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Abstract
Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disease
characterized by behavioral abnormalities, personality changes, language dysfunction, and can co-
occur with the development of motor neuron disease. One major pathological form of FTLD is
characterized by intracellular deposition of ubiquitinated and phosphorylated TAR DNA binding
protein-43 (TDP-43), suggesting that dysregulation in phosphorylation events may contribute to
disease progression. However, to date systematic analysis of the phosphoproteome in FTLD brains
has not been reported. In this study we employed immobilized metal affinity chromatography
(IMAC) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify
phosphopeptides from FTLD and age-matched control postmortem human brain tissue. Using this
approach we identified 786 phosphopeptides in frontal cortex (control and FTLD), in which the
population of phosphopeptides represented approximately 50% of the total peptides analyzed.
Label free quantification using spectral counts revealed six proteins with significant changes in the
FTLD phosphoproteome. N-myc-downstream regulated gene 2 (NDRG2) and glial fibrillary
acidic protein (GFAP) had an increased number of phosphospectra in FTLD, whereas microtubule
associated protein 1A (MAP1A), reticulon 4 (RTN4; also referred to as neurite outgrowth
inhibitor (Nogo)), protein kinase C gamma (PRKCG), and heat shock protein 90kDa alpha, class
A member 1(HSP90AA1) had significantly fewer phosphospectra compared to control brain. To
validate these differences, we examined NDRG2 phosphorylation in FTLD brain by immunoblot
analyses, and using a phosphoserine-13 (pSer13) GFAP monoclonal antibody we show an increase
in pSer13 GFAP levels by immunoblot concomitant with increased overall GFAP levels in FTLD
cases. These data highlight the utility of combining proteomic and phosphoproteomic strategies to
characterize postmortem human brain tissue.
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Introduction
Frontotemporal lobar degeneration (FTLD), the second leading cause of dementia in the
population under age 65, is a progressive neurodegenerative disease characterized by
intracellular deposition of protein aggregates 1, 2. In Alzheimer’s disease (AD) and
Parkinson’s disease (PD) intraneuronal inclusions are composed predominantly of
pathologic forms of the microtubule-associated tau and the presynaptic protein α-synuclein,
respectively. In contrast, the most common underlying pathology in FTLD is ubiquitin
positive inclusions that lack tau or α-synuclein and contain the RNA binding protein TAR
DNA-binding protein 43 (TDP-43) 3, 4. A similar pathology is also observed in amyotrophic
lateral sclerosis (ALS), a severe form of motor neuron disease that often co-occurs with
FTLD 5. Comparison of detergent-insoluble fractions from postmortem brains indicated that
short TDP-43 C-terminal fragments are enriched in FTLD cases compared to control or AD
brains 3. Furthermore, TDP-43 is modified by phosphorylation and ubiquitination in FTLD
and ALS cases 3, 4, 6–8. These data suggest that post-translational modification of TDP-43
may play a role in disease pathogenesis; however, the underlying molecular mechanisms
contributing to FTLD disease progression and neurodegeneration remain to be elucidated.
Many critical events involved in cellular response, differentiation, and growth are often
regulated by changes in posttranslational protein modifications. Moreover, alterations in
protein modifications can influence protein – protein interactions, enzymatic activity,
protein conformation, stability and degradation, and an array of human diseases, including
neurodegeneration and cancer. Protein phosphorylation is the most widely studied
posttranslational modification 9, and aberrant phosphorylation of several proteins including
tau 10, 11, neurofilaments 12, and microtubule-associated protein 1B 13 are associated with
AD pathogenesis. However to date, no large-scale analysis of the FTLD phosphoproteome
has been reported.

Advances in phosphopeptide enrichment strategies and liquid chromatography coupled with
tandem mass spectrometry (LC-MS/MS) 14, 15 provide unique opportunities for systematic
mapping of protein phosphorylation sites. Several approaches include immobilized metal-
affinity chromatography (IMAC) enrichment incorporating Fe3+ ion 16, 17, or TiO2 18, 19,
strong cation exchange (SCX) chromatography 20, 21, antibody capture 22, 23, chemical
derivation 24, 25, and combinations of these strategies. Alternatively, calcium phosphate
precipitation (CPP) can be employed as a simple, inexpensive approach to enrich
phosphopeptides through formation of an insoluble calcium phosphate deposit 26.
Previously, we reported the phosphoproteomic analysis of postmortem AD brain tissue
using CPP enrichment directly coupled with LC-MS/MS. Although this approach identified
551 phosphopeptides on 185 proteins, the population of phosphopeptides only represented
approximately 8.6% of all peptides analyzed 27.

