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Abstract
In this review article, we provide a detailed and comprehensive discussion of the rationale for
using modern IMRT techniques to spare the subgranular zone of the hippocampus during cranial
irradiation. We review the literature on neurocognitive effects of cranial irradiation; discuss
clinical and preclinical data associating damage to neural progrenitor cells located in subgranular
zone of the hippocampus with radiation-induced neurocognitive decline, specifically in terms of
short-term memory formation and recall; and present a review of our pilot investigations into the
feasibility and risks of sparing the subgranular zone of the hippocampus during whole-brain
radiotherapy for brain metastases. We also introduce our phase II cooperative group clinical trial
(RTOG 0933) designed to prospectively evaluate the postulated neurocognitive benefit of
hippocampal subgranular zone sparing and scheduled to open in 2010.

Neurocognitive Toxicity after Cranial Irradiation
Cranial irradiation is an effective therapeutic modality in multiple different settings of
oncologic management: whole-brain radiotherapy (WBRT) for brain metastases,
prophylactic cranial irradiation (PCI) for small cell lung cancer (and controversially for non-
small-cell lung cancer), and cranial or craniospinal irradiation for pediatric central nervous
system malignancies. The benefit of cranial irradiation in these settings largely arises from
1) the inadequate penetration of systemic therapies across the blood-brain barrier and 2) the
ability of cranial irradiation to effectively target microscopic and/or gross intracranial
disease.

Several prospective randomized trials have shown that withholding WBRT in patients with
brain metastases leads to a 70–300% increase in the relative risk of developing brain
metastases, compared to delivering up-front WBRT at the time of diagnosis of brain
metastases, and this observation was reinforced in the recently completed (but as yet
unpublished) EORTC trial (1–4). For example, in the landmark Patchell et al. study (2), the
absolute risk of any intracranial failure with and without up-front WBRT was 18% vs 70%,
implying an absolute increase of 52% in any brain failure without WBRT over a baseline
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rate of 18% with WBRT. This translates to a relative increase in risk of just under 300%
(52/18 × 100 = 289%). Previous trials have all been relatively small, adequately powered to
detect this difference in intracranial failure but not a difference in survival. The recent
EORTC trial (4) was much larger and provided data over a longer time frame, inclusive of
brain relapse rates out to two years. In the surgical arm of this trial, regional failure in the
brain at two years, excluding the increase in local failure at the original tumor site in the
brain, was 23% vs. 42% (p < 0.008) with and without WBRT, resulting in an excess regional
only failure rate of 19%, which translates into an increased relative risk of 83%. Though
compelling, this dramatic reduction in the risk of subsequent development of brain
metastases with WBRT comes at the cost of potential neurocognitive toxicity.

Neurocognitive toxicity represents a spectrum of different toxicities, and the time course of
these can vary significantly. Most authors have generally focused on severe dementia and
described this as a “late toxicity,” occurring several months to years following cranial
irradiation. DeAngelis et al. (5) suggested that as many as 11% of long-term brain
metastases survivors (>12 months) treated with cranial irradiation develop severe dementia,
but only with the use of larger dose-per-fraction schedules. Long-term serious and
permanent adverse effects, including cognitive deterioration in other domains and cerebellar
dysfunction, have also been described (6). However, recent clinical evidence in the setting
of WBRT for brain metastases suggests a component of early neurocognitive decline
occurring within the first 1–4 months (3,7,8). This early component primarily reflects verbal
and short-term memory recall (9–11). However, whether this early decline in memory is
associated with long-term and/or permanent decline has not been adequately studied, and
some preliminary data suggest a possible late rebound, implying the presence of an early-
responding cellular compartment with at least some repair capacity. Furthermore, the
analysis of neurocognitive decline in brain metastases can be confounded by several effects,
including: 1) patients with brain metastases tend to have reduced neurocognition at the time
of presentation, which is frequently not evaluated; 2) disease-progression, both intra- and
extra-cranially, will negatively skew population distributions of neurocognitive scores; and
3) the effects of therapeutic interventions such as chemotherapy, anticonvulsants, steroids,
opiates, etc., remain inadequately documented.

