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Abstract.—Estimation of divergence times is usually done using either the fossil record or sequence data from modern
species. We provide an integrated analysis of palaeontological and molecular data to give estimates of primate divergence
times that utilize both sources of information. The number of preserved primate species discovered in the fossil record,
along with their geological age distribution, is combined with the number of extant primate species to provide initial
estimates of the primate and anthropoid divergence times. This is done by using a stochastic forwards-modeling approach
where speciation and fossil preservation and discovery are simulated forward in time. We use the posterior distribution
from the fossil analysis as a prior distribution on node ages in a molecular analysis. Sequence data from two genomic
regions (CFTR on human chromosome 7 and the CYP7A1 region on chromosome 8) from 15 primate species are used with
the birth–death model implemented in mcmctree in PAML to infer the posterior distribution of the ages of 14 nodes in the
primate tree. We find that these age estimates are older than previously reported dates for all but one of these nodes. To
perform the inference, a new approximate Bayesian computation (ABC) algorithm is introduced, where the structure of
the model can be exploited in an ABC-within-Gibbs algorithm to provide a more efficient analysis. [Approximate Bayesian
computation; molecular phylogeny; palaeontological data; primate divergence.]

Fossil evidence is the only direct source of infor-
mation about long-extinct species and their evolution.
Morphological similarities between extant species and
fossil remains are used to infer the existence of ancestral
species during the geological period to which the fossil
is allocated. Conditional on there being no classification
or dating error, the fossil’s age provides a minimum
bound for the divergence time of the evolutionary lin-
eage it represents.

Sequence data from extant species provide an indi-
rect source of information about evolutionary history.
The pattern and variability observed in homologous
sequences of DNA from different species contain traces
of the history of the divergence and evolution of the
phylogeny, and mathematical models of evolution can
be used to combine our knowledge of genetics with
the sequence data to extract information about evolu-
tionary history, particularly divergence times. Many
methods and models have been proposed with this aim,
but all rely in some way on fossil evidence, as an ex-
ternal source of information must be used to calibrate
the substitution rate. Fossil evidence is used to provide
initial estimates for node ages in phylogenetic trees,
which are then updated in light of molecular evidence.
Yang and Rannala (2006) found that, for divergence time
estimates based on sequence data, the largest source of
uncertainty came from the fossil calibration dates used.

Although fossils provide good explicit minimum
bounds on the age of a clade, maximum bounds need
to be inferred rather than measured and thus are inher-
ently uncertain. Uncertainty about a maximum bound
on the node age has been dealt with in various ways in
molecular analyses, typically by relying upon a subjec-
tive judgement about the node age based on the age of
the oldest fossil (i.e., a maximum bound, or the weight
of the tail in a more general prior distribution).

In this paper, we use a database of recorded fossil
species combined with a model of speciation to find a
model-based estimate of node ages. These estimates are
then used as prior distributions for estimating molec-
ular divergence times. The benefit of introducing an
element of process modeling into the analysis of the
fossil record is that it moves the subjective judgements
further from important quantities and allows us to uti-
lize more of the fossil record, thus letting data play a
larger role in the analysis. In determining the expected
gap between the age of the oldest fossil and the diver-
gence time, a key influence is exerted by rates of fossil
preservation and discovery, which are unknown and
believed to vary through time (e.g., Foote et al. 1999;
Smith and Peterson 2002; Tavaré et al. 2002; Soligo et al.
2007; Paul 2009). We use the pattern of species diversity
through the Cenozoic and the number of extant primate
species to estimate the sampling rate and the divergence
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time of the primates. The posterior distributions from
the fossil analysis are used as the prior distribution in
the molecular analysis to estimate a posterior distribu-
tion for the divergence time that uses both the fossil and
molecular records more fully than previous analyses.

The paper is organized as follows. The first section
describes the analysis of the fossil record. The following
section contains the molecular analysis and the final
section contains a discussion. The details of the infer-
ence procedure used in the analysis of the fossil data
are given in the Appendix, where we introduce a new
variant on the Markov chain Monte Carlo (MCMC)–
approximate Bayesian computation (ABC) (Marjoram
et al. 2003) algorithm in order to improve the efficiency
of our analysis.

USING THE FOSSIL RECORD

Fossil calibrations are essential when dating evo-
lutionary events. Even if the analysis primarily uses
molecular data, fossil evidence is used to provide prior
distributions for one or more nodes in the phylogeny.
This information is then used to calibrate the molec-
ular clock and thus has consequences for estimation
of other node ages. Early analyses using the molecu-
lar clock to date divergence times typically treated the
oldest fossil representative as if it estimated the age of
the node without error (Graur and Martin 2004; Hedges
and Kumar 2004). This progressed to introducing un-
certainty by specifying a range of possible values with
hard bounds representing the limits of the uncertainty
(Thorne et al. 1998), with zero probability assigned to
ages outside of this range. Fossil evidence is well suited
to providing a good hard minimum bound on the age
of a node based on the oldest fossil representative, with
the level of accuracy limited only by the accuracy of
taxonomic assignment of the fossil and of the dating
procedure used. However, the fossil record does not
directly give any information regarding a maximum
bound on the age (Benton and Donoghue 2007; Steiper
and Young 2008). Thus, hard bounds are often either
overconfident, where they are set too low, or too con-
servative, where unrealistically high maximum bounds
are used. Yang and Rannala (2006) moved beyond the
use of uniform distributions for calibration dates to al-
low general prior distributions, which can incorporate
more information about the calibration age. These allow
for most of the probability to be placed on dates near
to the minimum bound, but with long tails to account
for the a priori unlikely event that the node age is ac-
tually much older than the fossil evidence suggested.
They chose prior distributions by fitting a parametric
form (a gamma distribution) to estimated maximum
and minimum bounds on the node age, allowing for 5%
uncertainty outside this range.

However, the fossil record contains more information
about a node age than that contained solely in the old-
est fossil ascribed to a particular lineage. The age of the
oldest fossil may be the single most informative piece

of data, but other parts of the record can help reduce the
uncertainty in any estimate and provide a more nuanced
picture. By considering more of the fossil record, we can
move from using prior distributions based on the oldest
fossil to distributions based on a wider appreciation of
the fossil record and its underlying processes. The dis-
tribution of fossil ages contains information about the
diversity (number of species) of a phylogeny through
time. When combined with extant diversity counts, this
can be used to infer the sampling rate or completeness
of the fossil record (Tavaré et al. 2002; Soligo et al. 2007;
Wilkinson and Tavaré 2009). For periods and phyloge-
nies with high sampling rates, we expect the age of the
oldest known fossil to be close to the divergence time
of the phylogeny, whereas if the sampling rate is low,
we expect the range of values possible for the gap be-
tween the oldest fossil and the root of the phylogeny
it represents to be much more variable. For terrestrial
vertebrates, the completeness (the proportion of species
that have been preserved and then discovered in the fos-
sil record) is generally believed to be low. For example,
Martin (1993) and Tavaré et al. (2002) estimate the com-
pleteness of the primate fossil record to be less than 7%
compared with an estimate of 29% for dinosaurs (Wang
and Dobson 2006).

Model for the Fossil Data

The model for the fossil data can be thought of in
two parts: 1) speciation and 2) fossilization and recovery.
The speciation model describes the growth of the num-
ber of species (the diversity) from a common ancestor
to the observed extant diversity, whereas the fossiliza-
tion and recovery model describes how the phylogeny
is recorded in the known fossil record.

