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Abstract: Three dimensional image reconstruction for multi-modality 

optical spectroscopy systems needs computationally efficient forward 

solvers with minimum meshing complexity, while allowing the flexibility to 

apply spatial constraints. Existing models based on the finite element 

method (FEM) require full 3D volume meshing to incorporate constraints 

related to anatomical structure via techniques such as regularization. 

Alternate approaches such as the boundary element method (BEM) require 

only surface discretization but assume homogeneous or piece-wise constant 

domains that can be limiting. Here, a coupled finite element-boundary 

element method (coupled FE-BEM) approach is demonstrated for modeling 

light diffusion in 3D, which uses surfaces to model exterior tissues with 

BEM and a small number of volume nodes to model interior tissues with 

FEM. Such a coupled FE-BEM technique combines strengths of FEM and 

BEM by assuming homogeneous outer tissue regions and heterogeneous 

inner tissue regions. Results with FE-BEM show agreement with existing 

numerical models, having RMS differences of less than 0.5 for the 

logarithm of intensity and 2.5 degrees for phase of frequency domain 

boundary data. The coupled FE-BEM approach can model heterogeneity 

using a fraction of the volume nodes (4-22%) required by conventional 

FEM techniques. Comparisons of computational times showed that the 

coupled FE-BEM was faster than stand-alone FEM when the ratio of the 

number of surface to volume nodes in the mesh (Ns/Nv) was less than 20% 

and was comparable to stand-alone BEM ( ± 10%). 
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1. Introduction 

1.1 Introduction to 3D diffuse optical imaging 

Diffuse optical imaging provides functional information related to the physiological status of 

tissue non-invasively. Absorption, fluorescence and Raman optical imaging have 

demonstrated ability to provide molecular fingerprints of tissues in healthy and diseased states 

[1–5]. These optical techniques require a model for image reconstruction from boundary 

measurements of tissues when used in tomographic applications in-vivo. Image reconstruction 

involves solving a model for light propagation (called the forward model) iteratively to fit the 

measured data and recover optical parameters. Traditionally, image reconstruction techniques 

have used the approximation that light propagation is two-dimensional. However, more 

recently interest in 3D image reconstruction has grown because it is more accurate than 2D 

models given that light propagation is inherently three-dimensional [6]. 

Three-dimensional models have been successfully applied to simple geometries such as 

cylinders, slabs and spheres where algorithms have been explored for better localization and 

quantification. For example, Yalavarthy et al [7] used a generalized least squares 

minimization incorporating data and parameter variances to accelerate 3D image 

reconstruction for under-determined problems. Using a level-set technique for image 

reconstruction, Schweiger et al [8] showed that detection and localization of small objects 

could be improved in 3D. Boverman et al [9] used a parametric approach to reconstruct shape 

and contrast of piece-wise constant regions in 3D with spherical harmonics for modeling 

sharp boundaries in tissue and demonstrated quantitative results in a domain with a single 

inclusion. Zacharopoulos et al [10] used a similar strategy and showed that they could 

accurately recover location and contrast of an anomaly in experiments on a domain with 

single inclusion. Srinivasan et al [11] used a dynamic criterion based on the least squares error 

norm of model-data mismatch to reduce the size of large data sets and speed up 3D image 

reconstruction. However, applications of 3D image reconstruction to arbitrary shaped 

geometries such as breast and brain have been more limited, especially as in the setting of 

multi-modality imaging. 