In an attempt to disentangle these confounding effects, our research group recently
published a detailed analysis of the time course of neurocognitive decline in eight
prospectively measured domains in 208 brain metastases patients treated with 30 Gy of
WBRT and enrolled on a prospective, international multi-institutional randomized trial, with
pre-specified and standardized neurocognitive evaluations in association with prospective
MR imaging (7). Neurocognitive function (NCF), assessed by tests of memory, executive
function, and fine motor coordination, was correlated with metastasis volume regression as
measured by magnetic resonance imaging. NCF and survival were compared in 135 patients
evaluable at 2 months with tumor shrinkage less than (poor responders) and greater than
(good responders) the population median. The mean NCF scores and brain metastasis
volume at 4 and 15 months were compared. Good responders experienced significantly
improved survival (unidirectional p = 0.03). For all tests, the median time to NCF
deterioration was longer in the good than in the poor responders, with statistical significance
seen for executive and fine motor functions (Table 1). In long-term survivors, defined as
patients surviving more than 15 months, tumor shrinkage was significantly correlated with
preservation of executive function and fine motor coordination (r = 0.68–0.88).

These findings support two important possibilities. First, achieving local control with
WBRT was integral to both improving survival and preserving certain neurocognitive
domains. Second, an intriguing exception to these findings was memory function,
specifically recall and delayed recall as assessed with the Hopkins Verbal Learning Test
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(HVLT). While executive and fine motor functions demonstrated statistical significance for
longer time to NCF deterioration in good compared to poor responders, this statistical
difference was not appreciated for the memory functions of recall and delayed recall (Table
1). In addition, amongst patients surviving to four months, these memory domains showed a
statistically significant NCF decline at four months compared to baseline (Figure 1). NCF
scores for executive and fine motor functions did not show a similar decline (Figure 2).
Thus, these data suggest that memory-related neurocognitive domains may have a weaker
association with tumor reduction and may be most susceptible to early decline, even in
patients with non-progressing brain metastases, implying the selective effect of WBRT in
preserving certain domains over others and the differential sensitivity of certain domains to
radiation effects.

Further evidence of the early susceptibility of memory function to WBRT was recently
demonstrated by Chang and colleagues (3). They reported a single-institution phase III trial
of stereotactic radiosurgery (SRS) with or without WBRT in patients with 1–3 brain
metastases, with the principal objective of comparing neurocognitive decline between the
two arms. Utilizing HVLT as a neurocognitive metric for learning and memory, they defined
NCF decline as a >5 point drop 4 months from baseline. Their study was halted early due to
an interim observation of a two-fold increase in the mean posterior probability of
neurocognitive decline (52%, SRS+WBRT, vs. 24%, SRS alone). Similar findings were
reported by Welzel et al., who observed a decline in verbal memory function, as assessed by
the Auditory Verbal Learning Test (AVLT) 6–8 weeks after the completion of WBRT for
brain metastases (8).

In long-term survivors, a trend towards some rebound in the memory domains has also been
observed. RTOG 0214 is a phase III comparison of prophylactic cranial irradiation (PCI)
versus observation in patients with locally-advanced non-small-cell lung cancer. In this
study, the use of PCI significantly diminished the overt development of brain metastases,
without a categorical survival improvement. Despite not reaching target accrual, this trial
also demonstrated a significantly greater decline in immediate recall and delayed recall, as
assessed by HVLT in the PCI arm at 3, 6 and 12 months follow-up. Interestingly, the largest
magnitude of decline in these memory domains occurred 3 months after PCI, with some
recovery of recall appreciated over time (12). In our analysis of neurocognition in brain
metastases patients, a similar biphasic pattern of memory decline was also observed (7). The
summation of these data provides hypothesis-generating observations that these memory
domains may be mediated by an early-responding cellular compartment with at least some
repair capacity.

Recent work from our group has shown that neurocognition and quality of life are correlated
in patients with brain metastases receiving WBRT (13). We found that deterioration in
neurocognitive function preceded self-reported quality of life decline by up to 153 days.
Hence, there is likely to be a sequential association between neurocognitive decline and
deterioration in self-reported quality of life for patients with brain metastasis. The sum of
these and our findings suggest that although achievement of intracranial disease control is an
important aim of cranial irradiation, strategies meant to preserve memory-related
neurocognition warrant further investigation.

Clinical and Preclinical Rationale for Avoiding the Hippocampus
The central role of the hippocampus in supporting memory function was first understood
more than fifty years ago, in the case study of H.M., a gentleman who underwent a bilateral
medial temporal lobectomy for the relief of medically intractable epilepsy. Immediately
following the procedure, H.M. showed a severe anterograde amnesia characterized by
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impairment in declarative memory (the conscious recollection of facts and events). H.M.’s
amnesia, however, did not include the remaining components of his neurocognition,
including perception, intelligence, working memory, and motor skill learning, all of which
remained largely intact (14,15). Building on these observations, subsequent
neuropsychology studies of median temporal lobe lesions have demonstrated that declarative
memory impairment due to hippocampal injury occurs regardless of the sensory modality in
which information is presented (16–19) and without affecting immediate memory,
perception, and intellectual functions (20–22).