To model speciation, we use a continuous-time inho-
mogeneous binary Markov branching process (Harris
1963). To aid description, we use the language of fam-
ily trees and refer to the direct descendants of a species
as its offspring. Let Z(t) denote the number of species
extant at time t, where t = 0 denotes the present. The
age of the oldest known fossil representative is used as
an absolute minimum bound on the age of the clade.
The root of the tree is placed at this age plus τ million
years, where τ represents the temporal gap between the
oldest primate fossil and the primate divergence time.
We assume that two species are present at this time and
that each species lives for an exponentially distributed
period of time with mean 1/λ before becoming extinct.
Upon its extinction, at time t say, it is replaced by either
zero or two new species with probability p0(t) or p2(t) =
1 − p0(t), respectively. The birth and death probabilities
p0(t) and p2(t) can be determined by fixing a parametric
form for the expected population size at time t, that is,
EZ(t) = f (t ;ψ), where ψ are unknown parameters to be
estimated. We initialize the branching process with two
species, and consider the tree to have two sides, corre-
sponding to Haplorhini and Strepsirrhini in the primate
phylogeny. Because the root of the tree represents the



18 SYSTEMATIC BIOLOGY VOL. 60

TABLE 1. A summary of the number of crown group primate and
crown group anthropoid species known from the fossil record (Tavaré
et al. 2002; Soligo et al. 2007)

Epoch k Time at base Primate Anthropoid
of interval k fossil fossil

(Ma) counts, D counts, A

Extant 0 376 281

Late Pleistocene 1 0.15 22 22
Middle Pleistocene 2 0.9 28 28
Early Pleistocene 3 1.8 30 30
Late Pliocene 4 3.6 43 40
Early Pliocene 5 5.3 12 11
Late Miocene 6 11.2 38 34
Middle Miocene 7 16.4 46 43
Early Miocene 8 23.8 34 28
Late Oligocene 9 28.5 3 2
Early Oligocene 10 33.7 22 6
Late Eocene 11 37.0 30 2
Middle Eocene 12 49.0 119 0
Early Eocene 13 54.8 65 0
Pre-Eocene 14 0 0

Notes: Time during the Cenozoic is divided into 14 geologic epochs,
with the dates for each epoch given in the table as millions of years
ago. Also given is the extant diversity (Groves 2005). Note that the ge-
ological scale used here does not take account of the latest adjustments
made to the age of the Pliocene–Pleistocene transition (International
Commission on Stratigraphy 2009).

crown divergence time, we require both sides of the tree
to be present at time t = 0, modeling the fact that there
are extant Haplorhini and Strepsirrhini. We condition
both sides of the tree on nonextinction by using rejection
sampling (Ripley 1987), by simply disregarding simula-
tions that go extinct on either side of the tree. Note that
if we do not condition on nonextinction, we would be
modeling a point of divergence along the stem lineage,
defined by the taxa included in the fossil data, rather
than the crown divergence time (Soligo et al. 2007).

This model provides simulated numbers of species
extant through time, given a value for the crown di-
vergence time. To simulate sample fossil data sets, we
introduce two different observation models, a simple
binomial model and a more complex Poisson sampling
model. Note that it is not possible to date fossils pre-
cisely. The fossil data shown in Table 1 are resolved at
the epochal level, and for each epoch, we have counts
of the number of generally recognized primate mor-
phospecies known to have lived during that epoch. Our
observation models simulate the number of fossils dis-
covered in each of the 14 epochs in the Cenozoic {Di}14

i=1
given the number of species {Ni}14

i=1. In the binomial
model, each species in epoch i has probability αi of be-
ing preserved and then discovered as a fossil, regardless
of the length of time the species was extant. This gives
Di ∼ Binomial(Ni,αi), where Ni is the number of species
extant during any part of epoch i.

The Poisson model assumes that each species present
in any given epoch has an equal probability of be-
ing discovered as a fossil for each year it is extant.
Consequently, longer-lived species will have a higher
probability of preservation and discovery than shorter-
lived species. Assume that fossil finds occur along the

branches present in epoch i as the points of a Poisson
process of rate βi. Each species is recorded at most
once during an epoch, regardless of whether there are
multiple points along its branch, so that a species that
lived for duration t in epoch i has probability 1 − e−βit

of being discovered in the fossil record during that
epoch. It is known that the rates of fossil preservation
and discovery have varied through time, for exam-
ple, because rocks from different geological epochs are
not present in accessible locations in equal abundance
(Raup 1976; Peters and Foote 2001; Smith and Peterson
2002; McGowan and Smith 2008). Added to this are
complications regarding sampling locations (Western
Europe and North America are better sampled than
Africa or Asia, for instance) and variation in habitable
latitudes as climate and the availability of dispersal
routes changed through time. For example, primates
are thought to have originated in more southern lat-
itudes, spreading northward at the beginning of the
Eocene, and again in the Miocene, as a result of glob-
ally warmer climates (and of developing land bridges
in the case of the Miocene), whereas retreating from
more northern latitudes as a result of climate cooling,
for example, toward the end of the Eocene and be-
ginning of the Oligocene (e.g., Krause and Maas 1990;
Martin 1993; Soligo and Martin 2006; Andrews and
Kelley 2007; Martin et al. 2007; Soligo 2007). For this
reason, we allow the observation process to vary in in-
tensity between epochs and write α = (α1,α2, . . . ,α14)
and β= (β1, . . . ,β14).

Both the binomial and Poisson sampling models are
phenomenological in nature, rather than process models
of the complex underlying processes. Fossil deposition
and preservation rates will depend on a variety of fac-
tors for each species, such as habitat, location, and pop-
ulation size. Similarly, the classification of fossils and
the identification of new species are processes prone
to error, with opinions over dates and classifications
changing over time. It would be hard to model all these
processes as the data available for parameter estimation
are limited. Instead, we use simple statistical models
that try to approximate the net effect of the interaction
of the various processes in order to find a mathemati-
cal description of the observations without paying too
much attention to the individual processes.

An important extension to this model is to consider
the effect of the mass-extinction event that took place at
the Cretaceous–Tertiary (K-T) boundary 65 Ma (1 Ma =
106 years ago). There is no direct fossil evidence as to
whether primates existed during the Cretaceous, so the
importance of the K-T boundary when dating the diver-
gence time is unclear. However, if primates lived at this
time, it is highly likely that they were also affected by
the event. We can include the effect of the K-T crash by
making each species in the simulation extinct with prob-
ability p at the K-T boundary at t=−65 Myr. Extinctions
are assumed to occur independently for each species,
and we assume that species wiped out at the K-T
boundary have no offspring. Thus, the diversity in the
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simulation just after the K-T boundary has a binomial
distribution with parameters (n, p) = (Z(−65), p). We
treat p as an unknown parameter and estimate it in the
inference. We estimate the divergence time both with
and without (p = 0) the K-T crash model to examine its
importance.

Inference

The previous section described the forwards model,
a stochastic mapping from unknown parameters θ : =
(τ,ψ,β,α, λ, p) to sample fossil data sets {Di}14

i=1. The
model is stochastic and any particular combination of
parameters can lead to a wide variety of behavior. To
estimate divergence times, we must solve the inverse
problem and use the fossil observations Dobs and the
number of extant species N0 to learn the unknown pa-
rameters. We use a Bayesian approach and give all un-
known parameters prior distributions (described in the
Results section) and then find the posterior distribution
of the parameters given the data, denoted π(θ|D).

Inference using this model is difficult and requires
nonstandard methods because the likelihood function
l(θ ;Dobs) = P(Dobs|θ) is unknown (Kendall 1948). With-
out an explicit mechanism for calculating the likelihood,
standard inference approaches such as MCMC or im-
portance sampling are not possible. Instead, we use a
“likelihood-free” approach, known as ABC (Beaumont
et al. 2002; Marjoram et al. 2003; Sisson et al. 2007).

The main idea behind ABC is sufficient for under-
standing our inference approach. The simplest ABC
algorithm is based upon the rejection algorithm. We
draw parameter θ from its prior distribution, simulate
sample data D using this parameter setting, and accept
the parameter into our sample if the simulated data are
a close approximation to the observed data. To define
“close,” we require a metric ρ(∙, ∙) on the state space and
a tolerance ε and we accept θ if ρ(D,Dobs) ≤ ε.

This algorithm is not exact. Accepted θ values do not
form a sample from the posterior distribution π(θ|D),
but from some distribution that is an approximation to
it, where the accuracy of the algorithm depends on ρ
and the tolerance ε. The tolerance ε represents a trade-
off between computability and accuracy; large ε values
will mean more acceptances and will enable us to gener-
ate samples more quickly, but the distribution obtained
may be a poor approximation to π(θ|D). Small ε values
will mean that the approximation is more accurate, but
the acceptance rate will be lower and so we will require
more computer time to generate a sample of a given size.
To choose a value of ε, we must make a compromise be-
tween the time and computer power available and the
desired accuracy. Our choice of metric and tolerance are
given in the Results section.