1.2 Multi-modality optical imaging reconstruction techniques 

Multi-modality imaging has gained interest as an approach for improving the contrast 

recovery of diffuse optical imaging and fluorescence [12–15]. Multi-modality imaging uses 

prior anatomical structure to guide the diffuse optical reconstruction spatially, making it less 

ill-posed and the images better resolved. In this reconstruction process, the optical imaging 

domain is typically defined by segmentation and volume meshing of conventional medical 

images (MRI, X-Ray or CT). Image reconstruction techniques involving multimodal data 

have generally evolved in two categories of implementation of the spatial data, including: (1) 

soft prior information and (2) hard prior information. Soft prior info refers to the application 

of anatomical constraints, which allow for optical property variations to occur within 
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segmented regions. Studies have used algorithms based on total variation minimization [16], 

sparsity regularization [15], Laplacian and Helmholtz regularizations [14,17,18], data-specific 

spatially varying regularization [19], with all predominantly in the finite element method 

(FEM) framework. Hard prior info strictly enforce the tissue boundaries to represent 

homogeneous or piece-wise constant optical property regions. This has been implemented 

using FEM [20,21] and the boundary element method (BEM) [22]. Many of these studies 

have been on simulations with couple of case studies resulting from experimental or clinical 

data; extensive testing in experimental or clinical data is still to be demonstrated. 

1.3 Need for efficient 3D technique for complex 3D domains 

In our experience, one of the key challenges in adopting 3D multimodal optical imaging for 

large clinical studies is in image segmentation and meshing of arbitrary shapes. Figure 1 

shows a schematic of a typical workflow before image reconstruction. The process involves 

segmentation of medical image data, surface rendering (which produces a surface mesh as 

output) and volumetric meshing. The last step of obtaining a volume mesh for 3D image 

reconstruction can be time-consuming and difficult to automate in a clinical workflow. 

Studies in brain and small-animal imaging have used a standard anatomical atlas to by-pass 

the problem of obtaining subject-specific meshes [23,24]. However, some tissues such as the 

breast and the prostate show considerably larger heterogeneity between subjects [25] where a 

subject specific mesh is imperative to the imaging process. Use of a BEM approach as an 

alternative to FEM for hard priors alleviated the meshing complexity by requiring only 

surface discretization as compared to volume meshing for modeling light diffusion in 3D 

[22,26]. BEM showed promise for multimodal image guided diffuse optical spectroscopy of 

piece-wise constant regions (hard priors) by simplifying the meshing process and 

implementing the assumption in the forward model itself [22]. 

However, using piece-wise constant optical property approximations has limitations: (1) it 

cannot model tissues which are known to have spatially varying optical property distributions 

such as large solid tumors [27] (2) results are affected when the prior information on tissue 

boundaries is imperfect [17,21], and (3) insufficient information exists when the boundary 

data is simply not available as in the case of false-negative findings in MRI. An efficient 

method to counter these limitations is needed without the complexity of creating a full 3D 

volume mesh. 

1.4 Coupled finite element – boundary element method (FE-BEM) 

Here, we present a hybrid method for modeling the diffusion equation, which combines the 

strengths of BEM in terms of reduced meshing dimensionality with FEM in terms of 

modeling optical property heterogeneity. The approach is akin to a tailored method for 

incorporating soft priors in a modified form in the forward model, itself, i.e. in modeling the 

light diffusion equation instead of within the image reconstruction formulation. The coupled 

FE-BEM scheme introduced here assumes homogeneous regions in certain tissue types, 

which are known to have low variation in functional parameters (e.g. fat) and heterogeneous 

distributions for other tissues such as tumors, which are known to have large variations in 

optical properties. The advantage of this technique over FEM is that it does not require 

volume discretization of the entire 3D domain, but only for tissues with known heterogeneity; 

surfaces will suffice for the rest of the tissues within the domain of interest. The advantage 

over BEM is that it can model heterogeneity in certain tissues whereas BEM assumes only 

piece-wise constant regions. We present an implementation of the coupled FE-BEM system 

for modeling light diffusion in 3D. Results are reported for light fluence distributions and 

frequency domain boundary measurements of intensity and phase as well as computational 

times for realistic tissue geometries and are compared to existing numerical models. The 

examples presented correspond to breast imaging, although the concept can be readily 

extended to other sites and applications such as brain and small animal imaging. 