Here we report a comparative phosphoproteome analysis of postmortem FTLD cases with
age-matched unaffected control cases using IMAC enrichment followed by LC-MS/MS.
Using this strategy the population of phosphopeptides represented approximately 50% of the
total peptides analyzed from control and FTLD brain. Label free quantification using
spectral counts revealed six proteins with significant changes in the FTLD
phosphoproteome. N-myc-downstream regulated gene 2 (NDRG2), and glial fibrillary acidic
protein (GFAP), had an increased number of phosphospectra in FTLD, whereas microtubule
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associated protein 1A (MAP1A), reticulon 4 (RTN4), protein kinase C gamma (PRKCG),
and heat shock protein 90kDa alpha, class A member 1(HSP90AA1) had significantly fewer
phosphospectra compared to control brain. In our best efforts to validate these differences
we used alkaline phosphatase treatment followed by western blot analyses to examine
NDRG2 phosphorylation in FTLD brain. Using a GFAP serine-13 (pSer13) phosphospecific
monoclonal antibody, we demonstrate increased levels of pSer13 in FTLD cases by western
blotting, and immunohistochemistry analyses revealed pSer13 GFAP positive astrocytes in
the frontal cortex superficial layer. These data highlight the utility of IMAC coupled with
LC-MS/MS for the identification of phosphopeptides in human postmortem brain tissue.

Materials and Methods
Immunohistochemistry

Paraffin-embedded sections of hippocampus and frontal cortex (8 μm thick) were
deparaffinized and microwaved in citrate buffer (10 mM, pH 6) for 10 minutes. After
cooling to room temperature for 1 hour, sections were rinsed and endogenous peroxidase
activity was blocked with 3% hydrogen peroxide at 40°C. Sections were then incubated with
normal goat serum for 15 minutes at 40°C, followed by primary antibody polyclonal rabbit
TDP-43 antibody (Proteintech, Chicago, IL) or Serine 409/410 phosphorylated TDP-43
mouse monoclonal antibody (CosmoBioUSA, Carlsbad, CA) (diluted in 1% BSA) overnight
at 4°C. The following day, sections were incubated with biotinylated goat secondary
antibody for 30 minutes at 37°C and finally with avidin-biotin peroxidase complex (Vector
Laboratories) for 60 minutes at 37°C. 3,3′-Diaminobenzoic acid (DAB) was used as the
chromogen for color development and was followed with hematoxylin counterstain. For
pan-GFAP and phosphoserine13 GFAP staining, human free floating brain sections (50 μm)
were prepared with a freezing microtome (Microm, Heidelberg, Germany). Control and
FTLD frontal cortex sections were incubated in 3% hydrogen peroxide (H2O2) to quench
endogenous peroxidase activity. Sections were subsequently incubated with goat serum
followed by rabbit GFAP antibody (Biocare Medical, Concord, CA), or mouse monoclonal
antibody against serine 13 phosphorylated GFAP (clone KT13, Medical & Biological
Laboratories, Japan) (1:20) overnight at 4°C. After extensive washes with tris-buffered
saline (TBS), sections were incubated with biotinylated secondary antibody for 1 hour at
4°C and an additional hour with avidin-biotin-peroxidase complex (Vector Elite ABC Kit,
Vector Laboratories, Burlingame, CA). Staining was visualized by light microscopy using
DAB.

Protein extraction and digestion from brain tissue
The inclusion of FTLD cases in this study was based on the extensive neuropathologic
characterization required for diagnosis based on consensus criteria in the Alzheimer’s
Disease Research Center Neuropathology Core 28, 29. The cases characterized as FTLD
exhibited small, pleomorphic, ubiquitin/TDP-43-positive, tau- and α-synuclein-negative
cytoplasmic inclusions in neurons of both the superficial frontal cortex and dentate gyrus of
the hippocampus. Additionally, these cases did not meet criteria for the neuropathological
diagnosis of AD (CERAD 30 or NIA-Reagan 31) or Lewy Body with dementia 32, nor did
they show tau pathology consistent with a tauopathy 33, 34. Frontal cortex from four FTLD
and four control, matched as closely as possible by age and post-mortem interval (PMI)
(Supplemental Table S1), were weighed individually (~ 1 g) and homogenized (Dounce
homogenizer) in low salt lysis buffer (50 mM HEPES, 25 mM NaCl, 10 mM iodoacetamide
(IAA), 250 mM Sucrose, 1mM EDTA, including phosphatase and protease inhibitor
cocktails (Sigma, St. Louis MO). N-lauryl sacrosine (10% v/v) and 5 M NaCl were added to
give a final concentration of 1% Sarkosyl and ~500mM NaCl. Samples were sonicated to
disrupt nucleic acids and centrifuged at 200,000 g for 30 min at 4°C using a Beckman
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ultracentrifuge. The soluble supernatant was removed and protein concentration was
determined by bicinchoninic acid (BCA) method (Pierce, Rockford, IL) and used to equally
pool the 4 cases of FTLD and 4 cases of control (500 μg total protein per case). The protein
samples (2 mg) were transferred to 15 ml Falcon tubes and four volumes of ice-cold acetone
was added. Following overnight incubation at −20°C, samples were centrifuged at 20,000 g
for 3 min and acetone was removed. Next, samples were uncapped and incubated at room
temperature for 30 min in a fume hood to allow residual acetone to evaporate. Precipitated
protein was resuspended in urea-buffer (8 M Urea, 50 mM Tris-HCl, pH 7.8) and protein
concentrations were re-determined by BCA method. Pooled samples were normalized to 800
μg of total protein, treated with 5 mM dithiothreitol (DTT) for 30 min at 37°C followed by
20 mM IAA for 30 min at 37°C in the dark, and digested with 1:100 (w/w) endopeptidase
LysC (Wako Chemicals, Japan) for 3 hours at 37°C. Samples were diluted with 100 mM
NH4HCO3 to a final concentration of 1.2 M Urea and digested overnight with 1:50 (w/w)
trypsin (Promega) at 37°C. The next day, samples were acidified with 5% formic acid, 0.2%
trifluoroacetic acid (TFA).

