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Summary
An Immersed Boundary method is developed in which the fluid's motion is calculated using the
lattice Boltzmann method. The method is applied to explore the experimentally-observed lateral
redistribution of platelets and platelet-sized particles in concentrated suspensions of red blood cells
undergoing channel flow. Simulations capture red-blood-cell-induced lateral platelet motion and
the consequent development of a platelet concentration profile that includes an enhanced
concentration within a few microns of the channel walls. In the simulations, the near-wall
enhanced concentration develops within approximately 400 msec starting from a random
distribution of red blood cells and a uniform distribution of platelet-sized particles.
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1. Introduction
Under arterial and arteriolar flow conditions, platelets have an enhanced concentration near
the blood vessel walls. The enhanced near-wall concentration has been seen in vivo using
intravital fluorescent microscopy [1,2], and in vitro using platelet-sized latex beads in
flowing red blood cell suspensions [3,4]. This non-uniform cell distribution depends on the
fluid dynamics of blood as a heterogeneous medium. Blood is a suspension composed of
plasma, red blood cells, platelets, and white blood cells. Plasma is a water-based solution of
proteins and electrolytes. A red blood cell is a highly deformable, nucleus-free, fluid-filled
capsule whose membrane consists of a lipid bilayer connected to a hexagonal spectrin
protein mesh underneath it. Platelets are small, rigid cells that play an important role in
blood clotting. They survey the status of the vascular wall lining and respond to diseased or
damaged tissue by adhering to it and releasing into the plasma chemicals which can cause
other platelets to become activated and capable of cohering to the already wall-adherent
platelets. In order to adhere, platelets must first come into contact with the injured vessel
wall. Platelets constitute only 0.3% of the blood's volume and are too large to experience
significant Brownian motion. In fact, individual platelets in a simple fluid (e.g., saline
solution) move essentially along flow streamlines and seldom contact the flow chamber
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walls. In contrast, platelets in suspension of transparent red blood cell ‘ghosts’ make
substantial excursions transverse to the bulk flow [5]. Using the results of experiments of
platelet adhesion to the flow chamber wall, it was inferred that, in flowing whole blood,
platelets experience a complex motion that was roughly characterized as ‘enhanced
diffusion’ [6]. More recently, an enhanced concentration of platelets or platelet-sized
particles within a few microns of the vascular wall or flow chamber wall, respectively, were
observed in whole blood flowing under arterial or arteriolar flow conditions [1,3].

To better determine which factors affect the cross-sectional distribution of platelets in
flowing blood, Eckstein et al. [3] performed a series of experiments in a 50μm × 1000μm
rectangular channel. Suspensions of red cell ghosts and fluorescent platelet-size latex beads
(diameter 2.38 μm) were perfused through the channel at a constant flow rate controlled by a
syringe pump. The shear rates studied were in the range of 50 to 3180 sec−1 with
hematocrits (volume fraction of red blood cells) ranging from 7% to 45%. Eckstein
examined the concentration profiles of the platelet-size beads after the flow was fully
developed and saw that at higher hematocrits, the near-wall excess of beads was greater. A
near-wall excess of beads was seen for shear rates exceeding 430 sec−1. The highest
concentration of beads occurred at about 3 μm from the channel wall, and the enhanced
concentration region was about 5-8 μm wide. A schematic of these results is displayed in
Figure 1. Eckstein fit his experimental results with a phenomenological ‘drift-diffusion’
model involving net drift of beads toward the flow chamber walls that balances the
enhanced diffusion of beads to produce the observed concentration profiles [7,8,9].