#129235 - $15.00 USD Received 1 Jun 2010; revised 21 Jul 2010; accepted 23 Jul 2010; published 2 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1,  No. 2 / BIOMEDICAL OPTICS EXPRESS  401



 

Fig. 1. A schematic showing steps from medical image data to obtaining a volumetric mesh for 

computation with examples from breast data. These steps have to be routinely performed 

before image reconstruction can be done for 3D multi-modality optical imaging. Methods for 

image segmentation vary between applications; here thresholding and region-growing 

techniques were applied for breast tissue. Surface rendering is automatically generated by 

many open source softwares, but getting a reliable volume mesh can be time-consuming and 

more difficult to automate. 

2. Methods 

2.1 Introduction to Diffusion equation 

The diffusion equation can be derived from Radiation transport equation under the 

assumption that light propagation is just linearly anisotropic [28]. This diffusion 

approximation has been commonly used to model light transport in tissues where scatter 

dominates over absorption and at distances more than several transport scattering lengths 

(transport scattering length = 
'

1

sµ
, where '

s
µ  is the reduced scattering coefficient) from the 

source [29]. This model is given in the frequency domain as: 

 . ( ) ( , ) ( ( ) ) ( , ) ( , )
a

i
D r r r r q r

c

ω
ω µ ω ω−∇ ∇Φ + + Φ =   (1) 

where ( , )r ωΦ  is the photon density or fluence at position r in the bounded imaging 

domainΩ , D is the diffusion coefficient given by: 

 
( )'

1
( )

3( ( ) ( ))
a s

D r
r rµ µ

=
+

  (2) 
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a
µ is the absorption coefficient, ω is the frequency and ( , )q r ω  is the isotropic source 

distribution. The source distribution is modeled as a point source located at a depth of one 

scattering distance inside the boundary where an optical fiber would be [30]. At the outer 

boundary of the domain, the relationship between photon fluence and flux is given by a Robin 

type boundary condition [30]: 

 ( , ) 0
d

D
r

n
ω

α Ω

∂Φ
Φ + =

∂
  (3) 

whereα incorporates refractive index mismatch. 

A coupled FE-BEM approach for the diffusion equation in multi-layered media was 

implemented by assuming homogeneous optical properties in outer layers and heterogeneous 

optical properties in the innermost tissue layer. Figure 2 shows a schematic of such a layered 

media illustrated in 2D for simplicity. In this domain, the exterior tissue (labeled I) was 

homogeneous and bounded by 
a
Γ  (containing Na nodes) and 

b
Γ  (containing Nb nodes). 

b
Γ also bounds an interior layer (labeled II) containing Nb nodes on the boundary and Ni 

nodes on the interior. In the coupled FE-BEM, BEM was used to model the exterior layers 

and FEM was used for the interior layer. These are discussed below in the context of the 

coupled system. 

 

Fig. 2. Schematic of a two-layered region in 2D having homogeneous distribution of optical 

properties in region I and heterogeneous distribution in region II. 

2.2 Diffusion equation modeled with FEM 

The Galerkin formulation was used for FEM where the orthogonality condition , 0
i

R W = is 

satisfied [31]. Here R is the residual of Eq. (1), Wi is the weighting function and symbol  

represents integration. Using linear basis functions 
j
φ as the weighting function, we obtain the 

formulation for Eq. (1): 

 , , ,j a j j

i
D q

c

ω
φ µ φ φ −∇ ∇Φ + + Φ = 

 
  (4) 

The first term in Eq. (4) was integrated using Green’s theorem, to give: 

 , , 0j j a j

i
D D ds

n c

ω
φ φ µ φ

∂Φ  ∇Φ ∇ − + + Φ = ∂  ∫�   (5) 

where the integration applies for interior tissues (region II in Fig. 2 bounded by 
b
Γ ); note that 

the right hand side source contribution is zero since no source exists within the interior tissue 

region. Approximating 
1

=
vN

i i

i

φ
=

Φ Φ∑ and
1

=
vN

i

i i

i

D D
n n

φ
=

∂Φ∂Φ

∂ ∂∑ , using piece-wise linear basis 

functions 
i
φ  and nodal values for fluence and flux Eq. (5) becomes: 
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 ( )
1 1