Immobilized metal-affinity chromatography (IMAC)
The IMAC method was modified from a previously reported protocol as follows 35. The
peptides from proteolytic digestion were desalted by a C18 column (Sep-Pak® Cartridges,
Waters, Milford, MA), vacuum dried, and dissolved into 1 ml 80% acetonitrile (ACN), 0.1%
TFA. One ml Ni-NTA magnetic beads (Qiagen, Valencia, CA) was washed 3 times with 1
ml deionized water, treated with 1 ml 40 mM EDTA pH 8.0 for 30 min on vortex at 80%
strength, and washed 3 additional times with 1 ml deionized water. Next, beads were
incubated with 1 ml 100 mM FeCl3 (Sigma Aldrich, MO) for 30 min on vortex at 80%
strength, washed once with 1:1:1 (v/v/v) ACN, methanol, 0.01% acetic acid, and washed 3
times with 80% ACN, 0.1% TFA. Beads were incubated with peptides for 30 min on vortex
at 80% strength, washed 3 times with 1 ml 80% ACN, 0.1% TFA, and resuspended in 100 μl
elution buffer (1:1 ACN: 1:20 (v/v) ammonia water) while vortex on and off for 1 min.
Finally, beads were softly centrifuged and supernatant containing eluted peptides was
transferred to ACN pretreated auto-sampler tubes containing 100 μl 50% ACN, 5% formic
acid. Samples were frozen, vacuum dried at low temperature, and dissolved in 10 μl of 6%
acetic acid 0.01% TFA for LC-MS/MS analyses.

Peptide analysis by LC-MS/MS—The purified peptides were analyzed by reverse-phase
liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and each
sample (control and FTLD) was analyzed in technical replicate 36. Briefly, peptide mixtures
were loaded onto a C18 column (100 μm i.d., 10 cm long, 2.7 μm HALO resin from
Michrom Bioresources, Inc., Auburn, CA) and eluted over a 5–30% gradient (Buffer A:
0.4% acetic acid, 0.005% heptafluorobutyric acid, and 5% AcN; Buffer B: 0.4% acetic acid,
0.005% heptafluorobutyric acid, and 95% AcN). Eluates were monitored in a MS survey
scan followed by nine data-dependent MS/MS scans on an LTQ-Orbitrap ion trap mass
spectrometer (Thermo Finnigan, San Jose, CA). The LTQ was used to acquire MS/MS
spectra (2 m/z isolation width, 35% collision energy, 5,000 AGC target, 150 ms maximum
ion time). The Orbitrap was used to collect MS scans (300–1600 m/z, 1,000,000 AGC target,
750 ms maximum ion time, resolution 60,000).

Peptide filtering and protein identification—The acquired MS/MS spectra were
searched against the human reference database of the National Center for Biotechnology
Information (November 19, 2008) using the SEQUEST Sorcerer algorithm (version 2.0,
SAGE-N) 37. Searching parameters included: partially tryptic restriction, parent ion mass
tolerance (± 50 ppm), product ion tolerance (± 0.5 m/z), fixed modification on
carboxyamidomethylated Cys (+57.0215 Da); dynamic modifications for oxidized Met
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(+15.9949 Da), phosphorylation (+79.9663 Da) on Ser/The/Tyr, and deamidation (+0.9840
Da) on Asn/Gln,), five maximal modification sites and three maximal missed cleavages.
Only b and y ions were considered during the database match. To evaluate false discovery
rate (FDR), all original protein sequences were reversed to generate a decoy database that
was concatenated to the original database 38, 39. The FDR was estimated by the number of
decoy matches (nd) and total number of assigned matches (nt). FDR = 2*nd/nt, assuming
mismatches in the original database were the same as in the decoy database. To remove false
positive matches, assigned peptides were grouped by a combination of tryptic state (fully
and partial) and precursor ion-charge state (2+, 3+, and 4+). Each group was first filtered by
mass accuracy (10 ppm for high-resolution MS), and then XCorr (1.0 minimal) and ΔCn
(0.0 minimal) values to reduce protein FDR to less than 1%. XCorr is the cross-correlation
score between experimental and theoretical spectra, and ΔCn is the normalized difference of
XCorr scores between the 1st and 2nd peptide matches. All accepted proteins sharing
peptides were grouped together, in which only the top protein with highest spectral counts
was selected to represent the group. The MS/MS spectra of matched phosphopeptides were
also manually inspected as described previously 27. Phosphorylated Ser and Thr spectra
without signature phosphate neutral losses (−49 for doubly charged, −32.7 for triply
charged, and −24.5 for quadruply charged) were removed. In some cases, the product ions
on MS/MS spectra did not provide sufficient information to distinguish the phosphorylation
site(s) within the same peptide sequence. The higher the ΔCn the more certain the
phosphorylation site assignment 40. Thus, when the two top matches of a spectrum were
both phosphopeptides with the same sequence and the ΔCn was ≤0.15, there was a higher
frequency of ambiguity regarding the site of phosphorylation 40. The identified peptides/
proteins are listed in supplemental data (Supplemental Table S2–S3) with accession number,
amino acid sequence, mass shift, matching scores and potential site(s) of phosphorylation.
Every peptide in the tables was linked to assigned MS/MS spectra, precursor ion mass and
charge state.

