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Abstract
We present MassSieve, a Java-based platform for visualization and parsimony analysis of single
and comparative LC-MS/MS database search engine results. The success of mass spectrometric
peptide sequence assignment algorithms has led to the need for a tool to merge and evaluate the
increasing data set sizes that result from LC-MS/MS-based shotgun proteomic experiments.
MassSieve supports reports from multiple search engines with differing search characteristics,
which can increase peptide sequence coverage and/or identify conflicting or ambiguous spectral
assignments.
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The data that result from the mass spectrometric analysis of enzymatically digested proteins
are peptide sequences, not protein identifications. Connection back to proteins is inferred.
This protein inference problem is succinctly summarized by Nesvizhskii and Aebersold [1].
The two main approaches to solve this problem use either probabilistic or discrete methods.
The probabilistic approach is exemplified by ProteinProphet [2]. This program uses an
expectation–maximization algorithm to determine correct and incorrect protein
identifications. This method does not lend itself to an understanding of the structure of the
relationships between the proteins and peptides. If two proteins have the same peptide
evidence, then they will have the same resultant probabilistic score, barring some
differences used by a heuristic rule to adjust the probability. This method could also lead to
differentiating proteins based upon peptide evidence that would not be accepted as a valid
identification by a reasonable observer.

Discrete methods for solving the protein inference problem depend upon a static list of
identified peptides; either a peptide is identified or it is not. An attempt is then made to
provide a minimal or maximal set of proteins that explain all of the peptides. A maximal list
is trivially derived by non-redundantly listing all proteins that contain one or more peptides
from the given set. This provides an upper bound on the set of proteins. The minimal set of
proteins is the smallest number of proteins that explains all of the peptide evidence, and this
provides a lower bound. There is often more than one minimal set since a given set of
peptides may be explained by more than one protein from a set of proteins. One of the
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principle means of determining these minimal sets is parsimony, which is an interpretation
of the data in accordance with Occam’s razor. The purposes of mass spectrometric based
proteomic experiments are disparate; whether it is to verify the simple presence of a gene
product, or to denote all possible isoforms present from a protein family. Simply providing a
minimal list or the maximal list will not do. What is required is an interactive environment
that may be used to explore the data at a high level, or drill down to view the source of any
given identification and its other possible interpretations, depending upon the experimental
requirements.

As applied to the protein inference problem, the principle of parsimony is simply a bijection
of the set of proteins into those for which independent evidence exists, and those for which it
does not. The idea of parsimony is not new; indeed, this protein inference effort is a
continuation of the work that began in our lab with DBParser [3]. This was a web-based
solution that did not scale well for larger experiments. Parsimony is also used by ID Picker
[4], which is a similar web-based reporting solution that produces static parsimonious
protein lists based upon peptide identifications verified by some means of estimating the
false discovery rate.

The standards for accepting peptide identification may vary widely from investigator to
investigator. It may be a standard cutoff score or one determined by an estimate of the false
discovery rate. It may require more than one search engine to verify the identification, or
require that the same peptide be identified more than once within the same sample.
Permuting these parameters provides a deeper understanding of the data and of the
identification standards themselves.

To facilitate communication, a standard nomenclature, as shown in Table 1, has been
developed to describe the elements of a parsimonious set of proteins and peptides. Protein
identifications that are discrete or differentiable by definition have independent evidence
confirming their existence. The rest of the categories do not have independent validation, yet
some of them must exist due to the pigeonhole principle (given n items placed in m boxes, if
n > m then there exists a box containing more than one item). Strictly speaking, any of these
remaining categories may refer to a group of one or more equivalent proteins. For example,
if proteins A and B contain peptides x, y, and z, while protein C contains only peptide z, then
A and B are supersets of protein C, yet they are still equivalent to each other. For
determining minimal protein presence, subsets or subsumables are not considered since
there exists more evidence for other proteins, while each group of indistinguishable proteins
that are supersets or non-hierarchical equivalents are presumed to have at least one member
present.

MassSieve is an open source rich client application developed in Java and has been tested on
Windows, Mac OSX, and Linux. Several open source Java libraries are utilized, including
BioJava [5] to read sequence databases, and provide graphical representation of protein
sequence coverage, the MascotDatfile library [6] to parse MASCOT results, the Prefuse
visualization toolkit to display protein–peptide relationship graphs, the ANTLR parser
generator [7] to create a peptide selection set notation language, and the GlazedLists
framework is used to display and manipulate tables.