, ,
v vN N

i

i i j a i j i i j i

i ii

i
D ds D

c n

ω
φ φ µ φ φ φ φ

= =

  ∂Φ ∇ ∇ + + Φ =    ∂  
∑ ∑∫�   (6) 

where Nv is the total number of volume nodes (Nv = Nb + Ni). Equation (6) can be written in 

matrix form as: 

 

A[ ] Φ( )= B[ ] D
∂Φ

∂n






  (7) 

where 

 
kl k l a k l

kl k l

i
A D

c

B

ω
φ φ µ φ φ

φ φ

 = ∇ ∇ + + 
 

= ∫�
  (8) 

Separating boundary (b) and interior (i) nodes of the inner region II, Eq. (7) expands as: 

 

Abb Abi

Aib Aii











Φb

Φi








=

Bbb 0

0 0











D
∂Φ

∂n Γb

0

















⇒
Φb

Φi








=

AIbb AIbi

AI ib AI ii











Bbb 0

0 0











D
∂Φ

∂n b

0

















  (9) 

where AI = A
−1

. Φb can be obtained from 

 

Φb = [AIbb ]Bbb D
∂Φ

∂n b







  (10) 

this relationship between fluence 
b
Φ and flux 

b

D
n

∂Φ
∂

is applied within the BEM integral 

equation as described in the next section. 

2.3 Diffusion equation modeled with BEM 

Under the assumption that the tissue contains boundaries known a priori which separate into 

piece-wise constant homogeneous regions, the diffusion equation can be written in the form 

of a modified Helmholtz equation given in each region by [22,26]: 

 2

0
. ( , )

l l
D k q r ω∇ ∇Φ − Φ = −   (11) 

where 

 
2

( )
a l

i
r k

c

ω
µ + = 
 

  (12) 

Here subscript l refers to the region label and applies to homogeneous region I in Fig. 2 

bounded by 
a
Γ  and 

b
Γ . The fundamental solution given by the Green’s function for Eq. (11) 

satisfies: 

   
D

l
∇2

G(r ,r
i
) − k

l

2
G(r ,r

i
) = −δ (r − r

i
)

  (13) 
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where 

   

G
i
(r,ri) =

exp
−k

l
r − r

i

D
l













4πD
l

r − r
i

,3− D

  (14) 

The boundary integral form of Eq. (11) was derived using weighted residuals, Green’s 

third identity and the fundamental solutions [32] and appears as: 

 
0 ,i

i i l l i i

G
c D D G q G

n n

∂ ∂Φ
Φ + Φ − =

∂ ∂∫ ∫� �
  (15) 

for the Green’s function which is singular in node i where   

c
i
=
Ω

4π
,3− D



 , and Ω  is the solid 

angle enclosed by the boundary at node i. 

The photon fluence and flux are discretized using linear basis functions 
i
ψ  defined on the 

triangles of the surfaces, as 
Φ = Φi

i=1

Ns

∑ ψ i

and 
D
∂Φ

∂n
= Di

i=1

Ns

∑
∂Φi

∂n
ψ i

, where Ns is the number of 

boundary nodes on the surface (Ns = Na + Nb). In discretized form, Eq. (15) becomes: 

 
0
,i

i i l l i i

G
c D ds D G ds q G

n n

∂ ∂Φ
Φ + Φ − =

∂ ∂∫ ∫� �   (16) 

which can be written as matrix equation 

 { } { }i l i
A B D Q

n

∂Φ    Φ − =    ∂ 
ɶ ɶɶ   (17) 

where 
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,
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i j i j

i i
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n

B G ds

Q q G

δ ψ

ψ

∂
= +

∂

=

=

∫

∫

ɶ

ɶ

ɶ

�

�  (18) 

The Robin boundary condition specified in Eq. (3) is applied for the outer boundary. For 

multi-region problems, continuity conditions are enforced across the interior boundaries. For a 

two-region problem, the matrix form was derived by separating nodes on boundaries 
Γa  and 

Γ b  as (see Appendix for details). 