Label-free quantification—To assess differences between the control (CTL) and FTLD
phosphoproteome we compared identified proteins using spectral counts. Several of the
phosphoproteins identified in this study were found exclusively in FTLD or CTL. For those
proteins not identified in either CTL or FTLD samples, a spectral count of 1 was applied.
The spectral counts were normalized to ensure that average spectral count ratio per protein
was the same in the two datasets 41. G-test was used to judge statistical significance of
protein abundance difference as previously described 27, 42, 43. Briefly, the G-value of each
protein was calculated as shown in equation (1):

(1)

The p-value of each protein was subsequently calculated as the probability of observing a
random variable larger than G from the Chi-square distribution (one degree of freedom).
The frequency histogram of the p-values was afterward created and 0.01 was determined as
the cutoff for p-values to detect significant changes. Proteins, normalized spectral count
ratios, and p values can be viewed in Supplemental Table S3.

Western blotting
Immunoblotting was performed according to standard procedures as reported previously 44.
Briefly, samples were resolved by SDS-PAGE and transferred to Immobilon-P membranes
(Millipore, Bedford, MA). Blots were blocked with TBS plus blocking buffer (USB
Corporation, Cleveland, OH) at room temperature for 30 min and probed with primary
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antibodies in TBS plus 0.1 % Tween-20 plus blocking buffer overnight at 4°C. The
following day, blots were rinsed and incubated with secondary antibodies conjugated to
fluorophores (Molecular Probes/Invitrogen) for one hour at room temperature. Images were
captured using an Odyssey Image Station (LiCor, Lincoln, NE), and band intensities were
quantified using Scion Image. Statistical analysis was performed using Student’s t test for
independent samples. To assess NDRG2 phosphorylation, FTLD brain homogenate was
incubated with 0 or 23 ug of bovine alkaline phosphatase Type VII-S (3411 Units/mg
protein; Sigma Aldrich, St. Louis, MO) in 100 mM Tris pH 8.0 for 2 hr at 37°C and
immediately analyzed by western blot as described above. Antibodies used: mouse
monoclonal NDRG2 (Abcam, USA), rabbit calnexin (Assay Designs, Ann Arbor, MI),
rabbit pan-GFAP antibody (Biocare Medical, Concord, CA), clone KT13 Serine 13
phosphorylated GFAP antibody (Medical & Biological Laboratories, Japan).