Although lateral platelet motion has been well documented, the fluid dynamics involved are
poorly understood. The deformability of red blood cells, the hematocrit, and the wall shear
rate all affect this motion [10,4,3], but how they do so is unclear. A physically-based
mechanism that quantitatively accounts for the observed platelet motion and cross-lumen
distribution in rapidly flowing red blood cell suspensions is not available. It is not possible
at present to accurately predict the extent of platelet concentration enhancement near vessel
walls under a given set of conditions. A computational model that tracks individual red
blood cells and platelets and that realistically accounts for the mechanics of the red blood
cells and platelets and their interactions with the suspending fluid should be a useful tool in
trying to understand the physics behind the platelet lateral motion and in making quantitative
predictions about it under specified conditions. Such a tool would also be useful in
predicting how the growth of a wall-bound platelet aggregate in an injured vessel would
perturb the distribution of platelets, which, in turn, might significantly influence the further
growth of the aggregate into the vessel lumen. These insights could lead to significant
improvements in cell-based platelet deposition models [11,12,13].

In this paper, we present a computational model that allows simulation of the flow of
concentrated suspensions of red blood cells in which platelets are initially uniformly
dispersed. The model is described and has been implemented in two spatial dimensions, but
can be extended to three dimensions straightforwardly except for the issue of computational
cost. Our model is formulated in terms of the Immersed Boundary (IB) method which is a
modeling and computational framework based on the coupled equations of motion of a
viscous fluid and one or more deformable elastic objects suspended in or in contact with the
fluid. The IB method views the elastic material and the fluid as a composite; it uses an
Eulerian description of the fluid, while using a Lagrangian description of the elastic objects
to enable calculation of forces generated by deformation of those objects. The elastic forces
are determined by the instantaneous positions of Lagrangian points in the elastic material
and by the configuration of elastic connections among these points. The integral of the fluid
force density over any region of space is identified with the sum of the elastic forces for the
Lagrangian points within that region. Through its presence in the fluid dynamics equations,
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the fluid force density helps determine the fluid velocity, and the Lagrangian points then
move in the resulting velocity field. In traditional IB-based models, the fluid's dynamics are
described by the Navier-Stokes equations.

For actual calculations, the fluid dynamics equations are discretized on a fixed and uniform
Cartesian grid over the entire domain. Each elastic object is represented by a set of discrete
Lagrangian IB points which are not constrained to lie on the fluid grid. To advance the
system by one time step (1) the elastic force is calculated at each IB point, (2) each of these
forces is transmitted from the corresponding IB point to nearby grid points by means of a
discrete approximate delta-function, (3) the fluid dynamics equations are solved on the grid,
and (4) the discrete delta-function is used to interpolate the fluid velocity from the grid to
the IB points in order to update their positions. The IB method greatly facilitates solving the
equations which govern the interactions of a viscous fluid with multiple immersed elastic
objects, even when those objects are of complex shape, move substantially, or grow. In all
cases, the routines which solve the fluid dynamics equations ‘see’ only a force density
function. Therefore, simple and fast fluid solvers can be used. In our context this means that
there is no need to re-grid even as the red blood cells move and deform substantially.
Another feature of the IB is that there is no requirement for an inter-particle collision
detection mechanism. Particle interactions are mediated completely through the fluid and the
method guarantees that fluid does not cross the boundaries of the immersed objects and that
immersed objects cannot overlap. These statements hold for a sufficiently small time step
and a spacing between IB points of less than half the lattice spacing.

In the computational model we present, the description of the fluid dynamics uses the lattice
Boltzmann method rather than the discretized Navier Stokes equations. The lattice
Boltzmann method relies entirely on localized interactions, while the Navier Stokes
equations involve the solution of linear systems that couple all points of the grid. The
structure of the lattice Boltzmann method therefore facilitates parallelizing the calculations.
We will present a parallelized lattice Boltzmann IB method for treating concentrated
suspensions of cells in a subsequent paper. We note that our blending of the lattice
Boltzmann method with the IB method is not unique; several such efforts have been
described in recent papers [14,15,16].

