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The neural mechanisms that enable recognition of spiking patterns in the brain are currently unknown. This is especially relevant in
sensory systems, in which the brain has to detect such patterns and recognize relevant stimuli by processing peripheral inputs; in
particular, it is unclear how sensory systems can recognize time-varying stimuli by processing spiking activity. Because auditory stimuli
are represented by time-varying fluctuations in frequency content, it is useful to consider how such stimuli can be recognized by neural
processing. Previous models for sound recognition have used preprocessed or low-level auditory signals as input, but complex natural
sounds such as speech are thought to be processed in auditory cortex, and brain regions involved in object recognition in general must
deal with the natural variability present in spike trains. Thus, we used neural recordings to investigate how a spike pattern recognition
system could deal with the intrinsic variability and diverse response properties of cortical spike trains. We propose a biologically
plausible computational spike pattern recognition model that uses an excitatory chain of neurons to spatially preserve the temporal
representation of the spike pattern. Using a single neural recording as input, the model can be trained using a spike-timing-dependent
plasticity-based learning rule to recognize neural responses to 20 different bird songs with �98% accuracy and can be stimulated to evoke
reverse spike pattern playback. Although we test spike train recognition performance in an auditory task, this model can be applied to
recognize sufficiently reliable spike patterns from any neuronal system.

Introduction
To effectively recognize objects in nature, sensory systems must
use neural processing to recognize patterns from the peripheral
spike trains evoked in response to those objects. The question of
how such object recognition occurs in the brain has been studied
using static images in vision (Logothetis and Sheinberg, 1996;
Riesenhuber and Poggio, 2000), but how sensory systems recog-
nize objects with time-varying characteristics remains unclear.
This type of object recognition requires that sensory processing
mechanisms recognize the appropriate time-varying internal
representations evoked in response to stimuli, likely in the form
of spiking patterns.

The problem of how the brain recognizes time-varying stimuli
can be studied effectively in the auditory domain, in which rele-
vant stimuli are defined by time-varying fluctuations in their
frequency content. Current auditory stimulus recognition models
operate on artificially preprocessed sounds (Tank and Hopfield,
1987; Gütig and Sompolinsky, 2009) or low-level onset–offset audi-
tory inputs (Gollisch, 2008) instead of the input to the auditory
recognition system of the brain: namely, neural spike trains, most
likely from auditory cortex. This issue is critical for two reasons. First,

realistic sensory processing models must deal with the intrinsic vari-
ability present in spike trains in vivo, such as spike timing impreci-
sion and unreliability. Second, speech perception and animal vocal
communication are disrupted by lesioning auditory cortex (Penfield
and Roberts, 1959; Hefner and Heffner, 1986), and the recovery of
speech perception in humans requires cortical plasticity (Fitch et al.,
1997; Shepherd et al., 1997; Rauschecker, 1999). This suggests that
models for auditory object recognition in particular should operate
effectively using representations available at the level of cortex, de-
spite the fact that these representations have greater diversity and
increased complexity compared with upstream representations
(Woolley et al., 2009). To date, no spike pattern recognition model
has demonstrated a solution to these problems.

To address this, we designed and tested a novel spike pattern
recognition model using a chain of connected neurons. We tested
the model in an auditory recognition task using the zebra finch
auditory system, a model with striking analogies to humans in the
context of speech (Doupe and Kuhl, 1999). We recorded re-
sponses in field L, an area analogous to auditory cortex in humans
(Wang et al., 2010) evoked in response to zebra finch songs. Field
L neurons show a stronger preference for such conspecific vocal-
izations compared with upstream auditory midbrain areas such
as mesencephalicus lateralis, dorsalis (MLd) (Grace et al., 2003;
Theunissen and Shaevitz, 2006), which suggests that field L neu-
rons likely play a role in the recognition of such vocalizations in
subsequent processing, despite having a higher level of spike train
variability compared with MLd neurons (Woolley and Casseday,
2004; Wang et al., 2007; Amin et al., 2010). Using a simple spike-
timing-dependent plasticity-based learning rule, we trained the
computational model to effectively recognize songs using spike
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trains recorded from individual field L auditory sites and ob-
served reverse spike pattern playback with a simple alternative
activation of the network.