 

a

aa aa ab ab a

b

b

ba ba bb bb

b

A B A B Q

Q
A B A B

D
n

α

α

 
   Φ   + −     
Φ =    

      ∂Φ+ −   
 ∂ 

ɶ ɶ ɶɶ ɶ

ɶ
ɶ ɶɶ ɶ

  (19) 

Note from Eq.s 10 and 19 that both BEM and FEM formulations containing fluence 
Φb  

on boundary nodes of interior tissue which couples the FEM and BEM system of equations. 

#129235 - $15.00 USD Received 1 Jun 2010; revised 21 Jul 2010; accepted 23 Jul 2010; published 2 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1,  No. 2 / BIOMEDICAL OPTICS EXPRESS  405



2.4 Coupled FE-BEM for Diffusion equation 

To derive the coupled FE-BEM formulation, we note that the fluence has to be the same 

whether derived from BEM or FEM for interior boundaries and the flux has to be continuous. 

This can be stated mathematically as: 

 

 (FEM)  (BEM)

D  (FEM) = D  (BEM)

b b

b bn n

Φ = Φ

∂Φ ∂Φ
−

∂ ∂

  (20) 

The negative sign for the flux is because the BEM formulation derived flux going 

outwards from region I into II, and FEM formulation has flux going into region I from II. 

Using these relations and substituting for 
b
Φ from Eq. (10) into Eq. (19) produces 

 

a

aa aa ab ab a

bb bb

b b

ba ba bb bb

b

a

a

aa aa ab bb bb ab b
b

ba ba bb bb bb bb

A B A B Q
AI B D

n Q
A B A B

D
n

Q

DA B A AI B B Q
n

A B A AI B B

α

α

α
α

 
 Φ  
   + −  ∂Φ   
− =     ∂      + −   ∂Φ
 
∂  

Φ 
  

⇒ =  ∂Φ  
+ − −   ∂  + − − 

ɶ ɶ ɶɶ ɶ

ɶ
ɶ ɶɶ ɶ

ɶ

ɶ ɶ ɶɶ ɶ

ɶ ɶɶ ɶ




  

  (21) 

This system was solved for fluence on the outer boundary and flux on inner boundary. The 

flux was used from this solution to solve the FEM equation [Eq. (9)] for interior field. Also 

note that matrix A has already been inverted when solving Eq. (10), so this step is 

straightforward. The size of the matrix to be inverted in Eq. (21) is Ns x Ns. Equation (21) 

represents a two-region problem but the approach is easily extended to multiple regions as 

shown in the Appendix. The coupled FE-BEM equations were implemented in Matlab and C 

and used to generate fluence distributions in the domain. 

2.5 Simulation setup 

Realistic breast-shaped imaging domains were generated using a clinical MRI data set 

collected from a female volunteer diagnosed with infiltrating ductal carcinoma as part of an 

ongoing clinical trial with MRI/optical imaging. A 3T Phillips scanner was used to collect the 

MRI and contrast-enhanced MR data sets. Using the MR volume, image segmentation of 

adipose, fibroglandular and tumor tissues was performed with the use of software package 

Mimics
TM

 [33]. In addition, spherical inclusions were also simulated within the outer breast 

region. Using these geometries, six test cases of multiple regions were created for the 

simulations as shown in Fig. 3. The volume meshes for interior tissues of interest were 

generated with the same software. Combining these surfaces and volumes provided meshes 

for the coupled FE-BEM. The corresponding mesh sizes are given in Table 1 for each of the 

test cases. 
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Fig. 3. Surface renderings of the six test cases used in this study are shown, with two-three 

regions created. Clockwise from top left, the six test cases show cases (1) the outer breast 

contour and tumor created from clinical MRI (2) outer breast and simulated spherical inclusion 

(3) Outer breast, sphere and tumor (4) Outer breast, larger sphere and tumor (5) Outer breast 

and two spherical inclusions and (6) Outer breast, fibroglandular and tumor tissues. 