The structure of the remainder of the paper is as follows: In Section 2, we describe the
traditional lattice Boltzmann method and IB method as well as the combined lattice
Boltzmann-IB method. In Section 3, we describe the models of red blood cell and platelet
mechanics that we use in our simulations. In Section 4, we present two types of numerical
simulations. First, we demonstrate that our model produces results in agreement with other
simulations and experiments for the behavior of single red blood cells in shear flow and
suspensions of red blood cells in Poiseuille flow. Then, we present simulations that show
that our model is able to capture the development of a near-wall enhancement of platelet
concentration for an arteriolar sized vessel, at a particular arteriolar shear rate, and two
different hematocrits. These preliminary results set the stage for a systematic computational
exploration of the near-wall enhancement that will be reported in a later paper.

2. Numerical Method
2.1. Lattice Boltzmann Method

The incompressible Navier Stokes equations are conventionally used to define the motion of
a fluid in terms of its velocity and pressure. These equations conserve mass and describe the
change in momentum due to inertial, viscous and external forces. However, since the
incompressible Navier Stokes equations enforce incompressibility using a Poisson equation,
the velocity and pressure of the entire domain must be solved for simultaneously. For this
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reason, the Navier Stokes equations do not lend themselves well to parallel implementation
and using them to determine the flow dynamics for complex fluid problems can be time
consuming. An alternative approach to computational fluid dynamics is the lattice
Boltzmann method, which describes the evolution of fictitious microscopic particles living
on a discrete lattice and whose dynamics depend only on interactions between particle
populations on neighboring lattice points. Hence all lattice Boltzmann calculations are local
ones. At the macroscopic fluid scale, viscous flow dynamics emerge from these particle
dynamics as is described below.

The lattice Boltzmann method (LBM) was originally developed during the late 1980's [17].
It removed the stochastic fluctuations from earlier particle-based lattice gas automata
methods [18]; instead of tracking discrete particles, it tracks particle distribution functions at
points on a lattice. The LBM can also be thought of as a finite-difference approximation to a
particular version (the BGK version) of the continuous Boltzmann equation from statistical
mechanics [19,20]. The lattice Boltzmann method is a deterministic method that gives the
correct macroscopic behavior of a Newtonian fluid in an appropriate limit. Letting the Mach
number approach zero and the hydrodynamic length scale (the ratio of the macroscopic fluid
length scale to the lattice spacing) approach infinity, the incompressible Navier Stokes
equations can be derived from the lattice Boltzmann equations using a multi-scale expansion
known as the Chapman Enksog procedure [21].

There are many variants of the LBM. Here we describe the D2Q9 (2-D 9-velocity) version
that we use in our two-dimensional simulations. Consider a lattice placed over the
rectangular two-dimensional domain and consisting of square cells of size h. The variable of
interest in the LBM is f(x, ei, t) which is the particle density function for the lattice point x,
discrete velocity vector ei, and time t. Each particle described by the density function is
assumed to carry unit mass. The governing equations for the LBM, in the absence of
external forces, are

(1)

where we use the short-hand notation fi(x, t) = f(x, ei, t) to denote only the density of
particles moving with particle velocity ei. The time step of the method δt, the relaxation time
τ, the equilibrium distribution , and the macroscopic variables ρ and u are described
below. For the D2Q9 method, nine discrete velocities are considered, and i ranges over the
integers 0, …, 8. The nine velocity vectors are

and are shown in Figure 2. In these formulas c = h/δt is the particle speed for particles
moving horizontally or vertically. Particles moving obliquely do so at speed . Equation
1 describes the two-step update procedure of the LBM. First, in the collision step, each
particle distribution function relaxes toward a local equilibrium distribution,  at rate 1/τ.
Next, in the streaming step, the new distribution fi(x, t) is advected from x at the
corresponding velocity ei to the lattice point located at x + δtei. The equilibrium distributions
are defined by
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(2)

where the weights, wi, are

The equilibrium state at lattice point x depends on the macroscopic quantities ρ(x, t) and
u(x, t) which are moments of the nine particle distribution functions at x. These quantities
turn out to be approximations to the macroscopic fluid density and velocity in the Navier
Stokes equations. The equilibrium function defined above is a discrete approximation to the
Maxwellian distribution function used in the BGK Boltzmann equation [22]. The form of
the equilibrium function is chosen to ensure that the LBM conserves mass and momentum.