Materials and Methods
Electrophysiological recording. We performed extracellular neural record-
ings in field L in adult male zebra finches (Taeniopygia guttata). All
procedures were in accordance with the National Institutes of Health
guidelines approved by the Boston University Institutional Animal Care
and Use Committee. Following previous methods, we conducted acute
(Narayan et al., 2006; Billimoria et al., 2008) and awake restrained re-
cordings (Graña et al., 2009) using 3– 4 M� tungsten microelectrodes.
Sounds were presented at 75 dB sound pressure level, and auditory sites
were identified using a paired t test for firing rate compared with back-
ground firing rate ( p � 0.05). For identified sites, we played 100 repeti-
tions of 20 randomly interleaved recordings of conspecific songs
truncated to the shortest length (820 ms), and units were isolated using
threshold-based spike detection and waveform-based sorting software.

Data analysis. We used a measure of neural discrimination to quantify
the reliability and discriminability of the neural responses (Narayan et al.,
2006). First, the van Rossum spike distance metric (van Rossum, 2001)
was used to determine the dissimilarity between all pairs of spike trains
evoked in response to the 20 stimuli. To determine the dissimilarity
between two spike trains, both spike trains (represented as a string of
zeros and ones) were convolved with a decaying exponential function
with time constant �, and the van Rossum distance between the spike
trains was calculated as the normalized squared Euclidean distance be-
tween their convolved responses. Using a template-matching scheme
outlined previously (Machens et al., 2003), each spike train evoked in
response to the 20 songs was then categorized based on the minimum
distance between itself and randomly selected spike trains from each song
category; repeating this procedure for all spike trains then yielded a per-
centage correct discrimination score. To determine the optimal timescale
of the neuron, we varied the exponential time constant � from 1 ms to 1 s
and chose the time constant that maximized the percentage correct dis-
crimination score.

We used two previously defined metrics to examine the temporal
properties of our recorded spike trains. We measured reliability of the
spike trains of a neural recording using a correlation-based measure Rcorr

(Schreiber et al., 2003), which assesses both the spike timing precision
(timing stability) and reliability (addition/removal of spikes) of a set of
responses to a particular stimulus. Rcorr calculates reliability by smooth-
ing spike trains with a normal kernel and computing normalized inner
products between smoothed spike trains, yielding reliability values be-
tween 0 (unreliable) and 1 (perfectly reliable). We measured spike train
sparseness using a previously defined technique (Vinje and Gallant,
2000) that uses a normalized peristimulus time histogram-binning pro-
cedure to calculate sparseness values ranging from 0 (not sparse) to 1
(maximally sparse). Both of these metrics have a single parameter that
determines the analysis timescale, which was taken to be the same as the
optimal neural discrimination timescale. Reliability and sparseness val-
ues were calculated for responses to each song, and these were averaged
across songs to yield total measures of reliability and sparseness for each
recording. Pearson’s correlation coefficients were also used to establish
significance ( p � 0.05) and assess the strengths of relationships between
variables.

After testing model performance classifying field L spike trains (see
Results), we used a simple spike train modification scheme to help us
assess the selectivity and error tolerance of the recognition network. We
took each spike train to be classified, selected a time window of varying
length (0 – 800 ms) and varying start time (in increments of 100 ms), and
randomized the time of each spike within the window. This scrambled
the timing information in part of the spike train. Averaging across the
network performance recognizing these modified spike trains across all
songs, trials, and start times yielded a percentage correct recognition for
a given scrambling window size. These percentage correct values were
then normalized by the baseline (unscrambled) performance to yield a
percentage error induced by the spike timing randomization procedure.

This procedure was then repeated for spike removal within windows of
varying duration, yielding percentage error induced by spike deletion.
This allowed us to assess how changing varied durations of the spike
trains to be recognized affected system performance. One of the 29 rec-
ognition networks analyzed was excluded from this analysis because its
low baseline performance (�1%) prevented proper induced error
normalization.

Computational model and parameter optimization. Model neurons be-
haved according to a standard integrate and fire equation (Dayan and
Abbott, 2001) for synaptically coupled neurons with an input current,
integrated using an exact method (Brette, 2006). For all simulated neu-
rons, we used a leak voltage of 70 mV, threshold voltage of �55 mV, reset
voltage of �80 mV, excitatory synapse reversal potential of 0 mV, and
inhibitory reversal potential of �90 mV, all chosen to be in the physio-
logically plausible range. Although all simulations used these particular
cell parameters, the model did not require them to take on these specific
values to function properly.