The standard ABC approach cannot be applied di-
rectly to the problem here, as the number of unknown
parameters is too large, and so any naive search of the
parameter space will spend most of its time in regions
of low posterior probability. Instead, we use a more
efficient approach and develop an ABC-within-Gibbs

sampler that exploits some of the known model struc-
ture. Details are given in the Appendix.

Dating multiple divergence times.—The primate fossil
record is poor and is limited in its ability to constrain
estimates of divergence times. However, by using as
much of the record as possible, we can hope to con-
strain the estimates more than would be possible solely
using the age of the oldest fossil ascribed to a lineage.
Morphological detail in the fossils is used to classify
each fossil into a subgroup of species and this infor-
mation can be used to date multiple divergence times
simultaneously. We estimate the joint distribution of
the crown primate and anthropoid divergences using
an optimal subtree selection (OSS) algorithm. The fos-
sil data set in Table 1 contains two sets of numbers.
The first grouping gives the number of crown primate
species discovered, Dobs = (D1, . . . ,D14), whereas the
second grouping gives the number of crown anthro-
poid species, Aobs = (A1, . . . ,A14). Notice that Dk ≥ Ak
for all k, as anthropoids are a subset of the primates.
We let τ denote the temporal gap between the oldest
primate fossil and the last common ancestor (LCA) of
the extant primates and let τ∗ denote the temporal gap
between the oldest anthropoid (platyrrhine–catarrhine)
fossil and the LCA of the anthropoids. Our approach to
inferring τ∗ is based on finding the subtree with fossil
counts that most closely match the anthropoid fossil
counts Aobs. If the distance between simulated and real
anthropoid fossil counts ρ(Aobs,A) is less than tolerance
ε2, we measure the temporal gap from the base of this
subtree to the start of the late Eocene interval. This is
then our estimate for τ∗. We require that the root of the
subtree (the death time of the anthropoid LCA) occurs
earlier than the beginning of the late Eocene, 37 Ma.
We must also condition the subtree on nonextinction
and check that both branches leading from the subtree
root have extant descendants, as one side of the subtree
represents the Platyrrhini and the other the Catarrhini
and both these groups have extant representatives. We
refer to this approach as OSS. A rejection-based ABC
algorithm for inference would be:

Optimal Subtree Selection (OSS)

1. Draw parameters θ= (τ,α,ψ, p, λ) from π(∙).
2. Simulate a tree and fossil finds using parameter θ.

Count the number of simulated fossils in each in-
terval, D′ = (D′1, . . . ,D

′
14).

3. Calculate the value of the metric ρ(Dobs,D′). If

ρ(Dobs,D
′)
≤ ε1, go to Step 4.
> ε1, reject θ and go to Step 1. (1)

4. Perform an exhaustive search of all possible sub-
trees. For each subtree, check that the root of the
subtree occurs at least 37 Ma and that both off-
spring of this root produce trees that survive to the
present. If both conditions are met, count the num-
ber of fossils on the subtree, A′ = (A1, . . . ,A14).
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5. Determine which subtree has the smallest value
of ρ(Aobs,A′), that is, has fossil counts closest
to the anthropoid fossil set. This is the “optimal
subtree.” If

ρ(Aobs,A
′)
≤ ε2, accept θ and measure τ∗.
> ε2, reject θ and return to Step 1.

(2)

In practice, this algorithm is too inefficient to give sen-
sible results in a reasonable time, as repeatedly drawing
from the prior distribution means that a long time is
spent simulating data with parameter values that lie in
the tails of the posterior distribution. A more efficient
algorithm is given in the Appendix. Note that this algo-
rithm requires the genealogy to be simulated rather than
just keeping track of Z(t) as is sufficient in a birth–death
process.

The division of the data into two nested parts (pri-
mates and anthropoids) is not a necessary part of the
analysis, but it is done to maximize the information that
can be extracted from the data. It is possible to consider
just the primate fossil counts D and estimate only the
primate divergence time by stopping the algorithm af-
ter Step 3. An alternative approach to estimating multi-
ple divergence times not based on the OSS algorithm is
given in Wilkinson and Tavaré (2009).

Data and Results

The primate fossil data set is given in Table 1. It con-
tains counts of the number of primate and anthropoid
species discovered in each epoch during the Cenozoic.
The anthropoids are a monophyletic subgroup of the
primates containing the hominoids (apes and humans)
and the New and Old World monkeys. Because fos-
sils cannot be precisely dated, we bin the data into
geological epochs and count the number of species dis-
covered coming from each epoch. Note that so far no
undoubted primate fossil older than 54.8 Myr has been
discovered and no crown group anthropoid fossil older
than 37 Myr. Also included in the table are the num-
bers of known extant species, taken from Groves (2005).
Information on extant diversity is valuable as it gives
information about the sampling rates that is otherwise
difficult to estimate.

Before giving the results of the analysis, we need to
make various implementation assumptions. First, the
birth and death probabilities p0(t) and p2(t) need to
be specified through time. This is done by fixing the
expected growth to be logistic, so that

EZ(t) =
2

γ + (1− γ)e−ρ(t+54.8+τ)
(3)

for unknown γ and ρ. We can use the result that

EZ(t) = 2 exp

(

λ

∫ t

−54.8−τ
[2p2(u)− 1]du

)

(4)

(see, e.g., Harris 1963) to equate the expected growth
curve to the birth and death probabilities to solve for
p0(t) and p2(t). Other simple functional forms for the

growth were tried (results not shown), but it is possible
to show using Bayes factors (approximated by the ac-
ceptance probability in the ABC algorithm) that logistic
growth is best supported by the data (Wilkinson 2007).

We give prior distributions to all unknown parame-
ters except τ∗, which is chosen by an optimality criterion
during the simulation. The prior distributions used are

τ ∼ U[0, 100],
ρ ∼ U[0, 0.5],
γ ∼ U[0.005, 0.015],

1/λ ∼ U[2, 3].

The prior on τ is equivalent to assigning a uniform
prior distribution on the interval [154.8, 54.8] Ma for
the primate divergence time t1, which represents our
prior state of uncertainty about the primate divergence.
The prior range for 1/λ was set by consideration of the
mean species survival time (Alroy 1994), and the range
for ρ and λ were fixed by considering the mean diver-
sity implied by the logistic growth curve (Wilkinson
2007). Prior distributions for α and β are chosen for
reasons of conjugacy. For the binomial model, we let
αi ∼ U[0, 1] and assume that the αi are independent a
priori. In the Poisson model, we use gamma prior dis-
tributions, setting βi ∼ G(5, 50) for i = 1, . . . , 14 with
the βi independent a priori, where G(a, b) denotes the
gamma distribution with shape parameter a and rate
parameter b (i.e., if X ∼ G(a, b) the density of X is
xa−1bae−bx/Γ(a)). When we use the K-T crash model, we
give the unknown probability of extinction, p, a U[0, 0.5]
distribution. The posteriors for τ and τ∗ appear to be
robust to small changes in the prior specifications of all
the parameters.

The ABC inference procedure requires a choice of
metric ρ(∙, ∙) and a tolerance ε. After investigation into
the choice of metric (see, for details, Wilkinson 2007), we
found that the following metric captured the required
details in the data:

ρ(Dobs,D
′) =

1
2

∣
∣
∣
∣
D′+
D+
− 1

∣
∣
∣
∣ +

14∑

i=1

∣
∣
∣
∣

Di

D+
−

D′i
D′+

∣
∣
∣
∣ +

1
2

∣
∣
∣
∣
N′0
N0
− 1

∣
∣
∣
∣ ,

(5)
where N0 is the extant diversity, Di the number of fossil
species found in epoch i, and D+ =

∑14
i=1 Di. Primes are

used to denote simulated values of observed quanti-
ties (e.g., N′0 is the simulated extant diversity). The first
term on the right measures the difference in the total
number of fossils found in the simulated and real data
sets, the second term measures the distance between
the two vectors of proportions, and the third term mea-
sures the distance between the number of known ex-
tant species (N0 = 376) and the number predicted by
the model. Using this metric and the ABC algorithm
in the Appendix, we can sample approximately from
π(θ|Dobs,N0 = 376). Notice that because ρ depends on
Dobs and N0, the results are conditioned on both the
fossil data and the number of extant species N0. Condi-
tioning solely on Dobs by removing the third term on the



2011 WILKINSON ET AL.—DATING PRIMATE DIVERGENCES 21

FIGURE 1. Marginal posterior distributions for the primate (t1) and anthropoid (t2) divergence times. Results are shown for 3 modeling
scenarios. Dates are in units of millions of years.

right in Equation (5) shows that the extant diversity is
important for constraining the sampling rates.