The equilibrium distributions given in Equation 2 have the properties that

 and . These properties guarantee that the
collision step of the LBM update conserves mass and momentum. Since the advection step
does also, the overall LBM is conservative. In terms of the particle density functions fi(x, t),
we define the macroscopic density ρ(x, t), velocity u(x, t), and inviscid momentum tensor
[18, 19] by the formulas

(3)

(4)

(5)

respectively. Consistent with these definitions, the pressure is defined by the adiabatic
equation of state [18]

(6)

Hence  can be interpreted as the speed of sound propagation in the fluid. Finally, the
macroscopic fluid viscosity is given in terms of the relaxation time τ and other parameters
by the formula
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We note that the LBM does not treat the fluid as incompressible. However, provided we
ensure that the ratio of the macroscopic velocity u(x, t) to the speed of sound cs is
sufficiently small, the fluid behaves as nearly incompressible because small variations in
density induce large gradients in the pressure defined above. The LBM is based on a very
simplified view of microscopic mechanics, but still captures the macroscopic hydrodynamic
behavior of the nearly-incompressible Newtonian fluid we wish to simulate.

2.2. Immersed Boundary Method
To simulate the behavior of platelets and red blood cells in blood, we utilize a numerical
scheme known as the Immersed Boundary method. This method was originally created by
Peskin in 1972 to analyze the fluid dynamics of heart valves [23]. Since then it has been
applied to many other fluid-structure interaction problems, including platelet aggregation
[24], deformation of red blood cells [14,15], motion of cilia and swimming organisms [25].

The Immersed Boundary (IB) method is a specific way of coupling fluid dynamics to the
mechanics of one or more objects located within the fluid. In our case the elastic object is
the membrane of a red blood cell or platelet. We treat the membrane of each cell as a thin,
massless, elastic material and assume that the interior cytoplasm and surrounding plasma
behave like incompressible Newtonian fluids.

In the traditional IB method, the incompressible Navier Stokes equations

are assumed to govern the behavior of the fluid. The variables u(x, t) and p(x, t) represent
the fluid velocity and pressure, respectively. The fluid is assumed to have constant density ρ
and viscosity μ. Deformation of the cells results in elastic cellular forces that are transmitted
to the adjacent fluid and contribute to the force density term Ff(x, t) in the momentum
equation. Note that the Navier Stokes equations provide an Eulerian description of how the
flow evolves at each spatial point x.

Each elastic IB object is represented by a Lagrangian variable X(q, t) where the parameter q
labels a material point on the object. We let q be arclength in a reference configuration. At
any fixed time t, the set of points X(q, t) defines the current configuration of that immersed
boundary. From this configuration and specified elastic properties of the object, a
distribution of forces along the immersed boundary is determined. For example, if it were
specified that the membrane only resisted forces due to stretching or compression, then the
elastic force (per unit q) at point X(q, t) is

(7)
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where S is the membrane stiffness, T is the tension, and  is the unit tangent vector
along the membrane. Note that this force ‘lives’ at the Lagrangian IB points. Because the
membrane is treated as massless, this is also the force that is applied to the fluid by the
membrane at location X(q, t). The mathematical expression of the transmission of force
from the elastic membrane to the fluid is given by the equation

(8)

where δ(x) is the Dirac delta function. The function Ff(x, t) is the force density applied to the
fluid by the elastic membrane, and is concentrated spatially along the membrane. When
there is more than one elastic object, the pth object contributes a term of the form

 to the fluid force density. Here, Xp(q, t) and  are the
coordinates and IB force density for the pth object. The total fluid force density is obtained
by summing their contributions. It is an important consequence of the above definition of
Ff(x, t) that for any region of the domain, the integral of Ff(x, t) over that domain equals the
integral of FIB(q, t) over the parts of the elastic membranes that are contained in that region.