Some model parameters (see below, Spike pattern recognition model
and Learning rule) were optimized across the recording sites to maximize
song recognition performance. Chain-to-detector synapses had a time
constant of 1 ms and the detector neuron had membrane time constant
of 3 ms, whereas the chain-to-chain synapses had time constants of 0.5
ms and chain neurons had membrane time constant of 1 ms; these short
timescales allowed fine timing information to be transmitted. The SD of
the Gaussian learning rule was chosen to be � � 1.5 ms, also to emphasize
fine timing features. The depression/potentiation probability ratio was
optimized to be 0.6, which is �1 (equal potentiation and depression),
likely because the Poisson firing assumption was not well satisfied for our
dataset. The learning rate was optimized to be 0.02, and the learning
multiplier was optimized to be 1.1, compromising between learning
speed (higher rates, larger reinforcement) and more exact final weights
(lower rates, smaller reinforcement). The ratio of excitatory weights to
inhibitory weights (3.5) was chosen to equal the ratio of the excitatory
and inhibitory reversal potentials. The parameters of the intrachain con-
nections were chosen for highly reliable spike transmission. Only the
mean chain-to-detector synaptic conductance was optimized for each
site individually, and they had a product with the membrane resistance
ranging from 0.0031 to 0.0130.

For spike train replay (see below, Spike train replay), three parameters
were fixed across all recognition networks to optimize the similarity
between the replay-based and data-based discrimination performances:
the input current was chosen such that the effective resting potential of
the cell was only 0.01mV from threshold; the product of the detector
membrane resistance and synaptic conductance of the random Poisson
input was 0.09, and the rate was twice that of the original data firing rate
to add noise and a baseline firing rate. To trigger playback, 10 successive
spikes at 250 Hz were delivered to the detector neuron. This balanced
timing precision and replay denoising, but more or fewer spikes at dif-
ferent firing rates could also be used with varying effects on firing rate and
reliability of replayed spike trains.

Results
Neural recordings
We recorded extracellular field L neural responses to 100 repeti-
tions of 20 different zebra finch songs (Fig. 1, one example song
spectrogram shown in A, four song spectrograms shown in B)
from 26 sites in 8 anesthetized birds and 3 sites in 2 awake re-
strained birds, yielding 29 total recording sites. Previous work has
shown no significant difference between awake restrained and
anesthetized recordings in zebra finch field L (Graña et al., 2009),
and we also found this to be the case, so both types of recording
were pooled for subsequent analysis. The rasters from one exam-
ple site in response to one song are shown in Figure 1A.

Spike pattern recognition model
The recognition model (schematic in Fig. 1A) uses a synaptically
coupled chain of integrate-and-fire neurons alongside a set of
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individual song detector neurons to rec-
ognize learned spike sequences. The chain
is constructed using sequentially synapti-
cally coupled neurons that preserve previ-
ous temporal input states in a distributed
spatial activity pattern. Only the first neu-
ron in the chain neuron receives sensory
input spikes (here from a field L neuron),
and each successive chain neuron only re-
ceives input from its neighbor in the form
of synaptic excitation with a delay of 2 ms
(with neuron and synapse parameters
chosen to ensure spikes are transferred
with high fidelity; see Materials and Meth-
ods). This causes input spikes to traverse
successive chain neurons, in which each
chain neuron effectively corresponds to a
2 ms time window of activity in the origi-
nal input; the activity of each chain neu-
ron, then, mirrors the activity of the
original sensory input with some fixed de-
lay. To recognize patterns from the origi-
nal time-varying sensory input, all
neurons in the chain of the circuit also
either excite or inhibit song detector neu-
rons. The synaptic weights from chain
neurons to a given song detector neuron
are derived from the time-varying proper-
ties of the neural response (Fig. 1A); con-
sistent activity at a particular time in the
input causes a particular location in the
chain to excite the detector neuron, and
consistent temporal inactivity causes a lo-
cation to inhibit the detector neuron.
When a learned spike pattern has been fed
into the chain, most active chain neurons
activate excitatory synapses on the detec-
tor, causing it to fire, signaling detection
of that pattern (Fig. 1B). When patterns that do not match the
trained spike pattern are fed into the chain, they activate neurons
that have inhibitory connections and neurons that have excita-
tory connections to the detector, but the inhibitory connections
prevent the detector from firing (Fig. 1B).