Results and Discussion
IMAC enrichment strategy for brain samples

Pathological analyses of FTLD cases demonstrate cytoplasmic phosphorylated TDP-43
inclusions in contrast to normal control tissue, where TDP-43 is exclusively localized to the
nucleus (Fig. 1A–C). The phosphoproteomic analyses of pooled FTLD cases in comparison
to unaffected, age-matched control brain homogenate include several major steps that are
illustrated in Fig. 1D. In our strategy, FTLD and control cases were individually
homogenized and examined for protein quality prior to pooling by SDS-PAGE
(Supplemental Fig. S1). By pooling cases in discovery-mode proteomic experiments, the
between-subject variability regarding pathophysiological heterogeneity, age, sex, and race
can be diluted 45, 46. Importantly, our strategy provides biochemical validation on a case-by-
case basis, including a number of control and FTLD cases outside of the pooled samples. An
equal amount of postmortem frontal cortex protein (500 μg) from each case was combined
for pooled FTLD and control samples (2 mg per sample), and lysates were treated with
acetone overnight to precipitate proteins and remove lipids (mainly from myelin). Protein
loss was observed after acetone precipitation; therefore, pooled samples were re-normalized
for protein amount (800 μg). Samples were sequentially in-solution digested with
endopeptidase LysC (3 hours) and trypsin (overnight), and phosphopeptides were enriched
by an optimized IMAC protocol using FeCl3 followed by LC-MS/MS35. Representative
base peak elution profiles from control and FTLD samples are provided in Fig. 2. Previously
we reported approximately 8.6% enrichment of phosphopeptides from a single postmortem
AD brain sample (10 total fractions) using calcium phosphate precipitation (CPP)
enrichment strategy 27. In the present study approximately 40,000 MS/MS spectra were
collected and searched against a concatenated target-decoy database from two technical
replicates of FTLD and control brain following IMAC enrichment. Analyses revealed 1645
total peptides of which 786 were phosphopeptides (341 protein groups) representing
approximately 50% of the total peptides analyzed. Peptides and grouped proteins are
provided in Supplemental Tables S2 and S3, respectively. Consistent with our previous
report, in-solution protein digestion followed by CPP only allowed for approximately10%
enrichment of phosphopeptides from pooled postmortem FTLD and control brain samples
(data not shown). Thus, the IMAC procedure employed in this study greatly enhanced
phosphopeptide enrichment when compared directly to CPP. Strong-cation exchange
chromatography (SCX) at low pH prior to IMAC enrichment would have undoubtedly
increased the overall number of phosphopeptides identified, however appropriate protein
sample sizes for SCX is on the magnitude of 8–10 mg 20, 21. The limited quantity of control
and FTLD samples prevented the use of SCX in this study and therefore likely restricted the
phosphoproteome coverage to the most abundant phosphoproteins in the sample mixture.
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Identification and quantification of phosphopeptides in human brain
Phosphoproteomic profiling of human postmortem brain tissue has not been extensively
reported 27, 47. One concern of these studies is the length of postmortem interval (PMI)
before tissue cryopreservation. During this time, acid-base imbalance, electrolyte depletion,
and hypoxia may activate protein kinases and phosphatases in the cellular environment 48.
Notably Li, J. et al report that phosphatases may reduce the overall level of protein
phosphorylation during the PMI 49. Previously we reported phosphoproteome analysis of an
AD brain specimen with a relatively long PMI of 20 hrs using the CPP approach, and 551
phosphopeptides were identified 26,27. In this report, PMIs among FTLD and control cases
ranged from approximately 3 to 18 hours (Supplemental Table S1). Label free quantification
of spectral counts using G-test as a measure of significance revealed six differences in the
FTLD and control samples (Table 1), yet there are obvious limitations using this method of
quantitative analysis. Label free quantification of spectral counts considers the total number
of all spectral counts for a given phosphoprotein between samples (e.g. control and FTLD),
irrespective of the site(s) of phosphorylation. Thus, the analysis is biased toward abundant
phosphoproteins/peptides. Low abundant phosphopeptides that could have profound
biological significance in brain will not be considered significant by G-test due to lack of
experimental observations (MS/MS spectra) 50. To characterize the identified
phosphoproteins in this study, we selected and classified the most frequently identified
proteins (as indicated by spectral counts) according to the cellular function. The proteins
were divided into five groups: neurofilaments (NFs), microtubule-associated proteins,
cytoskeletal proteins, signaling/synaptic components, and chaperones. Additionally,
approximately 64% of the phosphopeptides that we identified are not included in the
Phospho.ELM database (Supplemental Table S2) 51. Although the FTLD cases subjected to
phosphoproteomics in this study displayed signature phosphorylated TDP-43 inclusions by
immunohistochemistry (Fig. 1C), TDP-43 phosphospectra was expectedly not observed.
Phosphorylated TDP-43 is predominantly found in the sarkosyl-resistant (insoluble) tissue
homogenate and was therefore not identified 3, 44.