The tolerances ε1 and ε2 used in Equations (1) and
(2) are chosen pragmatically to be the smallest values
that allow a sufficient number of accepted results in the
time available for computation. In this case, we had ac-
cess to a 100-core cluster of processors and could choose
low values of ε1 = 0.5 and ε2 = 0.5. The effect of using
ABC rather than an exact Monte Carlo technique can
be shown to be equivalent to the addition of extra vari-
ability into the model. The addition of extra uncertainty
representing model error is desirable in this case. Both
the model and the data are uncertain, and in particu-
lar, we would not wish to use model predictions with-
out accounting for model discrepancy in some way. The
approximation returned by the ABC algorithm will be
overdispersed when compared with the true posterior,
and so we are comforted by the knowledge that the es-
timates are conservative, rather than optimistic, in their
specification of uncertainty.

We present the results from 3 different model scenar-
ios. They are

1. binomial sampling model,
2. Poisson sampling model, and
3. K-T crash with Poisson sampling.

For each we find the posterior distribution of t1 and
t2, the primate and anthropoid divergence times, re-
spectively. Figure 1 shows the marginal posterior distri-
butions π(t1|Dobs,Aobs,N0) and π(t2|Dobs,Aobs,N0) for
each of the 3 model scenarios and Table 2 gives brief
numerical details of each posterior.

We now provide some comments on the results.

1. The primate fossil record is unable to constrain
precisely the divergence time. For all the mod-
els we examined (we have reported three, but
tried more), the posterior distribution of t1 has a
tail that extends far into the Cretaceous. It seems

TABLE 2. Summary of the marginal posterior distributions for the
primate divergence time, t1, and the anthropoid divergence time, t2

Model scenario Node 2.5th% Median 97.5th%

Binomial t1 59.0 68.3 88.9
t2 43.8 54.0 68.3

Poisson t1 59.0 68.7 88.2
t2 41.5 52.0 64.9

K-T t1 57.6 63.6 88.6
t2 41.0 51.1 62.1

Notes: The median and the 2.5th and 97.5th percentiles are reported.
All values are in units of millions of years. The results from 3 different
experiments are shown, corresponding to the cases described in the
text.
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unlikely that the fossil record could constrain the
divergence time estimate to be within the Ceno-
zoic without far stronger modeling or prior as-
sumptions. Our model neglects many aspects but
is simple and contains relatively few parameters.
More complex models are likely to have greater
numbers of parameters and produce comparable
or longer tailed distributions when parametric
uncertainty is taken into account.

2. These posteriors take into account the uncertainty
induced by the unknown parameters. Fixing all
parameters except τ at estimates produces slightly
more constrained posteriors, but at the cost of
assuming perfect knowledge where none exists.
Similarly, the ABC approximation has the effect of
dispersing the posteriors slightly, but simulation
studies where the tolerance ε is decreased indicate
that this is unlikely to reduce the uncertainty by
much.

3. The binomial and Poisson sampling models pro-
duce similar posterior distributions. The K-T crash
model reduces the expected posterior estimate
of t1 and t2, although considerable uncertainty
remains. The discontinuity in the K-T posterior
occurs at the Cretaceous–Tertiary boundary.

4. Posterior estimates of the probability of Creta-
ceous origins for the primates can be found for
each model. We find values of 0.70, 0.73, and 0.30
in the binomial, Poisson, and K-T crash models,
respectively. Note that Cretaceous origins are less
than half as likely in the K-T crash model.

5. The posterior distributions shown in Figure 1 are
independent of any molecular data set. They could
be used as prior distributions in subsequent molec-
ular analyses of the primates or of their subclades
and are not specific to the analysis performed in
the next section of this paper. Others wishing to
use these fossil calibrations should use the para-
metric approximations given in Table 3 or contact
R.D.W. for a Monte Carlo sample from these distri-
butions if preferred.

TABLE 3. Parameter estimates for the parametric fit of skew-t
distributions to the binomial and Poisson sampling models and for t2
in the K-T model

Model t1 t2

ξ ω α ν ξ ω α ν

Binomial 60.71 10.94 4.42 16.01 49.73 6.82 1.41 9.08
Poisson 61.35 10.58 3.69 18.42 46.74 8.00 1.70 34.17
K-T

R1 65.00 3.65 −3400 ∞ 47.54 6.32 0.98 22.85
R2 65.02 13.75 11,409 ∞

Notes: The skew-t distribution is specified by the location parameter ξ,
scale parameter ω, shape parameter α, and the degrees of freedom ν.
For the posterior of t1 in the K-T model, we fit a mixture distribution
0.698R1 + 0.302R2, where R1 and R2 are skew-normal distributions,
with parameter estimates shown in the table. Note that setting ν=∞
in the skew-t distribution gives the skew normal.

Analytic Approximations for the Posterior

Before combining these results with the sequence
data, we describe parametric fits to the posteriors in
Figure 1. The method of Yang and Rannala (2006) for
dating nodes using sequence data allows the imple-
mentation of any arbitrary statistical distributions to
represent the information in the fossil data as long as
the probability density function can be calculated ana-
lytically. For the binomial and Poisson sampling scheme
runs, we fit independent skew-t distributions to the
marginals for t1 and t2. The skew-t distribution is spec-
ified by the location parameter ξ, scale parameter ω,
shape parameter α, and the degrees of freedom ν (see
equation (4) in Azzalini and Genton 2007, for details).
We add the additional requirement that t1 > t2 (as the
primates must have originated before the anthropoids),
and this induces a dependency between t1 and t2. We
estimate the parameter values shown in Table 3 and find
that when the filtering (t1 > t2) is applied, we achieve a
good fit to the model posteriors.

The skew-t distribution with α > 0 is particularly in-
teresting for representing fossil calibrations, as the dis-
tribution is concentrated around the location parameter,
but has a long tail on the right, suitable for representing
the case where one can be much more confident about
the minimum age bound than about the maximum
bound of a lineage divergence.

The K-T posterior is harder to fit because of the dis-
continuity at the K-T boundary. We use a mixture of
skew normal distributions. The skew normal distribu-
tion is a special case of the skew-t with ν = ∞. When
the shape parameter α= 0, the skew-normal and skew-t
distributions become the normal and t distributions,
respectively. We let

t1 =

{
R1 with probability q,
R2 with probability 1 − q,

(6)

so that the density of t1 is qf1(x) + (1− q)f2(x) where fi is
the density of Ri. We estimate q= 0.698 and find param-
eter estimates for the parameters of the distributions R1
and R2 as shown in Table 3. We fit a skew-t distribution
to the K-T posterior for t2 as above.

Analyzing Other Fossil Data Sets

The code for the computer program used to gen-
erate the posterior distributions shown in Figure 1 is
available upon request from R.D.W. It provides a stand-
alone analysis of the primate fossil record and could
be modified to date divergence times of nonprimate
clades for which fossil data similar to those given in
Table 1 are available. That is, the data must consist of
counts of the number of generally recognized morphos-
pecies known from the fossil record for a sequence of
time intervals. The time at the beginning and end of
each interval must be known, but the intervals need not
necessarily be contiguous. Knowledge of the number of
extant species is useful for estimating the sampling rates
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but is not necessary and can be left out of the analysis
by removing the term involving N0 from the metric in
Equation (5).

For our analysis, it proved useful to consider the pri-
mates as well as a nested subclade consisting of the
anthropoids. If the OSS method were to be applied to
nonprimate data sets, then any other type of simple
tree structure could be accommodated in the analysis
by making suitable changes to the inference procedure.
(Wilkinson 2007 contains examples of including other
types of structure in the primate phylogeny.) To date
just the root (ignoring any subclades), the OSS algo-
rithm can be stopped after Step 3. Similarly, to date
more than one subtree, we could add steps similar to
Steps 4 and 5 to pick out any required feature. However,
computational considerations may make this method
prohibitively expensive for dating many more than two
divergence times.