Table 1. Mesh sizes for the different test cases used in the simulations. The first two 

columns of mesh sizes correspond to the coupled FE-BEM and the last two columns 

correspond to mesh sizes for BEM and FEM 

Test Case # #Surface Nodes # Volume 

Nodes 
# Nodes 

BEM Mesh 
# Nodes 

FEM Mesh 

1 6471 798 6471 70423 

2 6869 2171 6869 61468 

3 7346 798 7346 65949 

4 8297 798 8297 50203 

5 8695 2171 8695 51041 

6 11415 798 11415 50243 

To compare the results from the coupled FE-BEM, forward data was also generated using 

BEM and FEM techniques both of which have been validated previously [34,35]. For the 

BEM, only surfaces were required, and multiple homogeneous regions were simulated. For 

the FEM, a full 3D volume mesh was required with the interior boundaries preserved for 

consistency. The volume meshes for each of the test cases were created with a 3D pixel-based 

mesh generator [36], which used the average edge size from the surfaces for generating the 

volume mesh. A schematic of such a mesh is shown in Fig. 1 (last step). Mesh sizes used in 

BEM and FEM only reconstructions are also given in Table 1. The meshes for testing all three 

models were of comparable mesh resolutions and with interior boundaries preserved. The 

computer time for volume mesh generation varied from 260 seconds to 323 seconds. The 

source-detector geometry for the imaging domains contained sixteen sources with fifteen 

detectors per source in a circular ring around the periphery of the breast, giving a total of 240 

measurements [4]. The fiber indentations for the sixteen locations can be seen in the surface 

rendering (Fig. 3). 

3. Results 

3.1 Photon fluence distribution from coupled FE-BEM 

The coupled FE-BEM was applied to generate the photon fluence in the six test cases shown 

in Fig. 3. In the simulation, both the exterior and interior tissues had homogeneous 
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distributions of optical properties where 
a
µ  = 0.006 mm

−1
 and '

s
µ  = 1.0 mm

−1
 for outer 

region(s) and 
a
µ  = 0.02 and '

s
µ  = 2.0 mm

−1
 in the interior tissue. The logarithm of fluence 

distribution at the boundaries of the tissues for a single source is shown in Fig. 4 for test cases 

1 and 6 where the diffusive pattern typically expected from the diffusion equation is seen. 

 

Fig. 4. Logarithm of photon fluence obtained using coupled FE-BEM for a single source in test 

cases 1, and 6. Left: Results from test case 1 showing outer boundary; Middle: inner tumor 

boundary by making outer surface transparent; Right: Results from test case 6 for inner tissues. 

3.2 Comparison of boundary data using BEM, FEM and Coupled FE-BEM 

To compare the results from the coupled FE-BEM with existing models, the boundary data at 

detector locations were computed. The logarithm of intensity and phase is shown in Fig. 5 at 

the boundary detector locations for 240 measurements (16 sources x 15 detectors/source) 

generated using the three models (BEM, FEM and coupled FE-BEM) for test case 1. The 

measurements show good agreement with RMS differences in logarithm of intensity between 

BEM and the coupled model of less than 0.1 and in phase of less than 1 degree. The RMS 

differences between FEM and the coupled model was less than 0.5 for logarithm of intensity 

and 2.5 degrees for phase. These differences are likely due to the differences in the mesh 

types and discretization. 

 

Fig. 5. Comparison of (a) logarithm of intensity and (b) phase at the detector locations on the 

boundary ( = 240 measurement points) obtained from BEM, FEM and coupled FE-BEM for 

test case 1. 