Recent clinical studies suggest that radiation-induced damage to the hippocampus plays a
considerable role in the neurocognitive decline of patients after cranial irradiation. In
particular, deficits in learning, memory, and spatial processing observed in patients who
have received WBRT are thought to be related to hippocampal injury (23). Moreover,
irradiation of the hippocampus has been associated with pronounced cognitive impairment
in the learning and memory domain in patients receiving radiation therapy for
nasopharyngeal tumors (24,25), maxillary tumors (26), pituitary tumors (27), and base of
skull tumors (28). Preliminary results from a recent MD Anderson study of low-grade or
anaplastic brain tumors treated with radiotherapy have observed a dose-response
phenomenon, wherein the maximum radiation dose to the left hippocampus was correlated
with subsequent decline in learning (p = 0.014) and delayed recall (p = 0.01) (29). Similarly,
Jalali and colleagues prospectively evaluated intelligence quotient (IQ) scores in patients
with benign and low-grade brain tumors and observed a significant correlation association
between IQ decline and dose to the left temporal lobe (30). These clinical observations
therefore place the hippocampal anatomy at the center of radiation-induced short-term
memory decline, and the traditional belief was that this reflected injury to specific neuronal
pathways.

However, recent preclinical work by Michelle Monje and colleagues and others has begun to
challenge this “anatomic” explanation, in favor of a “stem-cell compartmental” hypothesis.
Memory function has been associated with the pyramidal and granule cells located in the
dentate gyrus of the hippocampus (31). In all adult mammals, including humans, new
granule cells are generated from mitotically active neural stem cells (NSCs), which are
located in the subgranular zone of the dentate gyrus and which migrate into the granular cell
layer (32–38). Monje et al. have demonstrated that the pathogenesis of radiation-induced
neurocognitive deficit may involve radiation-induced injury to this NSC compartment
(39,40). It has been found that relatively modest doses of radiation cause apoptosis and a
sharp and prolonged decline in neurogenesis in the subgranular zone of young rats and mice,
and that this compartmental cell loss is associated with extinction of short-term memory,
with increasing failure rates on hippocampal-dependent tasks (40–44). On the other hand,
little to no apoptosis is observed in other areas of the cerebrum (43), and no loss of function
is observed in hippocampal-independent tasks (44). Monje and colleagues went on to show
that neurogenesis is inhibited by inflammation in the area surrounding the NSCs (45). This
inhibition occurred whether the inflammation was induced by radiation injury or by bacterial
lipopolysaccharide. Hence, inflammatory injury to the proliferating subgranular NSC
compartment of the hippocampus putatively represents one possible mechanism for the
domain-wise differential benefit in neurocognitive function and the temporal sequence of
events following cranial irradiation. Of course, none of these observations rule out the
contribution of other possible modes of radiation injury as being causative and/or
contributory to neurocognitive decline.

To test the hippocampal stem cell hypothesis, we propose to conformally avoid the
hippocampus during cranial irradiation to putatively limit the radiation-induced “early”
inflammation of the hippocampal region and subsequent alteration of the microenvironment
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of the NSCs. We hypothesize that avoiding the hippocampus during cranial irradiation may
delay or reduce the onset, frequency, and/or severity of neurocognitive decline, without
compromising intracranial disease control, and have sought to subject this testable
hypothesis to a clinical trial.

Feasibility of Avoiding the Hippocampus
Avoiding the hippocampus during cranial irradiation, while allowing for uniform dose
delivery to the remainder of the brain, poses important challenges given the central location
and unique anatomic shape of the hippocampus. Recently, we demonstrated the ability of
modern intensity-modulated radiotherapy (IMRT) techniques, including helical tomotherapy
and LINAC-based IMRT, to allow for the delivery of highly conformal dose distributions
(46). For a prescription dose of 30 Gy in 10 fractions to the whole brain, our technique is
able to reduce 1) the mean dose per fraction to the hippocampus (normalized to 2-Gy
fractions) by 87% to 0.49 Gy2 using helical tomotherapy and by 81% to 0.73 Gy2 using
LINAC-based IMRT; and, 2) the maximum dose to the hippocampus to 12.8 Gy using
helical tomotherapy and 15.3 Gy using LINAC-based IMRT. Sparing of the hippocampus
with these IMRT modalities is accomplished with acceptable target coverage and
homogeneity. Using a rat model Michelle Monje and colleagues have observed a radiation
dose-dependent effect on neurogenesis, with a single fraction of 10 Gy inducing a 62%
reduction in neural stem cell proliferation and a 97% reduction in hippocampal neurogenesis
(39,40). Based on these data, we postulate that sparing the hippocampus could yield
clinically significant neurocognitive benefit.