User specified inputs for the model include prior
distributions for all unknown parameters (or a fixed
parameter estimate to be used in place of a prior dis-
tribution) and a tolerance ε for the ABC algorithm. In
practice, the tolerance needs to be chosen according to
the computational resources available. Smaller values
of ε give a more accurate ABC approximation, how-
ever, they can require significant computation in order
to generate a sufficient number of accepted parameter
values in Steps 3 and 5 of the OSS algorithm. The user
must also specify birth and death probabilities p0(t) and
p2(t). In this paper, this was done by specifying the ex-
pected diversity curve EZ(t) (Equation (3)) and solving
for p0(t) and p2(t). In general, any parametric curve can
be used as long as Equation (4) can be solved to find the
birth and death probabilities.

The analytic approximations to the posterior distri-
butions required for the molecular analysis that follows
have not been automated as part of the main dating
program. These were obtained using the R package sn
(Azzalini 2010). The mixture of skew-t distributions
used to approximate the K-T posterior was found by
trial and error.

MOLECULAR DATA

In the previous section, we derived the posterior
distributions for the crown primate and anthropoid
divergence dates using fossil data. We now use these
posterior distributions as prior distributions on the
age of t1 and t2 in an analysis of sequence data. This
follows the Bayesian mantra that today’s posterior is
tomorrow’s prior. The conditional independence struc-
ture of the problem implies that given t1 and t2, the
fossil and sequence data are independent (they are of
course a priori dependent when not conditioning on
the divergence times). This follows because the version
of the fossil data used (Table 1) contains only limited
morphological information (the classification into an-
thropoid and nonanthropoid species) and, thus, is in-
formative about t1 and t2 but not about other aspects of
the phylogeny (apart from its size). This means that we

can write π(S|t1, t2,D)=π(S|t1, t2), where S denotes the
sequence data. Using Bayes theorem, we can then show
that

π(t1, t2|D,S) ∝ π(t1, t2|D)π(S|t1, t2,D)
= π(t1, t2|D)π(S|t1, t2)

to justify using the posterior distribution π(t1, t2|D) from
the fossil analysis as a prior distribution in the sequence
data analysis. To avoid ambiguity in what follows, we
shall refer to the posteriors from the fossil analysis as
the calibration distributions and use the term posterior
when referring to the inference from the molecular anal-
ysis. We present the analysis of molecular divergence
dates using the calibration distributions from 5 differ-
ent fossil calibration models. These models are the bino-
mial, Poisson, and K-T models described above as well
as two simpler prior distributions. One of these priors is
based on a gamma distribution and the second is based
on “soft bounds.”

Sequence Data

We use a DNA sequence data set based on two ge-
nomic regions. The first region maps to the CFTR region
of human chromosome 7 and is aligned for different
mammals by Cooper et al. (2005). This 1.9 Mbp region
was refined by Steiper and Young (2006) into a 59,764 bp
alignment. For this study, only 13 primate sequences are
used: human (Homo sapiens), common chimpanzee (Pan
troglodytes), gorilla (Gorilla gorilla), orangutan (Pongo
pygmaeus), rhesus macaque (Macaca mulatta), anubis
baboon (Papio anubis), vervet (Chlorocebus aethiops), com-
mon marmoset (Callithrix jacchus), dusky titi monkey
(Callicebus moloch), Bolivian squirrel monkey (Saimiri
boliviensis), gray mouse lemur (Microcebus murinus),
small-eared galago (Otolemur garnettii), and ringtailed
lemur (Lemur catta).

The second locus is the CYP7A1 region (22,906 bp), lo-
cated on human chromosome 8, with 9 primate species
sequenced. Wang et al. (2007) examined 8 genomic
regions in a sample of diverse primate taxa, includ-
ing CYP7A1. These loci were examined via the UCSC
Genome Browser, and the CYP7A1 region was chosen
for analysis in this paper because it is less gene rich
than the other regions. Sequences for 7 species were
obtained as described in Wang et al. (2007): human
(H. sapiens): hg18 chr8, 59525742–59605413; hamadryas
baboon (P. hamadryas), AC162431; eastern black-and-
white colobus (Colobus guereza), AC148223; common
marmoset (C. jacchus), AC162435; owl monkey (Aotus
nancymaae), AC162781; Bolivian squirrel monkey (S.
boliviensis), AC147423; and ringtailed lemur (L. catta),
AC151871.

The common chimpanzee and rhesus macaque se-
quences were obtained via the UCSC Genome Browser
using a portion of the 5′ and 3′ ends of the human se-
quence as a query in BLAT (Kent 2002), with the result-
ing coordinates panTro2 chr8: 56563907–56626694 for
the common chimpanzee and rheMac2 chr8: 61089318–
61164419 for the rhesus macaque. Repetitive DNA was
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FIGURE 2. Rooted tree showing mean estimates of node ages
t1, . . . , t14 obtained when using the Poisson sampling model to pro-
vide prior distributions for the t1 and t2 node ages. The numbers in
parentheses after the species name indicate that the sequence for that
species is only available at that locus. Species without labels have data
for both loci.

removed using RepeatMasker (Smit et al. 1996–2004).
The sequences were aligned with MLAGAN (Brudno
et al. 2003). All positions with gaps were removed. There
are 22,906 sites in the CYP7A1 alignment. Between the
two loci, there are 15 unique primate species for which
the generally accepted phylogeny (e.g., Goodman et al.
1998; Ray et al. 2005) is shown in Figure 2. This is the
phylogeny used for the molecular dating analysis. Note
that 2 species (Colobus guereza and Aotus nancymaae) are
missing data for locus 1, whereas 6 species are miss-
ing data for locus 2 (G. gorilla, P. pygmaeus, C. aethiops,
C. moloch, M. murinus, and O. garnettii).

Estimation of Divergence Times

The two loci are analyzed jointly using the Bayesian
MCMC program mcmctree in PAML 4.2 (Yang 2007).
The HKY+Γ5 model (Hasegawa et al. 1985; Yang 1994)
was used, with different transition/transversion rate ra-
tios (κ), different base frequencies, and different gamma
shape parameter α for the two loci. Gamma priors were
assigned on parameters κ ∼ G(6, 2), with mean 3, and
α ∼ G(1, 1). The substitution rates are assumed to drift
over time independently at the two loci. We use 100 Myr
as one time unit. The rate at the root is assigned the
gamma prior μ ∼ G(0.2, 2), with mean 0.1 (i.e., 10−9

substitutions per site per year). The simpler Jukes and
Cantor model (Jukes and Cantor 1969) was used in
some analyses and found to produce similar results to
HKY+Γ5; those results are not reported below.

The geometric Brownian motion model was used
to accommodate the drift of the substitution rate over
time (across lineages) (Rannala and Yang 2007). The
rate drift parameter is assigned to the gamma prior

σ2 ∼ G(1, 10). A model of rate drift was used due
to the well-established rate variation within primates
(e.g., Steiper et al. 2004). This molecular rate variation
was confirmed by strict clock analyses that resulted in
date estimates inconsistent with the fossil record, for
example, at the human/chimpanzee node recovering
estimates < 5 Ma (results not shown). The prior for
times is generated from the birth–death process with
sampling, with parameters λ = μ = 1 and ρ = 0, so that
the kernel is uniform (Yang and Rannala 2006).

We estimated dates under 5 calibration models (Pois-
son, binomial, K-T, gamma, and bounds). The first three
of these are based on the models described in the section
on using the fossil record. For the gamma model, we fit
a gamma prior distribution to subjective date estimates.
We assume that the crown primate node has a mini-
mum 2.5% boundary at 56 Ma and an maximum 97.5%
boundary at 85 Ma and assume that the crown anthro-
poid node has minimum 2.5% boundary at 41 Ma and
maximum 97.5% boundary at 65 Ma. We fit gamma dis-
tributions to these values and use a G(91.2, 130.4) prior
for the primate node and a G(75.3, 143.8) prior for the
anthropoid node. The bounds model assumes that the
crown anthropoid node falls between 37 and 70 Ma with
2.5% chance each for the dates being older or younger
and that the crown primate node falls between 55 and
90 Ma with 2.5% chance each for the dates being older
or younger. Details of the implementation of these cali-
brations are given in Yang and Rannala (2006).