3.3 Modeling heterogeneity 

One of the drawbacks of BEM is that it cannot model heterogeneity of tissue due to the 

inherent assumption in the model: the Diffusion equation only reduces to modified Helmholtz 

in BEM formulation for piece-wise constant or homogeneous regions. For modeling 

heterogeneity, the coupled model offers an alternative solution. To illustrate the change in 

fluence with increasing heterogeneity, a cross-section along the center of the inner sphere in 
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test case 2 is shown in Fig. 6 for a single source. The left column indicates the 
µa  property 

distribution and right column shows the corresponding logarithm of fluence distribution for a 

(1) homogeneous domain (sphere to background contrast of 1:1), (2) heterogeneous domain 

(2:1 sphere to background contrast) and (3) heterogeneous domain with spatially varying 

contrast in the sphere (2:1 varying with background). As the heterogeneity in the absorption 

increases, a decrease in fluence is observed in parts of the sphere, as expected. A decrease in 

intensity also occurred at the boundary as a result of the heterogeneity. 

 

Fig. 6. 2-D cross-sections along the center of the interior spherical inclusion in test case 2 for 

a
µ  (left column) and logarithm of fluence (right column). The background was always 

homogeneous. Top row shows cross-section of sphere for a homogeneous domain (1:1 contrast 

between sphere and background), Middle row shows 2:1 contrast between sphere and 

background and bottom row shows a spatially varying distribution in the sphere (2:1 varying). 

As expected the fluence decreases with increasing heterogeneity. 

3.4 Analysis of computational times between Coupled FE-BEM and FEM 

The computational time required by coupled FE-BEM was a function of the surface mesh size 

and was found to scale as Ns
3.2

, where Ns is the number of nodes in the surface mesh. This 

outcome was expected given that the matrix assembly and solving the BEM component of the 

coupled model consumed the most time and the BEM was found to scale with surface node 

size as Ns
3.5

. The scaling was obtained for the two region and three region problems in 

complex domains presented here, but was smaller (Ns
2.7

 quoted previously for BEM [22]) in 

simple two region domains. The FEM component of the coupled model consumed less than 

0.5% of the total time. 

Since the computational time of coupled FE-BEM scales with surface mesh size, it is 

reasonable to assume that the speed-up of the coupled model when compared to stand-alone 

FEM will be a function of the ratio of the number of surface to full 3D volume nodes (Ns/N). 

Figure 7 (top row) shows a plot of the ratio of computational times of coupled FE-BEM to 

FEM time, as a function of Ns/N, the values for Ns and N can be found in Table 1 (first 

column and last columns respectively). The plot shows that for ratio of Ns/N < 20%, coupled 

FE-BEM was faster (ratio of times < 1) whereas for Ns/N > 20%, stand-alone FEM was faster 
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(ratio of times > 1). This data did not include the computational time for creating a large 3D 

volume mesh for FEM. It is important to note that when the meshing time for FEM was 

included, coupled FE-BEM was always faster than FEM (ratio < 1) for the cases presented 

here (ratio of times ranged from 0.14 to 0.92). 

 

Fig. 7. Ratio of computational time of coupled FE-BEM to stand-alone FEM for the six test 

cases, plotted as a function of % surface to volume nodes (top) from the respective meshes 

(Ns/N) where Ns is the number of boundary nodes in the coupled mesh and N is the number of 

nodes in the FEM mesh and % surface area to volume ratio (bottom) of the total tissue domain. 

Since the metric (Ns/N) requires a volume mesh to be created, we also chose the physical 

surface area to volume ratio (SA/V) as another metric for comparing computational times, and 

can be obtained from image segmentation. Figure 7 (bottom row) shows that the coupled 

model was faster than FEM (ratio of times < 1) when SA/V < 10%. These plots illustrate that 

we can use quantitative metrics to determine the most efficient 3D forward model for the 

imaging domain under consideration. 

3.5 Analysis of computational times between Coupled FE-BEM and BEM 

A similar comparison was performed for the ratio of computational times of coupled FE-BEM 

and BEM. Since the number of surface nodes was the same for the coupled FE-BEM and 

BEM models (See Table 1), the time differences depend on the total number of volume nodes 

used in the interior tissue region (Nv = Nb + Ni) as compared to the surface nodes (Nb) on the 

boundary in the same region (see region II in schematic of Fig. 2). For small Nb/Nv, the 

volume nodes dominate such that coupled FE-BEM was longer to compute than BEM. For 

larger Nb/Nv, surface nodes dominate and hence coupled FE-BEM was faster than BEM. 