NDRG2 phosphorylation in FTLD
Label free quantification using spectral counts revealed six proteins with significant changes
in the FTLD sample (Table 1). NDRG2 is a member of the N-myc downstream-regulated
gene family and was initially cloned from a rat hippocampal cDNA library. It is suggested
that NDRG2 inhibits glioblastoma cell proliferation 52 and promotes differentiation 53;
however, NDRG2 is not repressed by N-myc 54. Notably, NDRG2 is up-regulated at the
RNA and protein levels in AD brains 55 and is a proposed target for antidepressant and
electroconvulsive therapy 56. NDRG2 possesses multiple phosphorylation sites and is a
substrate for Akt and PKC 57. Our LC-MS/MS data revealed 27 NDRG2 phosphospectra in
the FTLD sample and 5 in the control sample. Manual inspection of NDRG2
phosphospectra revealed that the majority of NDGR2 is phosphorylated on Ser332 in control
and FTLD, while some phosphospectra were observed in FTLD that can be assigned to
either Thr330 or Thr334 (Fig. 3A, Supplemental Table 2). To further investigate these
findings, we pooled equivalent amounts (12.5 μg) of lysate from each FTLD or control case
(Supplemental Table S1) and performed SDS-PAGE followed by immunoblot to examine
NDRG2 (Fig. 3B). Western blot analysis reveals an abundant higher molecular weight form
of NDRG2 in the pooled FTLD sample that suggests hyperphosphorylation. To investigate
the phosphorylation status of the higher molecular weight NDRG2 isoform, lysate FTLD
case 1 was treated with alkaline phosphatase and analyzed by western blot (Fig. 3C). A
mobility shift, representative of phosphate group loss (80 Da), can sometimes be observed
by western blot for phosphoproteins after alkaline phosphatase treatment. Although no
mobility shift was observed (Fig. 3C), the ratio of the higher molecular weight isoform
relative to the lower molecular weight isoform was decreased. Loss of NDRG2
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immunoreactivity in the higher molecular weight isoform and no change in the lower
molecular weight isoform after alkaline phosphatase treatment is difficult to interpret.
Generation of an antibody against phosphorylated Ser332 NDRG2 could help resolve this
issue. There are two alternative splicing isoforms of NDRG2 in humans, isoform a
(NDGR2a) and isoform b (NDRG2b), that encode putative proteins that differ in length by
14 amino acids 55, 58; however, our LC-MS/MS data cannot distinguish the origin of
phosphopeptides to NDRG2a or NDRG2b. Therefore, elevated levels of NDRG2a in FTLD
samples may explain the abundance of the higher molecular weight isoform. Notably,
NDRG2 levels were shown to increase in late-onset AD cases within brain regions
vulnerable to pathology 55, however whether or not NDRG2 contributes to FTLD pathology
remains unclear. The physiological role of NDRG2 and the impact of its phosphorylation in
brain are unknown, but NDRG2 mRNA is highly expressed in a pattern similar to GFAP
mRNA. Specifically, in situ hybridization combined with immunohistochemistry
demonstrated high expression of NDRG2 in GFAP expressing astrocytes in the subgranular
zone of the dentate gyrus 59. The role of reactive astrocytes in FTLD progression is a topic
of great interest 60, 61; therefore, studying the role of NDRG2 with respect to astrocytic
functions such as neurogenesis and regeneration is imperative.

GFAP Ser13 phosphorylation in FTLD
GFAP is a major glial intermediate filament in the cytoskeleton of mature astrocytes 62, and
phosphorylation and dephosphorylation of GFAP regulate its self-assembly and degradation
63, 64. GFAP levels dynamically respond to aging and neurodegeneration 65–68, and
previous reports have shown that GFAP levels are increased in FTLD and AD 61, 69–72.
Consistent with these findings, total spectral counts (including non-phosphorylated peptides)
for GFAP in our LC-MS/MS analyses were 118 and 5 for FTLD and control, respectively
(Fig. 4A). Among those, 18 GFAP phosphospectra in the FTLD sample and 1
phosphospectra in the control sample were identified. Manual inspection of the observed
GFAP phosphopeptides revealed that 16 GFAP phosphospectra mapped to Ser13 or Tyr14
in FTLD, while the remaining two peptides indicated phosphorylation sites at Ser17 and
Ser305 (Fig. 4B). Lack of biochemical evidence of GFAP tyrosine phosphorylation as well
as the presence of a strong neutral loss of a phosphate group (49 m/z) supports that the most
plausible phosphorylation site is Ser13 (Fig. 4B and Supplemental table S2) 73. To assess
Ser13 phosphorylation, 200 μg of lysate from two control and FTLD cases were subjected to
SDS-PAGE followed by western blot. Using a phosphoserine-13 (pSer13) GFAP
monoclonal antibody (clone KT13) 64, 73–76, immunoblot analysis reveals the absence of
bands in control samples and immunoreactive pSer13 GFAP bands in FTLD samples (Fig.
4C). GFAP protein is comprised of three major domains, including the N-terminal head,
central rod containing four α-helical regions, and C-terminal tail (Fig. 4D). Phosphorylation
of residues in the head domain inhibits polymerization of GFAP filaments and promotes
depolymerization 77. Specifically, GFAP Ser13 is phosphorylated at the cleavage furrow
during cytokinesis in primary cultured astrocytes, possibly by Rho kinase, and
phosphorylation of Ser13 also plays a role in structural plasticity of astrocytic processes 73–
76, 78.

Proteomic studies are typically biased to the most abundant proteins in the sample mixture;
therefore, an obvious consideration when assessing quantitative changes in a protein’s
phosphorylation status is evaluating the overall levels of protein in the sample. As described
above, GFAP levels are increased in FTLD, and not surprisingly, the phosphoproteome
enrichment strategy used in the current report revealed higher levels of GFAP in the pooled
FTLD sample as compared to the pooled control sample (Fig. 4A). To validate levels of
GFAP protein in our samples, 50 μg of lysate from nine control and FTLD cases was
examined by SDS-PAGE followed by western blot. Probing with a pan-GFAP antibody
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revealed that global levels were significantly higher in FTLD; however there was more
heterogeneity among FTLD samples (Fig. 5A and B). Notably, several FTLD cases
displayed high molecular weight bands that may indicate oligomeric or polyubiquitinated
GFAP 79, while immunoreactivity between ~25–50 kDa represent degradation products that
may be dephosphorylated, N- or O-deglycosylated, and/or oxidized 80, 81. To investigate the
presence of pSer13 GFAP in additional human samples not included in the
phosphoproteomic analyses, 150 μg of lysate from six control and eight FTLD cases were
examined by SDS-PAGE followed by western blot using clone KT13 pSer13 mono-clonal
antibody. Immunoreactivity was observed in five FTLD cases, but only two controls (Fig.
5C). Furthermore, we performed immunohistochemical analyses for pan-GFAP and pSer13
GFAP in one control and two FTLD cases (Fig. 6). In FTLD cases, intense pan-GFAP
staining was observed in cortical layers I–II, with the strongest immunoreactivity in the
cortical surface. In comparison pSer13 GFAP was largely associated with cortical surface
astrocytes, but not observed in cortical layers I–II. FTLD case 5 displayed more intense
pSer13 GFAP staining compared to case 6, which is consistent with our biochemical
analyses (Fig. 5B).