Step lengths of proposals were adjusted in pilot runs
to achieve a near-optimal acceptance ratio of 1:3. The
same analysis was conducted multiple times. Conver-
gence and mixing of the chain were assessed by consis-
tency across runs, by using trace plots, and calculating
the effective sample sizes. Summaries of the posterior
distribution such as the mean and 95% equal-tail cred-
ibility interval (CI) were generated by combining the
samples taken over the runs.

Results of Molecular Dating Analysis

The posterior means and 95% equal-tail posterior
CIs for the divergence times are listed in Table 4. Date
estimates for some of the major primate clades are plot-
ted in Figure 3. This figure presents the 95% posterior
CIs from the integrated analysis, shown as black bars,
with the posterior mean estimate given as a white hatch
(models from top to bottom are Poisson, K-T, binomial,
gamma, and bounds). Also shown are the 95% CIs of
the fossil calibrations for the crown primate and crown
anthropoid nodes found from the fossil analysis (gray
bars). A few observations can be made from this fig-
ure. First, there is broad agreement among all the point
estimates and CIs for all the calibration models. The
most pronounced difference is the size of the CIs at the
crown primate node. In this case, the more exotic dis-
tribution models yield a larger and older CI than the
gamma and bounds models. These older dates are to be
preferred as both the gamma and the bound calibration
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distributions have artificially light tails when compared
with the model-based calibrations obtained in the first
phase of the analysis using the fossil record. Second,
note that the effect of the molecular analysis is to move
the estimate of the age of the crown primate and crown
anthropoid nodes further into the past. Most of the mass
from the fossil calibration distributions for the primate
node is between approximately 55 and 85 Ma, whereas
the molecular posterior distributions are much older,
placing most of the posterior mass in the Cretaceous
(>65 Ma). There is a strong signal in the molecular data
that the primate and anthropoid node ages are older
than the dates predicted by the fossil analysis alone.

Comparing the date estimates with those of two re-
cent studies of primate molecular divergence dates
(Fig. 3; grey arrowhead, Steiper and Young 2009 and
black arrowhead, Steiper and Young 2006) shows that
the present dates are generally somewhat older than
those from those studies. However, the CIs from our in-
tegrated analysis contain these other date estimates. The
crown strepsirrhine node is somewhat younger, though
this may be related to the relative lack of calibration
information in this part of the tree.

The posterior means of node ages when using the
prior distribution obtained from the Poisson sampling
model are used to draw the tree of Figure 2.

The infinite-sites plot (Yang and Rannala 2006, fig. 8)
is shown in Figure 4 for the Poisson sampling model.
This plots the posterior 95% CI width against the pos-
terior mean of the node ages. The high correlation co-
efficient (r2 = 0.80) means that the sequence data are
very informative. The slope of 0.49 means that for every
1 Myr of divergence time 0.49 Myr is added to the CI
width, indicating that the fossil calibrations are rather
imprecise. The points fit the straight line rather well ex-
cept for the four oldest nodes. Node ages t1 and t2 are
more precise than average because these are the cali-
bration nodes. Ages t13 and t14 for the two strepsirrhine
nodes have large errors in the posterior, apparently be-
cause there is not a fossil calibration in that portion of
the tree, and also one sequence is missing at one of the
two loci in strepsirrhines. Both features make it difficult
for the model to assess rate variation within the strep-
sirrhines to derive reliable date estimates. The plots for
other fossil models (not shown) are very similar, with r2

values close to 0.8 and the slope close to 0.5.
Estimates of parameters in the molecular model were

very similar among the fossil calibration models. The
posterior means and 95% CIs of κ are 4.4 (4.2, 4.6) and 4.7
(4.6, 4.8) for loci 1 and 2, respectively. The overall rates
were estimated to be 1.5 (1.0, 2.1) and 1.0 (0.7, 1.3)× 10−9

substitutions per site per year at loci 1 and 2, respec-
tively, whereas the rate drift parameters σ2 were esti-
mated to be 0.39 (0.20, 0.68) and 0.30 (0.15, 0.53).

DISCUSSION

We have introduced a probabilistic model that links
primate divergence times to the observed chronological
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FIGURE 3. Figure showing the posterior date estimates of 7 nodes in the primate phylogeny (see Table 4). For each node, 5 different estimates
are shown, depending on which prior distribution was used in the molecular analysis. In order (from top to bottom), they are the estimates
from the Poisson, K-T, binomial, gamma, and bounds models. The white hatch shows the posterior mean age estimate, and the black box shows
posterior 95% CI. For the primate (t1) and anthropoid (t2) divergences, the 95% CI from the fossil calibrations are shown as grey lines. The
arrowheads show estimates taken from the literature (gray arrowhead, Steiper and Young 2009 and black arrowhead, Steiper and Young 2006).
The node labels correspond to those given in Table 4.

distribution of fossils and numbers of living primate
species. The model used is relatively simple to code
and understand, hopefully making our inference and
assumptions transparent. Our focus was not on build-
ing a highly accurate model of evolution, accounting for

FIGURE 4. Infinite site plot. Posterior 95% CI width against poste-
rior means of node ages for the Poisson sampling model.

migration, climatic variability, etc., but to capture the ba-
sic pattern of growth in order to understand what range
of divergence times could feasibly lead to the observed
fossil data. It is not clear whether a more sophisticated
model would be possible to justify, and such a model is
likely to introduce more uncertainty into the estimates
of the divergence times, not less. Most of the uncer-
tainty in our final estimates comes from the uncertainty
in results for the fossil calibrations and any uncertainty
introduced by examining the model discrepancy (not
shown here). To substantially reduce the uncertainty in
the fossil estimates, it is likely that data from a differ-
ent source, or with a more detailed structure, would be
required. If the number of fossils of each species dis-
covered was known, then the model and ABC inference
algorithm could be altered to incorporate these data,
providing further valuable information about the sam-
pling rate and helping us to constrain divergence time
estimates. Unfortunately, this information is not readily
available, whereas the number of species recorded is
collectable from the literature.

The primate molecular divergence dates estimated
from linking these approaches reveal a number of im-
portant points. Most importantly, calibration distribu-
tions generated from complex models based on the
empirical distribution of fossils and the numbers of liv-
ing species can be used to generate useful molecular
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divergence estimates. This represents an advance over
previous methods for two main reasons. First, this
method overcomes some of the inherent difficulties
in using fossils to diagnose the earliest members of lin-
eages (Steiper and Young 2008). Specifically, it is the ear-
liest members of a lineage that are the most important
for calibrating molecular clocks, but the earliest fossil
representatives of a lineage will be the most problem-
atic to diagnose phylogenetically. Given this paradox,
alternative methods for molecular clock calibration are
critical. Second, although previous methods have used
a probabilistic approach to molecular clock calibration
(e.g., Barnett et al. 2005; Rannala and Yang 2007), the
present methods use the empirical distribution of fossil
and extant species to generate a distribution for use as
a calibration. Given its incorporation of more empirical
data from the living and fossil data, the present method
potentially allows for a more accurate distribution for
species divergence times. The mcmctree program is
currently the only molecular dating program that im-
plements the skew-t distributions generated in the anal-
ysis of this paper, but we expect it to be straightforward
to include such distributions in Bayesian dating pro-
grams such as BEAST (Drummond et al. 2006), which
can accommodate arbitrary calibration distributions.

We have chosen here to model the two data sets
(fossils and sequences) separately, using a two-step pro-
cedure to date divergence times. In the first step, the
fossil record was analyzed to produce a distribution for
the primate and anthropoid divergence times, and in
the second step, this distribution was used as a prior
distribution in a molecular analysis. An advantage of
this two-step procedure is that the posterior distribu-
tions shown in Figure 2 can be used as prior distribu-
tions in other molecular analyses without fear of double
counting the molecular data, as they were obtained in-
dependently of the sequence data. An alternative to our
two-step approach would be to use a combined model
for both the sequence and the fossil data. Although
an integrated approach may lead to better consistency
between the two parts of the analysis, it is likely to be
computationally expensive and may be dominated by
the molecular data. Exploration of the advantages and
disadvantages of the two approaches merits further
research.