The final equation in the IB method comes from the no-slip condition applied at each point
of an elastic membrane. The requirement that each such point moves at the same velocity as
the immediately adjacent fluid can be expressed as

(9)

To summarize, the traditional IB method is based on four sets of equations: the Navier
Stokes equations for the fluid motion, a constitutive law that defines the elastic forces on
each IB object as a function of its current configuration, and the two equations that
‘communicate’ information, forces and velocities, between the Eulerian fluid description
and the Lagrangian descriptions of the IB objects.

For actual computations, the IB equations are discretized. The fluid equations are solved on
a Cartesian spatial grid and each IB object is represented by a discrete grid of Lagrangian IB
points. Discrete versions of the constitutive laws are specified to determine the elastic IB
forces. The IB points are not constrained to be at the grid points of the fluid mesh, and
communication between the IB points and the fluid mesh is carried out with discrete
versions of Equations 8 and 9. In these equations, the integrals are replaced by sums and the
Dirac delta function is replaced by a smooth approximate delta function δh(x) that has finite
support. Criteria for defining a good approximate delta function for the IB problem are
discussed in Peskin [26]. A common choice for the discrete delta function, and the one we
use, is

(10)
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Note that with this choice, each IB point transmits force to and interpolates velocity from
sixteen nearby Eulerian grid points (see Figure 4).

The cost of an IB calculation depends on the size of the Eulerian fluid grid, the number of IB
objects, and the number of discrete IB points used the represent each of them. An attraction
of replacing the traditional Navier Stokes solver with a lattice Boltzmann fluid solver is that,
because the latter involves only local interactions, it facilitates parallel implementation and
potentially substantially reduces the time required to do IB simulations with large numbers
of cells.

2.3. Lattice Boltzmann-Immersed Boundary Method
A lattice Boltzmann-Immersed Boundary method is created by replacing the discretized
Navier Stokes equations with the lattice Boltzmann equations to determine the fluid motion.
This change results in purely localized evolution equations for the macroscopic fluid
variables, which in turn facilitates parallelization. The governing equations for the elastic
membrane forces and the communications between the fluid grid and the IB objects are the
same in the lattice Boltzmann-IB method as in the traditional IB method.

The lattice Boltzmann equations (given in Equation 1) are for the situation in which no
external force is applied to the fluid. In the IB context, a spatially and temporally varying
force, calculated from the IB objects, acts on the fluid and Equation 1 must be modified to
account for this. Using a Chapman Enskog expansion, Guo et al. [27] showed that the
following lattice Boltzmann equations give a second-order-accurate approximation to v, the
Navier Stokes velocity in the presence of a spatially varying, time dependent force:

(11)

Here, v is defined as  and the weights wi are defined in Equation 2. The
momentum at equilibrium ρv now includes an additional term due to the external force
applied to the fluid, and is an approximation to the momentum of the fluid at time t + δt/2.
Equation 11 also includes two additive terms. The addition of the first term (proportional to
Ff · ei) results in the presence of an external force term (Ff) in the Navier Stokes
approximation. The second, higher order term removes higher order spurious terms in the
Navier Stokes approximation that result from the presence of the first additive term in the
lattice Boltzmann equations. Because v is the approximation to the Navier Stokes velocity, v
(not u) is used to update the IB point location in the discrete version of Equation 9.