Learning rule
To train the synaptic weights from the chain to the detector of a
song, the chain was fed field L responses to 90 repeated presenta-
tions of all songs. Every chain neuron began with zero-strength
excitatory and inhibitory connections to each of the 20 detection
neurons. This is functionally equivalent to having an excitatory
and an inhibitory neuron for each member of the chain. During
training, a suppressive negative supervisory current was supplied
to the 20 detector neurons to prevent them from firing until the
spike train to be learned reached the end of the chain (e.g., 820 ms
after it started), when a positive current was delivered that caused
the appropriate detector neuron to fire. A spike-timing dependent
synaptic plasticity (STDP) rule (Abbott and Nelson, 2000) was then
applied to modify the chain-to-detector synaptic weights. For the
excitatory synapses, a chain neuron (presynaptic) spike that oc-
curred within a small window of time of a detector (postsynaptic)
spike caused synaptic strengthening. The change in synaptic con-
ductance was given by the product of an optimized learning rate
(0.02) and the value of a vertically offset zero-mean Gaussian

(� � 1.5 ms, unity height) based on the presynaptic-to-
postsynaptic timing difference (Fig. 2A). This learning rule was
reversed for inhibitory synapses; spikes that occurred within a
small time window of the detector spike caused synaptic
weakening.

Because the vertical offset of the Gaussian determined the
relative amounts of synaptic strengthening and weakening, a sim-
ple rule set the offset value. Assuming chain firing to be Poisson
(with firing rate � given by the chain firing rate during the
postsynaptic spike), the probability of time to nearest spike for
each chain neuron would be a symmetric exponential distribu-
tion with parameter 2� (Fig. 2B). On each STDP learning itera-
tion, the offset was chosen such that the product between this
probability distribution (Fig. 2B) and the offset Gaussian (Fig.
2A) maintained a constant ratio of negative area to positive area
(e.g., of depression to potentiation; 0.6 here) (Fig. 2C). Although
a static vertical offset would also allow the network to learn, this
rate-adapting offset allowed the network to better minimize false
alarms while improving correct detections.

During learning, changes in synaptic weights occurred each
time the postsynaptic detector neuron fired. To prevent synaptic
weights from growing without bound and to stabilize learning,
the maximum total (excitatory plus inhibitory) conductance be-
tween the chain and each detector was fixed. On each learning
iteration, if all conductance had not been used, synaptic conduc-

Figure 1. The spike pattern recognition model uses time-varying properties of the neural responses to recognize spiking
patterns and consists of a linear chain of neurons. Sensory input (here from field L) feeds into one end of the chain, propagating
along the chain using synaptic delays, turning the temporal spiking pattern into a spatial activation of chain neurons. A, Bird song
(spectrogram) elicits auditory responses (spike rasters), leading to excitatory (red) and inhibitory (blue) synapses from 298 se-
quentially connected chained neurons (small circles) that each connect to a detector (D1). The spectrogram shows the power (red,
high power; blue, low power) in different frequency bands ( y-axis) as a function of time (x-axis), and the rasters show the
responses of one field L neuron to 100 repeated presentations ( y-axis) of the above stimulus, with each tick mark representing an
elicited action potential. B, When the chain recognition circuit (with four detectors D1–D4 shown) is fed input from the field L
neuron in response to the concatenation of four different songs (spectrograms), each detector fires only at the end of the correct
trained song (D5–D20; data not shown).
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tances were multiplicatively increased (by a factor of 1.1 here).
After �30 presentations of the spike train to be learned, the synaptic
weights stabilized near their 90-presentation final values (Fig. 2D,E).
Although this multiplicative increase was not necessary for network
functionality, it greatly improved the learning rate.