The basic unit of analysis in MassSieve is the Experiment, which is a set of MS/MS peptide
identification results all pertaining to one biological sample. Multiple fractions, or
instrument runs, may be gathered into a single Experiment and the peptide evidence for each
will be given equal weight for determining the protein list. In addition, multiple analyses of
the same data (i.e. the same data searched on multiple search engines) may also be loaded
into the same experiment.
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The output from the various peptide identification algorithms is not standardized and does
not agree in the amount and type of information to be provided. Therefore, adding support
for a new source of data is the most labor-intensive part of the process. Currently,
MassSieve supports Mascot DAT files, OMSSA XML, X!Tandem XML, and most other
algorithm’s PepXML output (e.g. SEQUEST, SpectraST) including MASCOT, OMSSA,
and X!Tandem PepXML.

From each data source, peptide identifications for each MS/MS spectrum (scan) are loaded.
These are known as peptide hits. Only the top scoring, or set of top scoring hits in the case
where the best identification is indeterminate, is loaded. The peptide hits are then filtered as
shown in the pipeline in Fig. 1. The ordering of the steps in the pipeline is important, as each
step obviously affects the next step. First, each peptide hit is filtered based upon a user-
configurable cut-off score depending upon the search algorithm used to determine the
identification. For OMSSA and X!Tandem, this is the expectation score. For MASCOT, this
is either the expectation score, or requiring the ion score to be greater or equal to the identity
score, which by definition is equal to an expectation score of 0.05. SEQUEST results use the
XCorrnorm, which is the XCorr normalized by the charge state. This is based upon the same
criteria as DTASelect [8], where the normalized XCorr is (XCorr c)/c, where c = 1.8 for
charge 1, c = 2.5 for charge 2, and c = 3.5 for charge 3+. If the data source is PepXML that
has been processed by Peptide Prophet [9], then the Peptide Prophet probability may be used
in lieu of the standard score. If the search algorithm format is not directly supported, then
the Peptide Prophet score must be used.

At this point, a peptide hit may be indeterminate because the spectrum that it identifies is
also identified as a different peptide by either the same algorithm with the same score (for
example, I/L), or by a different algorithm. The choice is to either retain all identifications or
remove those spectra and their indeterminate identifications. If the choice is to retain
indeterminate identifications, then they are subsequently used as if all of them are
independently present and valid, but their presence is noted and displayed for any dependent
peptide or protein identification.

All peptide hits are grouped by their identified unique peptide. If a user has loaded data from
multiple search algorithms, these peptides may then be filtered by the search algorithms
which identified it. This filtering is based upon a modified set notation. This notation may be
used to specify any desired combination of results from the input. For example, given the
filter string, (M&X)+O, the resultant list will include any peptide that has a peptide hit from
OMSSA, or has been identified at least once by both MASCOT and X!Tandem. Note the
use of parenthesis to explicitly differentiate the string from M&(X+O), which would result
in a very different list of peptides.

The next step is to filter peptides by the number of peptide hits, independent spectra (scans)
that were identified as that peptide. For a multiple search engine experiment, this is not the
same as the number of peptide identifications. If both OMSSA and MASCOT identified
spectrum 506 as ABLLAYLK, then this would still be only one peptide hit. In a similar
fashion, proteins may be filtered by the number of member peptides, by the percent
sequence coverage, or by both criteria.

Once the filtered list of peptide hits, peptides, and associated proteins is available, then each
protein can be assigned to the correct parsimony category, as summarized in Table 1.
Parsimony analysis is equivalent to the vertex cover problem, which is classic example of an
NP-complete problem. Simply stated, a vertex cover is a subset S of a set of vertices V,
where the edges E are contained in the graph G = (V,E), then each edge in E has at least one
endpoint in S. To find a minimal S for any given G is generally intractable; however, the
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problem as applied to proteins and peptides may be mapped to a bipartite graph, for which
efficient algorithms do exist. The algorithm described here is slightly modified to account
for the parsimony categories.