Overall, the differences in the two models were less than 10% for the test cases presented here 

(see Fig. 8, top row). A ratio of 50% Nb/Nv appeared to be the delineating value. Similarly, a 

ratio of 20% appeared to separate the two models in terms of ratio of interior tissue surface 

area (ISA) to interior tissue volume (IV), see Fig. 8 (bottom). 
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Fig. 8. Ratio of computational time of coupled FE-BEM model to BEM for the six test cases, 

plotted as a function of % surface to volume nodes (top) of the interior tissue (Nb/Nv) where Nb 

is the number of nodes on boundary of interior tissue and Nv is the number of volume nodes of 

interior tissue, and % surface area to volume ratio (ISA/IV) (bottom) of the interior tissue 

domain. 

4. Discussion and Conclusions 

Coupled FE-BEM methods have been used extensively in other fields such as electrostatics 

[37], electromagnetics [38] and in biomedical applications to model cardiac tissue [39]; 

among others, Here we present application of this technique to diffuse optical tomography. 

The coupled FE-BEM method provides an elegant solution to the practical problem in multi-

modality optical imaging of how to model heterogeneity in tissues whose boundaries are 

known, without complex volumetric meshing of the full 3D domain. In this method, the 

volume meshing has not been eliminated, but rather the size of the domains were reduced for 

which it is needed. Therefore, this has an impact on both the meshing time as well as the 

computational time for the forward solver. 

Different implementation options exist [40], and we chose one does not change the 

bandwidth of the matrices involved. Specifically, the sparsity of the FEM matrix, which is a 

highly desirable aspect of finite elements, was not altered. No increase in the size of dense 

BEM matrix to be solved occurred as well. The computational time of the coupled method 

was governed primarily by the BEM matrix size (> 99% of total time) for the domains 

described here. This will likely change for larger volumetric FEM computations within the 

domain, or larger areas of heterogeneity, but is not anticipated in the current application. 

Comparison to existing and validated numerical models based on FEM alone and BEM alone 

showed good agreement with RMS differences of less than 0.5 in logarithm of intensity and 

less than 2.5 degrees in phase. 

The coupled FE-BEM method incorporates the idea of soft priors directly into the forward 

model itself, which is different from traditional techniques where regularization is used in the 

image reconstruction or inverse problem. The choice of numerical technique for the forward 

model will depend on the problem, the imaging domain and its approximations with respect to 

homogeneity/heterogeneity. These a priori assumptions when used intelligently can greatly 
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influence the choice of the model to be used. We have shown that the coupled FE-BEM is 

faster than FEM when the surface to volume node ratio was less than 20% and when the total 

surface area to volume was less than 10%. However, when meshing time was included, the 

coupled FE-BEM was always faster and the ratio of computational times (Coupled / FEM) 

ranged from 0.14 to 0.92. Coupled FE-BEM was comparable to BEM ( ± 10%) for the range 

of mesh sizes and tissue types examined here. We have presented results from realistic breast-

shaped models in these simulations. While the results presented here are from breast 

geometries, the model can be applied to other tissue regions as well. 

In conclusion, a coupled FE-BEM method was implemented for modeling light diffusion 

in 3D for multi-modality optical imaging systems and the results show good agreement with 

existing numerical models but utilize a fraction of the volume mesh size required by 

corresponding FEM techniques. 

5. Appendix 

Equation (17) describes the matrix form of the BEM for a single region. For an external 

region consisting of boundaries a and b, in region I, the matrix formulation extension of  

Eq. (17) is 
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  (22) 
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  (23) 

Substituting the boundary condition in Eq. (3) for the outer boundary, Eq. (23) becomes: 
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which yields Eq. (19). For successive layers bounded by a, b and c, the matrix for BEM is 
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and the FEM relationship is given for an interior region as 

ΦcIII = AIcc[ ] Bcc[ ] DIII
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which is used along with continuity conditions to derive the coupled FE-BEM given by: 
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