Auditory recognition using a single trial
For a given recording site, 20 chain detectors (one for each song)
were trained using 90 song responses to form chain-to-detector
neuron synaptic weights, and the model was tested on recogni-
tion of 10 untrained responses to all songs. We used a strict rec-
ognition criterion for correct responses: for the duration of a
particular song, the correct detector of the song must have fired
without any of the incorrect detectors firing. Using this para-
digm, three recording sites yielded chain recognition networks
that operated with �90% accuracy (average � SEM, 53.6 �
4.4%; n � 29). The best recognition network accuracy was 98.3%,
achieving 92.4% when trained on only 30 trials (Fig. 2E), because
network performance increased the most between 10 and 30
learning iterations. During training, if a static learning vertical
offset was used instead of adapting to the chain firing rate, recog-
nition performance decreased on average by 6.8% (� � 8.3%); if
no negative feedback current was used, performance decreased
on average by 11.6% (� � 9.2%). This suggests that the negative
current and adaptive threshold assisted learning by preventing

mislearning of patterns and by balancing excitation and
inhibition.

We also examined the relationships between input spike train
reliability, sparseness, and performance using the Rcorr and
sparseness measures (see Materials and Methods) (Fig. 3B,C).
Rcorr gives a quantitative measure of the spike timing precision of
the neural input ranging from 0 (unreliable) to 1 (maximally
reliable), whereas sparseness gives a measure of how distributed
or concentrated in time neural firing is, ranging from 0 (con-
stantly firing, nonsparse) to 1 (rarely firing, very sparse). We
found strong correlations between reliability and performance
(correlation r � 0.514, p � 0.005) and sparseness and perfor-
mance (Fig. 2D) (r � 0.639, p � 0.001) but not between perfor-
mance and firing rate (r � 0.045, p � 0.9) or sparseness and
reliability (r � �0.076, p � 0.7). This suggests that the model
performs better on more reliable, sparser inputs regardless of
firing rate.

We also tested the network by training it on partial spike
sequences of shorter duration (25– 820 ms). To optimize perfor-
mance for each duration, we constructed multiple detectors of
the appropriate length with different starting times (e.g., for the
400 ms case, constructed detectors trained on input spiking ac-
tivity from 0 – 400, 50 – 450, 100 –500 ms, etc. for each song) and
selected the detector for each song that had the best detection
versus false-alarm performance (e.g., the 50 – 450 ms detector for

Figure 2. The network learns synaptic weights through an STDP-based learning rule. A, The learning rule determines how synaptic weights change based on the relative time between
presynaptic (chain neuron) and postsynaptic (detector neuron) spikes (x-axis). Closely timed spikes cause excitatory synapse strengthening (green) through long-term potentiation (LTP), whereas
less closely timed spikes cause synapse weakening (orange) through long term depression (LTD). The opposite rule occurs for inhibitory synapses. B, The probability of time-to-last spike (scaled to
have unity height) given a Poisson input to the chain. C, The vertical offset for the learning rule, which determines the relative levels of potentiation and depression, is set such that the ratio of positive
and negative areas under the product of the learning curve (A) and the timing probability (B) is equal to 0.6 to keep learning stable. D, Chain-to-detector synaptic weights (red, excitatory; blue,
inhibitory) change as learning progresses for the example site from Figure 1, and the performance of the chain recognition network (E, recording sites in gray lines) plateaus after �30 learning
iterations.

Figure 3. The network performs well for different durations and performs better on more reliable and sparser inputs. A, Model performance (percentage) versus stimulus duration trained (each
recording in gray, mean across sites in black). B, C, There was a strong relationship between input spike train reliability and chain recognition model performance (B; r � 0.514, p � 0.005, linear
fit in dashed black) and between sparseness and performance (C; r � 0.639, p � 0.001, linear fit in dashed black). D, Normalized model recognition error ( y-axis; 0% is baseline performance,
�100% is no songs recognized correctly) for each site (in light gray; mean in black) increased with increasing percentage of input spike train corruption, for both shuffling spike times (left) and
deleting spikes (right) for different amounts of time (x-axis). The average syllable duration for a zebra finch song (94.5 ms) is shown in dashed black.
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song 1, the 200 – 600 ms detector for song
2, etc.). We then used this optimized net-
work of 20 detectors to recognize songs
from the learned partial sequences em-
bedded within the complete 820 ms spike
trains, thereby increasing the amount of
untrained spiking activity presented and
implicitly testing for false-alarm robust-
ness. The best performance recognizing
songs based on 400 ms song segments was
88.5% (Fig. 3A), suggesting reliable song
recognition for shorter durations despite
the presence of additional untrained
stimulus.