In addition, modern IMRT techniques allow for the simultaneous integrated boost of
intracranial metastases, without compromising hippocampal sparing. Recently, our group
demonstrated the capability of helical tomotherapy to conformally avoid the hippocampus,
and still deliver radiosurgical–quality dose distributions to multiple metastases and a
homogeneous dose distribution to the whole brain—all in a single treatment plan (47). A
similar study from Hsu and colleagues demonstrated a similar capability using volumetric
arc therapy (48). These IMRT techniques thus have the potential to allow for the optimal
balance between intracranial disease control, achieved with WBRT and simultaneous
boosting of radiographically evident disease, and preservation of neurocognition,
theoretically achieved with hippocampal avoidance.

Risk of Perihippocampal Disease Progression
Sparing the hippocampus and perihippocampal region (hippocampus + 5mm margin) of
therapeutic doses of radiation poses the theoretical risk of intracranial disease progression in
these regions. The degree of this risk is largely dependent on the volume of brain tissue that
is spared. The hippocampus consists of two U-shaped interlocking laminae: the cornu
ammonus and the dentate gyrus. It is a component of the entire limbic circuit, which
includes white matter tracts such as the fimbriae and fornices (the primary efferent system of
the hippocampus) and gray matter structures such as the amygdala and parahippocampal
gyrus. Preclinical evidence has associated neurogenesis within the dentate gyrus with
normal cognitive function (49–51). Cranial irradiation in rat models has been observed to
induce apoptosis of these precursor cells and alter their differentiation towards a gliogenic,
rather than a neurogenic fate, resulting in a significant reduction in hippocampal
neurogenesis (39,52) and associated cognitive impairment (42).

Based on these data, we propose a targeted approach to avoiding the hippocampus, focusing
on the dentate gyrus and cornu ammonus, rather than comprehensively avoiding the entire
limbic circuit (Figure 1). In other words, we are forgoing the anatomic neuronal circuit
damage model for the compartmental NSC model. This approach avoids a clinically
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unacceptable risk of disease progression. Recently, we detailed our approach to contouring
the hippocampus using axial, sagittal, and coronoal sections of a gadolinium-enhanced T1
weighted MRI (Figure 1) (46). Using this approach to targeted hippocampal contouring, we
reviewed 371 patients who presented with 1133 metastases (53). In this comprehensive
multi-institution analysis, we observed a metastasis within the hippocampal avoidance
region (hippocampus plus 5mm margin) in 8.6% of patients, with 11.5% as the upper limit
of the 95% confidence interval. No patient presented with a metastasis within the
hippocampus proper. These data corroborate the results of our earlier, single-institution
study, in which we reviewed 100 patients with brain metastases and observed 8% of patients
to have a perihippocampal metastasis at presentation (54). The similar incidence of
perihippocampal metastases between the two studies points to the reproducibility of our
methodology in reviewing two separate institutional databases. However, enlarging our
patient database has allowed us to reduce the standard error and, in so doing, improved the
accuracy of our risk estimate.

Assuming that the risk of developing subsequent brain metastasis within the hippocampal
avoidance region scales in the same proportion as that at presentation, we estimate that a
patient treated with hippocampal sparing during whole-brain radiotherapy (WBRT) will
derive 91.4% of the relative benefit of WBRT in terms of preventing the emergence of
radiographically visible intracranial lesions, with a lower 95% confidence limit of 88.5%
(53). This modest increase in risk of intra-cranial progression with hippocampal avoidance
may be partially compensated by the possibility of salvage with radiosurgery, which remains
to be validated. Should salvage radiosurgery be used for a perihippocampal recurrence, we
expect that given the very steep radiation dose falloff with stereotactic radiosurgery, only
some but not all of the potential neurocognitive benefit of hippocampal avoidance will be
lost. Based on these data, we conclude that hippocampal sparing during WBRT should be
tested clinically.

RTOG 0933: A Phase II Trial of Hippocampal Sparing
To prospectively evaluate the neurocognitive benefit of hippocampal sparing, the RTOG has
developed a phase II clinical trial (RTOG 0933) to test hippocampal sparing during WBRT
in patients with brain metastases (Table 2). The primary endpoint will be delayed recall
assessed using HVLT at 4 months after treatment, and a planned statistical comparison will
be made to an historical control of patients who received WBRT without hippocampal
avoidance on a recent phase III trial (PCI-P120-9801). (55,56).