2.4. Boundary Conditions
In our numerical simulations, we impose no-slip boundary conditions on the tube walls in
our lattice Boltzmann-IB simulations using the modified bounce-back scheme. In the
modified bounce-back scheme, the wall is located at a distance h/2 from lattice nodes
adjacent to it. For a particle density function that would be carried from such a node into the
wall during the advection step, the distribution instead remains at that node but reverses
direction as if the particles had “bounced back” from the wall. He et al. [28] showed that the
modified bounce-scheme is second-order accurate for both Poiseuille and Couette flow.
Including solid walls into our numerical scheme raises additional issues.
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The discrete delta-function used in the IB method is nonzero in a 4h × 4h region around each
IB point. This region overlaps the physical boundary of the fluid domain when an IB point is
within distance 2h of the solid wall. To handle this situation, we extend the fluid lattice with
two rows of ‘ghost’ lattice points outside each solid boundary. For an IB point within
distance 2h of the boundary the forces are spread in the usual way to this extended lattice,
and only the forces within the physical domain actually influence the dynamics. Before
determining the velocities of the IB points, the lattice velocity is extended to the ghost points
from the first two rows of lattice points inside the corresponding wall. A velocity is defined
at each ghost point by using the velocity at its image point on the other side of the wall, but
with change of sign. This ensures that the velocity as interpolated to an IB point tends to the
solid wall's velocity if that IB point approaches the wall. Most IB applications which use the
discrete delta-function embed the physical domain in a larger periodic fluid box and
construct ‘physical’ boundaries inside that box using arrays of IB points tethered to fixed
spatial points along the desired boundary location. Hence, the issue of overlap of the delta
function and a solid wall does not arise. Research by one of the authors and his coworkers
into the best way to deal with this issue is under way. Preliminary results suggest that the
method used in this paper is reasonable in that it gives near-wall IB particle motions very
much like those obtained when solid walls are simulated by arrays of tethered IB points.

3. Membrane Mechanics
3.1. Red Blood Cells

The red blood cell membrane is only a few molecules thick, and hence it is typically treated
as a two-dimensional sheet with some inherent, constant thickness. The elastic properties of
a cellular membrane can be described in terms of three independent elastic moduli: shear
modulus G, area expansion modulus K, and bending modulus EB. Typical values of these
moduli for red blood cell membranes are given in Table I.

When exposed to blood flow, the shape of a red blood cell may change dramatically,
although both its volume and surface area remain fairly constant due to its lipid-bilayer
membrane structure [31,32]. The Skalak tension law [32,33] was developed specifically to
describe the stress-strain relationship of red blood cell membranes, and the parameters in
Table I are based on this model. The Skalak tension law for a two-dimensional membrane is

where the tension vector  lies in the plane tangent to the membrane and

 represents the principle stretch ratio for i = 1, 2. The term ds represents an
infintesimal length element after some deformation and dS is the length element prior to the
deformation. For the two-dimensional computational model developed in this paper, a
reduction is made in the dimension of the red blood cell membrane. Only in-plane
membrane tension need be considered because we assume that the membrane tension is
isotropic (T1 = T2 or λ1 = λ2). The corresponding one-dimensional Skalak tension is

(12)
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In the absence of external forces, a red blood cell has a biconcave discoidal shape. This
shape is due to the hexagonal spectrin protein mesh that lies directly beneath the bilipid
membrane. To incorporate a preferred red blood cell resting shape into our model, we define

a bending energy . The force associated with minimizing this energy acts
in the normal direction to restore the membrane to its preferred shape. This bending force is
bn, where b, the transverse shear tension [34], is

(13)

Here EB is the bending modulus, κ is the instantaneous curvature, and κ0 is the curvature of
minimum bending energy. In our simulations, the curvature of minimum bending energy is
set to that of a biconcave disk with resting shape parameterized by the curve [15],

(14)

(15)

where the scaling parameter a is set so that the red blood cell has a diameter of 8 μm. Putting
together the Skalak tension law and this bending force expression, we see that for a red
blood cell

(16)

where t is tangent, n is normal to the membrane, and q is arclength in the reference
configuration.