To quantify the selectivity and error
tolerance of the network, we tested per-
formance recognizing spike trains that
were systematically corrupted in two ways
(see Materials and Methods). For all spike
trains in the test set to be recognized,
spikes occurring within temporal win-
dows of varying widths were either ran-
domly temporally shuffled (Fig. 3D) or
removed entirely (Fig. 3D). The resulting
recognition performance was used to cal-
culate the error induced by spike train
corruption, which ranged from 0% (same
as baseline performance) to �100% (no
spike trains recognized correctly). Cor-
ruptions by shuffling and deletion of the
same duration as the average zebra finch
song syllable (94.5 ms or 11.5% of the to-
tal duration) (Glaze and Troyer, 2006)
caused average errors of 18 and 28%, re-
spectively. This suggests that removing or
substituting one song syllable while pre-
serving the absolute timing of other sylla-
bles would decrease network recognition
performance, with network performance
falling off rapidly with increasing spike
train corruption.

Spike train replay
This trained network can also be used to play back its learned
spike patterns. To trigger replay, the detector neuron received an
input current, bringing the cell within 0.01 mV of firing, and an
excitatory spiking Poisson input with firing rate equal to twice
that of the average firing rate of the sensory input used to train the
network. This caused the detector cell to fire with a background
rate approximately matched to that of the original sensory input
to the circuit. The first chain neuron then received a short burst of
spikes (10 spikes at 250 Hz), causing a reliable propagation of activity
through the chain that modulated the random firing of the
detector neuron. Successive chain neurons modulated this fir-
ing according to the synaptic connections formed during
learning, which in turn corresponded to temporal activity in
the original spike trains, thereby causing the detector neuron
to play out the learned spike train in reverse (Fig. 4 A).

To quantify how similar these replay spike trains were to the
original spike train data, we first used the van Rossum discrimi-
nation method. This method uses a spike distance metric (van
Rossum, 2001) to determine distances between spike trains,
followed by a nearest-neighbor template-matching scheme to

classify spike trains (Machens et al., 2003). By varying which
spike trains were classified and which templates were used to
classify them, for each recording site data (D) and its corre-
sponding reversed replayed spike trains (R), we measured the
following: the ability of each sensory neuron to discriminate
songs by discriminating data spike trains using data spike train
templates (DD); the similarity between the data and replay
spike trains by discriminating data using reversed replay tem-
plates (DR); and how well the replay spike trains could be used
to discriminate songs by discriminating replays using replay
templates (RR) (Fig. 4 D). We then compared the DD, DR, and
RR reliabilities (Fig. 4 B). There were no significant differences
between the mean DD, DR, and RR discrimination perfor-
mances or the DD and RR sparseness (Fig. 4C) and firing rates
(Fig. 4 E), suggesting that the replay spike trains were similar
to the original spike trains. However, the RR reliability was
significantly greater than DR or DD ( p � 0.001). This increase
in reliability was likely attributable to the fact that the network
learned synaptic weights by effectively averaging noisy spiking
responses across trials and uses a highly reliable chain for
input activity propagation. Thus, we found that the network
would reliably play back the learned spike sequences in reverse
using a simple network activation.

Figure 4. The chain recognition network can faithfully reproduce learned spike trains in reverse. A, Three example sites (at the
75th, 50th, and 25th percentiles of recognition performance of 76, 51, and 36% for sites 1, 2, and 3) with 50 original data rasters
(top) and 50 network-based replay rasters (bottom). Replay spike trains come out of the network backward and are have been time
reversed here to align with the original data. B–E, The sparseness, reliability, van Rossum-based discrimination performance, and
firing rate for DD, DR, and RR comparisons are shown (each unit in light gray, mean plus SE on bars), suggesting that the replay spike
trains are similar to the original data.
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Discussion
Model dynamics
The basic architecture of our model builds on a proposal by Tank
and Hopfield (1987), using the intuitive idea of “concentrating
information” spread over time, effectively transforming tempo-
ral information into a distributed spatial representation. How-
ever, by avoiding long axonal delay lines that biophysically limit
sequence duration, our model can be easily adjusted for duration
by varying the number of neurons in the chain. This sequentially
activated continuous processing allows the system to compensate
for phase alignment by testing all phase relationships between the
input and learned patterns. Although the model as proposed here
would not correctly recognize inputs that have been stretched or
compressed in time, it might be possible to use a hierarchical
network to recognize time-warped inputs. Combining a layer of
shorter-duration chain detectors to recognize features on short
timescales (thereby dealing with local temporal variations) with a
more temporally flexible sequence detection circuit (possibly an-
other chain) may enable detection of globally and locally time-
warped inputs.