Summary and Future Directions
In summary, preclinical and clinical evidence suggests that radiation dose received by the
neural stem cells of the subgranular zone in the hippocampus may play a role in radiation-
induced neurocognitive decline, specifically memory recall. Although neurocognitive
assessment in patients receiving WBRT can be confounded by intracranial metastatic
disease, analyses from our group and others suggest a differential sensitivity to WBRT of
various memory-related neurocognitive domains, such as delayed recall. This provides the
rationale to explore the clinical feasibility of hippocampal sparing during WBRT. We and
others have demonstrated the dosimetric capabilities of intensity-modulated radiotherapy to
conformally avoid the hippocampus without detriment to the radiation dose received by the
remainder of the brain. Through retrospective analyses, we have also estimated the
theoretical risk of perihippocampal disease progression with hippocampal avoidance. Given
the overall aim of preventing neurocognitive decline, and the possibility of salvaging
hippocampal and perihippocampal recurrences with radiosurgery, we hypothesize that
hippocampal sparing during WBRT may provide a net gain in this endpoint. To
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prospectively evaluate this hypothesis, we have developed a phase II clinical trial through
RTOG (RTOG 0933). Given the experimental nature of this hypothesis, at this point,
hippocampal sparing should not be used outside of clinical trials, such as RTOG 0933 and
others as they evolve. Efforts are ongoing at our institution to develop similar clinical trial
concepts for the use of hippocampal sparing in prophylactic cranial irradiation in small-cell
lung cancer and cranial and craniospinal irradiation in pediatric CNS tumors.
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Figure 1. Decline in memory-related neurocognitive domains at 4 months after WBRT
Change of mean normalized neurocognitive function (NCF) test scores in patients who were
surviving at the fourth month. The scores were normalized to individual patient’s own
baseline. Figure represents NCF tests where higher scores reflect better function. (A) Recall,
(B) delayed recall, (C) recognition, and (D) controlled oral word association (COWA). Each
data point represents the mean NCF score ± SE. r represents Spearman’s correction
coefficient between mean test scores and time. (*) P value < 0.05 is considered statistically
significant.
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Figure 2. No change in executive function and fine motor coordination neurocognitive domains
at 4 months after WBRT
Change of mean normalized neurocognitive function (NCF) test scores in patients who were
surviving at the fourth month. The scores were normalized to individual patient’s own
baseline. Figure represents NCF tests where higher scores reflect better function. (A)
Pegboard Dominant Hand, (B) Pegboard Nondominant Hand, (C) Trailmaking A, and (D)
Trailmaking B. Each data point represents the mean NCF score ± SE. r represents
Spearman’s correction coefficient between mean test scores and time. (*) P value < 0.05 is
considered statistically significant.

Gondi et al. Page 11

Radiother Oncol. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Targeted approach to avoiding the hippocampus
(A) The hippocampus (orange) was contoured by focusing on the dentate gyrus and cornus
ammonus, rather than the entire limbic circuit, using T1-weighted magnetic resonance
imaging (MRI) sagittal and coronal sequences. The hippocampal avoidance region (green)
was generated by expanding the hippocampal contour by 5 mm volumetrically to account
for setup error. (B) Spatial isodose distribution for 1 sample patient at the level of the
hippocampi for hippocampal-avoidance during whole-brain radiotherapy (prescription of 30
Gy in 10 fractions) using helical tomotherapy. Orange contour represents the hippocampal
avoidance region. Green isodose represents 12 Gy; light blue, 27 Gy; pink, 29 Gy; yellow,
30 Gy; red, 38 Gy, in 10 fractions.
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Table 2
Schema for RTOG 0933, a phase II trial of hippocampal avoidance during WBRT (HA-
WBRT) for patients with brain metastases

The primary endpoint will be delayed recall, assessed using the Hopkins Verbal Learning Test at 4 months
after HA-WBRT. A planned statistical comparison will be made to an historical control of patients who
received WBRT without hippocampal avoidance.

For Patients with MRI Evidence of Brain Metastasis Within 1 Month of WBRT

REGISTER1 Within 2 Weeks Prior to Treatment Radiation Therapy

1 3D SPGR MRI with Fused CT Simulation2

2 Cognitive Testing

3 Quality of Life Assessment

4 Rapid Central Review of Hippocampal Contours and HA-
WBRT Treatment Plan3

WBRT with Hippocampal Avoidance using
IMRT (30 Gy in 10 Fractions)4

Abbreviations: WBRT, whole-brain radiotherapy; 3D SPGR MRI, three-dimensional spoiled-gradient magnetic resonance imaging; IMRT,
intensity-modulated radiotherapy.
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