Proteins exhibiting reduced phosphospectra in FTLD
MAP1A, and its family member MAP1B, are microtubule-associated proteins that are
predominantly expressed in neurons and are hypothesized to facilitate the formation of
axons and dendrites by their ability to bind and stabilize microtubules. The total
phosphopeptide spectral counts for MAP1A (non-phosphorylated peptides were not
observed) were 32 and 8 for control and FTLD, respectively (Table 1 and Fig. 7). Analyses
of extracted ion intensities for identified phosphopeptides in control and FTLD indicate
sufficient signal loss for the majority of phosphopeptides identified in FTLD (Fig. 7B). The
most significant change was observed for Ser612. The ratio of intensity was ~12-fold greater
in the control sample and consistent between the two peptides identified. Moreover, 7
spectral counts from Ser612 containing phosphopeptides were observed in control as
compared to 0 in FTLD. All other peptides, with the exception of Thr504 and Ser1801,
displayed ~3 to 5-fold greater intensity in the control sample (Fig. 7B). We did not verify the
accuracy of this LC-MS/MS data using orthogonal biochemical approaches. Therefore, the
reduction in MAP1A phosphospectra in FTLD may be attributable to lower levels of
MAP1A in FTLD sarkosyl-soluble fraction. In AD, it is suggested that abnormal
hyperphosphorylated tau sequesters MAP1A/MAP1B and causes disassembly of
microtubules 82. However, FTLD cases in this study lack tau pathology and no significant
difference in number of phosphospectra of MAP1B and MAPT (tau) were observed (Table
1). Like tau, MAP1B is phosphorylated by glycogen synthase kinase-3 β in growing axons
83, whereas regulators of MAP1A phosphorylation remain to be elucidated.

In addition to MAP1A, a reduced number of phosphospectra (p<0.01) for reticulon 4
(RTN4), also referred to as neurite outgrowth inhibitor (Nogo), protein kinase C gamma
(PKCγ, PRKCG), and heat shock protein 90kDa alpha, class A member 1 (HSP90AA1) was
observed in FTLD. Reticulons are ubiquitously expressed transmembrane proteins that are
involved in nerve growth inhibition in the central nervous system 84. Nogo is arguably the
most well studied reticulon family member and exists in three isoforms: Nogo-A, -B, and –C
85. The total phosphospectra from 9 peptides, corresponding to 5 sites (Ser181, Ser182,
Ser184, Thr188, Ser991) for Nogo-A, were 16 and 4 for control and FTLD, respectively
(Table 1). Interestingly, the only Nogo-A phosphopeptide sequenced in FTLD was Thr188.
PKCγ is a neuron specific member of the classical PKC family and plays a role in synaptic
plasticity modulation, including long term potentiation and long term depression 86. The
total phosphospectra for PKCγ were 17 for control and 4 for FTLD (Table 1). The only
phosphopeptide identified was Thr655, and the ratio of extracted ion intensity was ~4-fold
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greater in the control sample. Thr655 is one of two autophosphorylation sites in the PKCγ
kinase domain that is necessary for full activation of PKCγ in response to various stimuli 87,
88. Notably, PKCγ deficient mice display deficits in spatial and contextual learning 89. In
total 22 phosphorylated kinases, according to the gene ontology (GO) classification, were
identified in both control and FTLD samples (Supplemental Table S4). HSP90AA1 is a
stress-induced cytosolic protein that suppresses protein aggregation and facilitates protein
folding 90–92. The total phosphospectra from 5 peptides, corresponding to 2 sites (Ser231
and Ser263), were 18 and 4 in control and FTLD, respectively. For Ser263; 8 spectra were
sequenced in control and 0 in FTLD. For Ser231, 10 phosphospectra were sequenced in
control and 4 in FTLD. Phosphorylation activates heat shock protein 90 and likely regulates
its chaperoning function 93. The accuracy of LC-MS/MS data for Nogo, PKCγ, and
HSP90AA1 was not verified using orthogonal biochemical approaches; therefore, the
reduction in observed phosphopeptides in FTLD may be attributable to lower levels of these
proteins in disease tissue.