The chain model proposed here shares some similarity to a
liquid state machine (LSM) recognition network (Maass et al.,
2002) in that it uses a “pool” of neurons to convert temporal
spiking patterns into a distributed spatial pattern of neural activ-
ity states and performs parallel computations on these states to
recognize spiking inputs. However, the LSM and the chain model
use different mechanisms for both encoding previous states and
reading out patterns from those states (Buonomano and Maass,
2009). In the LSM, a randomly connected pool of neurons im-
plicitly encodes previous states, and readout neurons use linear
fitting on those unknown states to achieve desired outputs. In our
model, conversely, neural states in the pool (the chain) form a
delay line-like structure to explicitly encode previous states, and
the readout mechanism (the song detector) training uses a task-
specific STDP-based learning paradigm using this organization.
This mode of transforming a temporal representation to a spatial
one also differentiates our model from a previous model (Jin,
2004), which uses a synaptically coupled chain of neurons to
recognize a multiple-input sequence by having the chain gate the
propagation of activity based on how multiple sensory input neu-
rons each activate independent chain neurons.

Although previous sound recognition models have used in-
puts from artificial or natural frontends that signal onsets and
offsets (Gollisch, 2008; Gütig and Sompolinsky, 2009) or letter
detection events (Tank and Hopfield, 1987), our model operates
on real spike trains from an animal model of auditory cortex.
This recognition model recognizes learned sounds using rep-
resentations of those sounds generated by the auditory pro-
cessing mechanisms of the brain. In addition, this model uses
input from only a single sensory neuron to achieve good per-
formance, suggesting that combining across multiple detec-
tors that each used independent sensory neurons as input
would yield even higher performance levels. This model also
uses a simple spike-timing-dependent plasticity learning rule
(Abbott and Nelson, 2000) to teach the chain network the
appropriate chain-to-detector weights, suggesting a relatively
simple and plausible biological implementation.

Generality and predictions
This model can in principle be trained to recognize any suffi-
ciently reliable sequence of spikes, including those outside the
auditory system. In audition or other sensory modalities, the
model will better recognize inputs that have higher spike timing

precision, reliability, and sparseness. Also, because the model re-
quires a reasonable number of neurons to operate and works with
a simple learning scheme, this model could be implemented in
hardware for artificial systems use.

In vivo, this model predicts a sequential, temporally sparse
activation of a group of neurons in response to sound, reminis-
cent of the sequential activity observed experimentally in song-
bird nucleus HVC (formerly known as high vocal center) during
singing (Hahnloser et al., 2002) or in rat auditory cortex in vitro
(Buonomano, 2003). The recognition mechanism requires that
spiking patterns be passed along chain neurons with minimal
degradation, which could be achieved in a real system using more
robust transmission methods such as bursting propagation (Jin et
al., 2007) and might not be required for use in systems with
reduced spike timing precision. The particular implementation
of the model explored here requires the use of a symmetric learn-
ing rule [not unlike that observed in rat barrel cortex (Egger et al.,
1999) or hippocampus (Woodin et al., 2003)] and short mem-
brane and synaptic time constants; it is currently unclear whether
or not these exist in field L or auditory cortex. Other implemen-
tations of this circuit could also make use of longer synaptic and
membrane time constants at the cost of timing precision, which
might be beneficial for circuit inputs with less precise timing or
reliability than field L neurons. In the zebra finch auditory system
in particular, this type of network could appear in auditory areas
downstream of field L, such as caudal mesopallium. To recognize
this type of system, a depolarizing input to the detector unit
followed by a set of input spikes to the chain would cause the
network to play back the learned sequence in reverse, a phenom-
enon observed in hippocampus (Foster and Wilson, 2006). This
type of spike train playback could be useful in a system, because it
could facilitate subsequent learning of subpatterns, memory con-
solidation during sleep, or recall of spiking activity for other uses.
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