The different calibration distributions, including the
gamma and the simple bounds, produced similar poste-
rior date estimates in that the posterior means are simi-
lar and the posterior CIs overlap considerably. However,
the Poisson, binomial, and K-T calibrations produced
wider CIs, with much older maximum CI limits for the
crown primate node. We suggest that the molecular date
estimates based on these models more accurately reflect
the uncertainties in the fossil and molecular data and
that the subjective calibrations based on the gamma and
simple bounds may be overconfident.

The degree to which the age of the oldest known fos-
sil representatives of a clade reflects our estimates of
divergence dates is variable. Our estimates suggest that
four nodes stand out as particularly badly represented

TABLE 5. Mean estimated divergence dates (in units of millions of
years) for the Poisson sampling model, approximate ages of the oldest
known, relatively broadly accepted, fossil representatives of each
crown group, and the discrepancy between the two dates expressed as
a proportion of the fossil’s age for the major primate divergence events

Node Divergence Fossil Discrepancy
date date (%)

Crown Primates t1 84.5 (69.2–103.5) 55 54
Crown Anthropoidea t2 47.2 (38.9–56.5) 35 35
Crown Catarrhini t3 31.0 (25.1–37.7) 20 55
Crown great apes t4 19.2 (15.1–24.1) 13 48
Homo/Pan t6 7.5 (5.7–9.6) 7 7
Crown t7 14.1 (11.0–17.7) 11 28

Cercopithecoidea
Crown Platyrrhini t10 25.1 (20.1–31.0) 16 57
Crown Strepsirrhini t13 49.8 (35.9–72.0) 37 35

Note: Values given in the parentheses indicate 95% confidence
interval.
Sources for the fossil dates: t1: Ni et al. (2004), Smith et al. (2006); t2, t13:
Seiffert (2007); t3: Miller et al. (2009); t4: Chaimanee et al. (2003); t6:
Brunet et al. (2002); t7: Andrews et al. (1996); and t10: Kay et al. (2008).
Implications of an early divergence date for crown anthropoids were
explored by Miller et al. (2005).

by the fossil record (Table 5): the origin of crown group
primates (t1), the origin of crown group catarrhines (t3),
the origin of crown group great apes (t4), and the origin
of crown group platyrrhines (t10). The difficulty of ac-
curately identifying fossils as either early crown group
members of a clade or stem lineage taxa may be partly
responsible in several cases. For example, if the con-
troversial late Miocene (ca. 7-5 Ma) taxa Sahelanthropus,
Orrorin, and Ardipithecus are excluded from the human
lineage (Harrison 2010), the oldest fossil representative
of that lineage becomes Australopithecus anamensis at 4.2
Ma (Leakey et al. 1998), and the relative discrepancy be-
tween our estimated mean divergence date based on the
Poisson sampling model and the oldest known crown
group fossil of the human–chimpanzee clade at node t6
increases from 7% to 79% (Table 5). Similarly, it has been
suggested that the early Miocene primates known from
South America were stem rather than crown group
platyrrhines (Kay et al. 2008). If, instead, those taxa
were considered members of the crown group, the pro-
portional discrepancy between our estimated mean
divergence date and the oldest known crown group
fossil at node t10 would be reduced from 57% to 26%.
The strepsirrhine divergence (t13) may in fact be the
least secure of these dates, as the fossil record for lemurs
(which constitute the majority of extant Strepsirrhini)
is nonexistent, whereas that for lorisiforms dates back
only to the late Eocene.

In other cases, large discrepancies are more likely
indicative of a real hiatus in the fossil record. For exam-
ple, the middle Oligocene is notorious for its poor fossil
record, particularly in Africa (Kappelman et al. 2003).
As this coincides with the inferred time and place of ini-
tial evolution of the crown catarrhine clade (t3), it may
explain the large discrepancy between our estimated
mean divergence date and the age of the earliest fos-
sil representative of crown group catarrhines (Table 5).
Similarly, the sudden appearance of taxonomically di-
verse primates, as well as of other groups of modern
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mammals, in the fossil record of Asia, Western Europe,
and North America at the base of the Eocene, has been
interpreted as suggestive of a more ancient origin of
those groups in a poorly sampled, as yet unidentified
region, in more southern latitudes (Krause and Maas
1990; Martin 1993; Soligo 2007; Martin et al. 2007). This
would help to explain the large gap between our mean
estimate of the date of origin of crown group primates
(t1) and their oldest known fossil representatives. The
date of only 64 Ma for the divergence between Strepsir-
rhini and Haplorhini reported by Chatterjee et al. (2009)
is distinctly younger than the distribution of inferred
dates for that node shown in our Figure 3. This young
age estimate may be due to the use of two exponential
distributions of Chatterjee et al. to represent minimum
bound calibrations in their BEAST analysis. These distri-
butions represent rapid decay of the probability density
function beyond the minimum bounds; that is, they
implicitly assume that the true age is close to the min-
ima and unlikely to be much older than those minima.
This assumption, we feel, is unlikely to be warranted,
as it does not take account of the sizable gaps that exist
in the primate fossil record (Martin 1993; Tavaré et al.
2002; Soligo et al. 2007). It should also be noted that
differences in strategies used by Bayesian programs to
incorporate minimum- and maximum-age bounds may
be responsible for very large differences in posterior
time estimates (Inoue et al. 2010). The strategies used in
the BEAST analyses are not made explicit, but the use of
a number of calibration points that are seemingly based
on minimum bounds alone is of potential concern here.
Further research in this area is clearly needed.

In addition, it should be noted that our estimates for
the divergence of crown group strepsirrhines (t13) have
very wide 95% CIs (Fig. 3 and Table 4). Thus, the rela-
tively low (compared with other nodes) discrepancy be-
tween mean model estimate and fossil date for node t13
(34.6%; Table 5) may reflect the effect of the near-total
absence of a crown strepsirrhine fossil record on both
dates rather than relative congruence between the two.

Compared with two recent molecular studies of pri-
mate divergence dates (Steiper and Young 2006, 2008),
the majority of our estimates are somewhat older (Fig.
3). In most cases, the increases suggested discrepan-
cies between estimated divergence dates and the oldest
known fossil representative of a clade. In the case of
the divergence between the human and chimpanzee
lineages (t6), however, our slightly older dates, when
compared with recent molecular estimates, may align
better with the fossil record, if any one of Sahelanthropus,
Orrorin, or Ardipithecus is accepted as an early represen-
tative of the human lineage (Senut et al. 2001; Brunet
et al. 2002; Haile-Selassie et al. 2004; but see Harrison
2010, for an alternative interpretation).

SUPPLEMENTARY MATERIAL

Supplementary material can be found at http://www
.sysbio.oxfordjournals.org/.

FUNDING

Z.Y. is supported by a Biotechnological and Biolog-
ical Sciences Research Council Grant. The infrastruc-
ture of the Anthropological Genetics Lab of M.E.S. at
Hunter College (M.E.S.) was supported by grant num-
ber RR03037 from the National Center for Research
Resources (NCRR), a component of the National Insti-
tutes of Health (NIH). The contents of this publication
are solely the responsibility of the authors and do not
necessarily represent the official views of NCRR or NIH.

ACKNOWLEDGMENTS

The authors are grateful to the editor, associate editor,
and the referees for their helpful comments.

REFERENCES

Alroy J. 1994. Quantitative mammalian biochronology and biogeog-
raphy of North America [PhD thesis]. Chicago (IL): University of
Chicago.

Andrews P., Harrison T., Delson E., Bernor R.L., Martin L. 1996. Dis-
tribution and biochronology of European and Southwest Asian
Miocene catarrhines. In: Bernor R.L., Fahlbusch V., Mittmann H.-
W., editors. The evolution of western Eurasian Neogene mammal
faunas. New York: Columbia University Press. p. 168–207.

Andrews P., Kelley J. 2007. Middle Miocene dispersals of apes. Folia
Primatol. 78:328–343.