Conclusion
Our findings represent the first phosphoproteomic analyses of FTLD postmortem brain
tissue and demonstrate the feasibility of attaining 50% enrichment of phosphopeptides from
autopsy brain specimens coupling IMAC with LC-MS/MS. This strategy revealed six
proteins with significant changes in the FTLD sample. NDRG2 and GFAP had an increased
number of phosphospectra, whereas MAP1A, Nogo, PKCγ, and HSP90AA1 had
significantly fewer compared to control brain. Furthermore, biochemical and
immunohistochemical analyses validated an increase in GFAP Ser13 phosphorylation in
FTLD. NDRG2 and GFAP share similar astrocytic mRNA expression patterns and support
an evolving connection between astroglia and FTLD.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. TDP-43 pathology observed in FTLD and phosphopeptide enrichment strategy
Immunohistochemical analyses of FTLD and control cases using a pan-TDP-43 (A and B)
or a phosphospecific TDP-43 Ser(409/410) antibody in FTLD (C). (D) Flowchart of
experimental design to enrich phosphopeptides from human brain tissue. IHC,
immunohistochemistry.
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Figure 2. IMAC enriched phosphopeptides from human brain samples analyzed by LC-MS/MS
Representative base peak elution profiles of pooled control and FTLD samples.
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Figure 3. Examination of NDRG2 phosphorylation in FTLD
(A) NDRG2 phosphopeptide spectrum (pSer332) from FTLD displaying dominant precursor
neutral loss peak (49 m/z). (B) Western blot analyses of pooled lysates from FTLD or
control cases reveal an abundant higher molecular weight form of NDRG2 in the pooled
FTLD sample, suggesting phosphorylation. (C) Lysate from FTLD case 1 was incubated
with or without 23 μg of alkaline phosphatase (AP) and analyzed by western blot. A
decrease in the ratio of the higher molecular weight isoform relative to the lower molecular
weight isoform was observed in the AP treated sample. Blots are representative of three
independent experiments. Calnexin used as a loading control for all blots. Human sample
information listed in Supplemental Table S1. WB, western blot; AP, alkaline phosphatase.

Herskowitz et al. Page 18

J Proteome Res. Author manuscript; available in PMC 2011 December 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Examination of GFAP Ser13 phosphorylation in FTLD
(A) Table of identified GFAP phosphopeptides in FTLD and control. (B) Representative
Ser13/Tyr14 GFAP phosphopeptide spectrum from FTLD displaying precursor neutral loss
peak. (C) To assess Ser13 phosphorylation, lysate from two control and FTLD cases were
analyzed by western blot for pSer13 GFAP using clone KT13 antibody. The presence of
immunoreactive bands in FTLD samples and absence in controls is consistent with LC-MS/
MS analyses. Calnexin used as a loading control. Human sample information listed in
Supplemental Table S1. (D) Protein structure and amino acid sequence of GFAP. Identified
phosphorylation sites indicated by *. WB, western blot.
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Figure 5. Analyses of pan-GFAP and GFAP Ser13 phosphorylation in human brain
(A) Western blot analysis for pan-GFAP in control and FTLD cases. High molecular weight
bands in FTLD cases may indicate oligomeric/modified GFAP; immunoreactivity between
~25–50 kd may represent degradation isoforms 80, 81. (B) Quantitative analyses of western
blot indicates mean GFAP levels are ~3-fold higher in FTLD (p value = 0.0001). (C)
Western blot analyses for pSer13 GFAP using clone KT13 antibody in control and FTLD
cases. (D) Quantitative analyses of western blot indicates mean pSer13 GFAP levels are ~8-
fold higher in FTLD (p value = 0.045). Calnexin used as loading control for all blots.
Human sample information listed in Supplemental Table S1. WB, western blot.
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Figure 6. Immunohistochemical analyses of pSer13 GFAP in control and FTLD
Control case 8 and FTLD cases 5 and 6 were stained with pan-GFAP and clone KT13
antibody. (Top, 20x magnification) Pan-GFAP immunoreactivity strongest in cortical layers
I–II, whereas (Bottom, 40x magnification) pSer13 GFAP immunoreactivity was strongly
observed in the cortical surface of case 5 (consistent with western blot analyses, Fig. 5C).
20x scale bars 100 μM, and 40x scale bars 40 μM. pSer13, phosphoserine-13. Human
sample information listed in Supplemental Table S1.
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Figure 7. MAP1A phosphopeptide analyses in control and FTLD using extracted ion intensity
(A) Representative extracted ion chromatogram (XIC) from control and FTLD for MAP1A
phosphopeptides 2, 3, 4 and 13 found in B. For XIC a user defined precursor mass tolerance
of ±5 ppm was employed. Indicated in parentheses, point in time (minutes) when the MS/
MS spectrum was obtained in control samples. In (B) the site of phosphorylation, spectral
count(s), m/z, charge state, extracted ion intensities and retention time from control and
FTLD for identified MAP1A phosphopeptides are listed.
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