
translation). A Sourcebook of Gestalt Psychology. pp 71–88.

3. Papadimitriou CH, Yannakakis M (1991) Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences 43: 425–440.

4. de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering

software. Bioinformatics 20: 1453–1454.
5. Wu Z, Leahy R (1993) An optimal graph theoretic approach to data clustering:

theory and its application to image segmentation. IEEE Transactions of Pattern
Analysis and Machine Intelligence 15: 1101–1113.

6. Wang S, Siskind JF (2003) Image segmentation with ratio cut. IEEE
Transactions of Pattern Analysis and Machine Intelligence 25: 675–690.

7. Wei YC, Cheng CK (1991) Ratio cut partitioning for hierarchical designs. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 10:
911–921.

8. Yu SX, Shi J (2003) Multiclass spectral clustering. In: International Conference
on Computer Vision.

9. Dhillon IS, Guan Y, Kulis B (2007) Weighted graph cuts without eigenvectors: a

multilevel approach. IEEE Transactions of Pattern Analysis and Machine
Intelligence 29: 1944–1957.

10. Mahata P, Costa W, Cotta C, Moscato P (2006) Hierarchical clustering,
languages and cancer. In: EvoWorkshops 2006. pp 67–78.

11. Ausiello G, Crescenzi P, Gambosi G, Kann V, Spaccamela AM, et al. (1999)

Complexity and Approximation: Combinatorial Optimization Problems and
their Approximability Properties. New York: Springer-Verlag.

12. Flum J, Grohe M (2006) Parameterized Complexity Theory. New York:
Springer.

13. Karp RM (1972) Reducibility among combinatorial problems. In: Proceedings
of a symposium on the Complexity of Computer Computations. New York: IBM

T. W. Watson Research Center. pp 85–104.

14. Mahajan M, Raman V (1997) Parameterizing above guaranteed values: Maxsat
and maxcut. Electronic Colloquium on Computational Complexity (ECCC) 4.

15. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, et al. (2000) Systematic
variation in gene expression patterns in human cancer cell lines. Nature Genetics

24: 227–235.

16. Yap YL, Zhang XW, Danchin A (2003) Relationship of SARS-CoV to other
pathogenic RNA viruses explored by tetranucleotide usage profiling. BMC

Bioinformatics 4: 43.

17. Su AI, Cooke MP, ching KA, Hakak Y, Walker JR, et al. (2002) Large scale

analysis of the human and mouse transcriptomes. PNAS 99: 4465–4470.

18. Laan MJ, Pollard KS (2003) A new algorithm for hybrid clustering of gene
expression data with visualization and bootstrap. Journal of Statistical Planning

and Inference 117: 275–303.
19. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999)

Molecular classification of cancer: Class discovery and class prediction by gene

expression monitoring. Science 286: 531–537.
20. NCI/NIH (2010) Developmental Theraputics Program. Available: http://dtp.

nci.nih.gov/.
21. Moscato P (1989) On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms. Technical Report 826, Caltech
Concurrent Computation Program.

22. Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In:

Glover F, Kochenberger G, eds. Handbook of Metaheuristics. Boston MA:
Kluwer Academic Publishers. pp 105–144.

23. Whitley D (1994) A genetic algorithm tutorial. Statistics and Computing 4:
65–85.

24. Moscato P, Cotta C, Mendes A (2004) Memetic algorithms. In: Onwubolu G,

Babu B, eds. New Optimization Techniques in Engineering. Berlin: Springer-
Verlag. pp 53–85.

25. Moscato P, Cotta C (2006) Memetic algorithms. In: González T, ed. Handbook
of Approximation Algorithms and Metaheuristics, Taylor & Francis.

26. Merz P, Freisleben B (2000) Fitness landscapes, memetic algorithms, and greedy

operators for graph bipartitioning. Evolutionary Computation 8: 61–91.
27. Festa P, Pardalos P, Resende MGC, Ribeiro CC (2002) Randomized heuristics

for the MAX-CUT problem. Optimization Methods and Software 7:
1033–1058.

28. Buriol L, Franca PM, Moscato P (2004) A new memetic algorithm for the
asymmetric traveling salesman problem. Journal of Heuristics 10: 483–506.

29. Berretta R, Cotta C, Moscato P (2004) Enhancing the performance of memetic

algorithms by using a matching-based recombination algorithm. In: Metaheur-
istics: computer decision-making. Norwell, MA, USA: Kluwer Academic

Publishers. pp 65–90.
30. Mendes A, Cotta C, Garcia V, Franca P, Moscato P (2005) Gene ordering

in microarray data using parallel memetic algorithms. In: ICPP Workshops.

pp 604–611.
31. Hansen P, Mladenović N (2001) Developments of variable neighborhood search.

Essays and Surveys in Metaheuristics. pp 415–439.

Arithmetic-Harmonic Cut

PLoS ONE | www.plosone.org 8 December 2010 | Volume 5 | Issue 12 | e14067

, , aa