Azzalini A. 2010. R package sn: the skew-normal and skew-t distribu-
tions. Version 0.4-15. Padova, Italy: Università di Padova.
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APPENDIX

ABC-within-Gibbs

Rejection-based ABC cannot handle large numbers of
parameters because repeatedly sampling from the prior
distribution becomes too inefficient in high dimensions.
MCMC methods work by correlating observations, so
that more time is spent in regions of high likelihood.
The tails of the distribution are still visited, but less time
is spent there. This motivated (Marjoram et al. 2003) to
introduce the approximate MCMC algorithm.

MCMC methods build a Markov chain on the pa-
rameter space, with dynamics controlled by an update
kernel. An MCMC algorithm does not have to use the
same update strategy each time, and in practice, it is of-
ten convenient to combine a number of different update
kernels (Tierney 1994). A common hybrid algorithm
is the Metropolis-within-Gibbs sampler (Brooks 1998)
in which Gibbs update kernels are used whenever the
full posterior conditionals are known and Metropolis–
Hastings kernels when not. We use a similar idea, and
combine Gibbs kernels with ABC-rejection steps, allow-
ing us to exploit model structure where it is known.
Before explaining how this works for our model, con-
sider the structure where the parameter is split into
just two components, θ = (θ1, θ2), and where the Gibbs
conditional proposal density π(θ1|D, θ2) is known but
where π(θ2|D, θ1) is unknown. Then, the following algo-
rithm generates samples that are from an approximation
to the posterior distribution π(θ|D):

Approximate-Gibbs sampler:

1. If currently at θ=(θ1, θ2), draw θ′1 from π(θ1|D, θ2)
and set θ= (θ′1, θ2).

2. Draw θ′2 from its prior π(θ2) and simulate data D′

using parameter θ= (θ′1, θ
′
2).

3. If ρ(D,D′) ≤ ε, set θ=(θ′1, θ
′
2) and return to Step 1.

Otherwise stay at θ= (θ′1, θ2) and return to Step 2.

Note that Step 1 is the standard Gibbs update, and Steps
2 and 3 are the ABC steps to draw approximately from
π(θ2|D, θ1). How this algorithm is applied to our model
depends on whether we use a binomial or a Poisson
sampling scheme.

Binomial sampling model.—We introduce auxiliary in-
formation about the tree structure and enlarge the
parameter space and then simulate from the posterior
distribution

π(ψ, λ, τ,N ,α|D) ∝ P(D|α,ψ, λ, τ,N )
P(N|τ,ψ, λ)π(τ)π(ψ, λ)π(α),

where N = (N1, . . . ,N14), with Ni denoting the num-
ber of species that lived at any point during the ith
epoch. An advantage of including the tree structure,
N , in the equation above is that parts of the likelihood
equation become computable when we split the param-
eter θ= (τ,ψ, λ,α,N ) into two parts, α and (τ,ψ, λ,N ).
The conditional distributions required for the Gibbs

sampler for α are tractable:

π(α|D,ψ, λ, τ,N ) ∝ π(α,ψ, λ, τ,N|D)
∝ P(D|τ,ψ, λ,N ,α)
× P(N|τ,ψ, λ)π(τ)π(ψ, λ)π(α)
∝ π(α)P(D|N ,α)

∝ π(α)
14∏

i=1

α
Di
i (1− αi)

Ni−Di .

Note that beta prior distributions for the αi are conju-
gate, so that the posterior distributions also have beta
distributions (X ∼ Beta(a, b) if X has density propor-
tional to xa−1(1 − x)b−1 for 0 ≤ x ≤ 1 and is zero else-
where). If the prior for each αi is a Beta(a, b) distribution,
then

π(α|D,ψ, λ, τ,N ) ∝
14∏

i=1

α
Di+a−1
i (1− αi)

Ni−Di+b−1,

so that the posterior distribution of αi is Beta(a + Di, b +
Ni −Di). The posterior mean of αi is then

E(αi|D,N ) =
Di + a

Ni + a + b
. (7)

If a and b are small compared with Ni and Di, then Equa-
tion (7) is approximately equal to the ratio of the number
of fossils to the number of species, which is the intuitive
value for the sampling fractions:

E(αi|D,N ) ≈
Di

Ni
.

The other conditional π(τ,ψ, λ,N|D,α) is intractable
but can be sampled from using an ABC algorithm:

ABC-within-Gibbs: Binomial sampling model

1. Suppose we are at θ(t) = (ψ, λ(t),α(t), τ(t), τ∗(t),
N (t)) after t iterations.

2. Propose α′ from

π(α|D,ψ, λ(t), τ(t),N (t)) =
∏

Beta(a + Di,N
(t)
i

− Di + b). (8)

3. Propose (ψ, λ′, τ′) from prior π(τ)π(ψ, λ) and sim-
ulate tree N ′ from P(N ′|τ′,ψ, λ′).

4. Simulate fossil counts D′. If ρ(D,D′) ≤ ε1, go to
Step 5. Otherwise return to Step 3.

5. Use the OSS algorithm to find the best subtree
fossil counts A′. If ρ(A′,A) ≤ ε2, accept (ψ, λ′,
τ′, τ∗,N ′) and set θ(t+1) = (ψ, λ′,α′, τ′, τ∗′,N ′). If
ρ(A,A′) > ε2, stay at (ψ, λ(t),α(t), τ(t), τ∗,N (t))
and return to Step 3.

The hyperparameters a and b used in the beta prior
distributions should not matter greatly as long as both
are small, as they will be dominated by the data, as
shown by Equation (7). We use a= b= 1 in this analysis,
as this makes the priors for each αi uniform on [0, 1].
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Poisson sampling model.—Recall that under the Poisson
sampling model, fossil finds occur as the events of a
Poisson point process on the branches of the tree. Label
from 1 to Nk, each of the Nk species in interval k, and let

I(k)j =

{
1 if we find a fossil of species j in interval k,
0 otherwise.

Then, if species j lives for time l(k)j in interval k, let

P(I(k)j = 1) = 1 − e−βkl(k)j , where {βk}k=1,...,14 are the

sampling rates for each interval. The {I(k)j }j=1,...,Nk are
independent Bernoulli random variables with parame-

ters 1 − e−βkl(k)j , where l(k)j is a random parameter. The
number of fossil species found is

Dk =

Nk∑

j=1

Ij,

that is, the sum of Nk independent Bernoulli random
variables. It is possible to approximate D′ by a Poisson
distribution

D′k =
Nk∑

j=1

I(k)j ≈ Po




Nk∑

j=1

(
1− e−βkl(k)j

)




so that

π(βk|D,ψ, λ, τ,N ) ∝ π(βk)




Nk∑

j=1

(
1− e−βkl(k)j

)




Di

× exp



−
Nk∑

j=1

(
1− e−βkl(k)j

)


.

The Kullback–Leibler divergence between the distribu-
tion of the sum of Bernoulli variables and the Poisson

approximation can be bounded above (Kontoyiannis
et al. 2005), so that

DKL(πSn ||Po(λ)) ≤
1
λ

n∑

i=1

p3
i

1− pi
,

where Sn is the sum of n independent Bernoulli(pi) ran-
dom variables and λ=

∑
pi. By approximating the sum

of parameters in the Poisson distribution to first order,
we find

Nk∑

j=1

(
1− e−βkl(k)j

)
≈ βk

Nk∑

j=1

l(k)j = βkLk,

where Lk is the total length of all the lineages in inter-
val k.

The posterior distribution of βk can now be written as

π(βk|D,ψ, λ, τ,N ) ∝ π(βk)P(D|N ,βk)

∝ π(βk)

Nk∏

j=1

(
1− e−βkl(k)j

)Ij(
e−βkl(k)j

)1−Ij

≈∝ π(βk)e
−βkLk(βkLk)

Dk

and so we can use conjugate gamma prior distributions,
βk ∼ G(a, b). The posterior distributions are then also
gamma distributions

βk|D,N ∼ G(Dk + a, Lk + b).

When a and b are small the posterior means of the sam-
pling rates are again close to their intuitive value:

E(βk|D,N ) =
Dk + a
Lk + b

≈
Dk

Lk
. (9)