First, a breadth-first search of every protein to compose a list of proteins related to it by
shared peptides, and to assign each protein to a cluster. The cluster has no effect on the
algorithm; it is for convenience when displaying graphs of related proteins and peptides.
Second, each protein on this list is compared by its set of peptides to separate the list into
differentiable, superset, subset, or equivalent proteins. Then, each protein is examined in the
following order to determine its parsimony category. If it contains only distinct peptides,
then it is discrete. If it contains at least one distinct peptide, and one shared peptide, then it is
differentiable. If it has at least one superset protein, then it is a subset. If the protein is linked
by shared peptides to two or more differentiable proteins that are themselves differentiable
from each other, and all of the protein’s peptides form a subset of the set of peptides of all of
its differentiable proteins, then it is subsumable. If none of the preceding applies and it has
at least one subset protein, then it is a superset. Finally, if nothing else, it must be an
equivalent protein. The time complexity for this algorithm is O(n2m), where n is the number
of proteins and m the number of peptides. The space requirement of this algorithm is O(n+m
+p), where p is the number of peptide hits.

Each experiment contains six sub-windows that can be rearranged at will, as shown in Fig.
2: an overview, three lists windows for proteins, peptides, and peptide hits, respectively, a
graphical display of the protein and peptide clusters, and a detailed view. Each view is
contextual; if an element is chosen in one window, then the other windows display related
information. For example, if a protein is selected in the protein list, then the peptide list
displays its list of peptides, the peptide hit list displays all of that protein’s peptide hits, the
appropriate cluster graph is displayed, and the detailed view shows the protein sequence
coverage. The same is true if a set of proteins or peptides is selected, the remaining views
are updated as appropriate.

The protein list has three different states: it may show the maximal list of proteins, it may
show the maximal list grouped by cluster, or it may show the proteins divided into their
parsimony categories. Any list view may be exported as a comma separated value (CSV)
formatted file, suitable for further processing by other programs. In addition, the protein
parsimony list has an additional selection method to choose a representative protein for each
equivalent group to facilitate manual designation of a minimal list to be exported as a CSV
file. Export options are accessed from a contextual menu displayed by clicking the right
mouse button on the selected table.

Once the experimental data have been loaded, the filter criteria may be changed on the fly.
The data will be re-evaluated and all the displays updated. Multiple experiments can be
loaded and their results compared. There are two types of comparisons: a straightforward
listing of proteins, and their status in each experiment, or a more subtle parsimony
comparison, which loads all of the peptide hits, peptides, and proteins from all of the
experiments to be compared into a new experiment that does a parsimony analysis as it
would for a standard experiment, yet adds a new column to each list to keep track of the
origin of the data.

MassSieve also facilitates label-free relative quantification based on peptide hits. Peptide
hits are output for each peptide and/or as the total peptide hits for each protein. The most
visually useful format for peptide hit quantification is the parsimony comparison. Each
sample type to be compared is loaded into separate experiments and compared by parsimony
comparison. The result is one report that contains a comparative parsimonious minimal
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protein list with all relevant peptide hit information listed individually for each experiment.
The user can output CSV reports with all associated information and choose either protein
level information only or include experiment-specific peptide hit counts for each peptide at
each time point. Output files are suitable for submission to data repositories and journal
supplements.

The source and binary for MassSieve may be downloaded from
http://www.ncbi.nlm.nih.gov/staff/slottad/MassSieve/. This site also contains additional
information and documentation about the program.

Abbreviation

CSV comma separated value
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Figure 1.
The MassSieve pipeline filters for processing peptide identifications into protein
identifications.
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Figure 2.
Main window of MassSieve. All display areas are moveable and all columns are sortable
and moveable. The tree on the left expands to show peptide and protein lists and parsimony
hierarchy. Selection of a specific peptide or protein triggers an update of related information
in corresponding windows. Information can be shown for total experiment and individual
protein. Upper most tabs denote individual experiments or groups, with each experiment
containing culled results for each group and corresponding parsimonious protein lists.
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Table 1

The ontology of parsimony

Peptides

Indeterminate For a given scan, only the top scoring hit is used. If there is more than one match that ties for the top score, or it has been
identified as more than one peptide by different sources, then the peptide is indeterminate.

Distinct A peptide that is assigned to exactly one protein.

Shared A peptide that is assigned to more than one protein.

Proteins

Discrete A protein identification that is identified by only distinct peptide(s).

Differentiable A protein identification that can be distinguished from other proteins because it has at least one distinct peptide that is not
present in other set of peptide(s) and at least one shared peptide that is present in other set of peptide(s).

Superset A protein identification contains the shared peptides from at least one other subset protein.

Subsumable A protein identification contains shared peptides that can be distributed as subsets two or more other proteins. Formally,
subsumable proteins are simply another class of subsets.

Subset A protein identification that contains peptides common to a larger set of peptides corresponding to another protein
identification which is a superset.

Equivalent Protein identifications that are based on the same set of shared peptide(s). Also known as indistinguishable.
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