3.2. Platelets
Unactivated platelets in vivo are ellipsoids that measure 1.5-3.0 μm in diameter and it is
straightforward with the IB method to construct approximately rigid elliptical model
platelets. For the current studies, we compare our simulation results to Eckstein's spherical
latex bead experiments, and so we model each ‘platelet’ as an approximately rigid circular
object. We choose a one-dimensional uniaxial reduction of the two-dimensional linear
Hookean law for platelet membrane tension

and set the membrane stiffness S such that a platelet's membrane length remains fairly
constant over the range shear rates it will experience in our numerical simulations (100-1200
sec−1). We also include bending resistance in the platelet membrane force equation so that
the rest shape is a circle with constant curvature, and choose a bending modulus, EB that is
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large enough to prevent more than 1% deformation away from a circle during our
simulations. The equation governing the force on a platelet membrane is identical to
Equation 16, but with Tsk replaced by TH and parameters given in Table II.

4. Numerical Simulations
4.1. Model Validation

A red blood cell rotates and tumbles like a rigid particle under low shear conditions but
when exposed to high levels of shear stress, it orients itself at some constant angle between
5° and 25° relative to the direction of flow [31]. In addition, under high shear, the membrane
rotates around the fluid inside the cell, a process known as tank treading [35]. Sui et al. [14]
simulated a single red blood cell in a linear shear flow using a two-dimensional lattice
Boltzmann method with a refined mesh near the moving cell boundary. The boundary was
coupled to the fluid by the immersed boundary method. The tension in the red blood cell
membrane was assumed to be governed by the Skalak formula given in Equation 12, but no
resistance to membrane bending was included. The red blood cell shape was initialized to be
a biconcave disk. This study found that red blood cells equilibrate to an elongated ellipse
with a major to minor axis ratio of about 5:1 and an inclination angle of 15° in simple shear
flow. These results are quite similar to those from a simulation (shown in Figure 5) with our
method at a constant shear rate of 1200 sec−1.

Bagchi [36] used a traditional two-dimensional IB method that also included a non-uniform
viscosity to account for the correct viscosity ratio (≈ 5) between red blood cell cytoplasm
and plasma. The viscosity was updated using a front-tracking method. He assumed that red
blood cell mechanics were governed by a neo-Hookean law for stretch and by Equation 13
above for bending. Bagchi's simulations showed the presence of a tank-treading-to-tumbling
bifurcation of a single red blood cell in Poiseuille flow as the deformability of the cell was
decreased. In a later paper that included bending tension, Sui et al. saw a transition between
tumbling and tank treading at a bending modulus of EB = 3 × 10−11dyne-cm [15] in simple
shear flow. We also observe this qualitative change in behavior by varying either the
bending stiffness EB or the shear rate in our simple shear numerical experiments.

In single cell experiments performed in a cylindrical tube with constant flow rate (at a
hematocrit < 2%), red blood cells drift towards the center of the tube [31]. This behavior has
also been observed numerically. Bagchi [36] demonstrated lateral motion of red blood cells
in dilute suspensions and observed that red blood cells drift towards the center of a two-
dimensional channel. Even at high concentrations, red blood cells move toward the center of
a blood vessel, an effect attributed to their deformability [5]. Additional experimental
studies by Aarts et al. show that red blood cells in whole blood migrate towards the center
axis of a vessel and leave a peripheral plasma layer near the walls. The size of this cell free
layer depends on hematocrit and flow rate, but in general varies in thickness on the order of
about 10 μm for a tube with a diameter of 300 μm [10]. In cylindrical tubes with diameters
between 40 and 83 μm, the cell free layer can be estimated to be roughly 100/Hct [37]. This
means that at 20% hematocrit the cell free layer should be about 5 μm wide (and 2.5 μm for
the 40% hematocrit case). In Figure 6 we simulate a 50 μm wide channel with hematocrits of
20% (a) and 40% (b). The pressure gradient is set so that the wall shear rate in both
simulations is 1100 sec−1 once the flow is developed. We see the appearance of a cell free
layer of thickness 5-6 μm for a hematocrit of 20% and 2-3 μm for a hematocrit of 40%, in
agreement with experiments. Bagchi [36] reports a 4 μm cell free layer under comparable
conditions for a 80 μm wide channel. He seems to be using a definition based on the location
of the red blood cells' centers of mass because his simulation plot (Bagchi [36], Figure 5a)
does not show an obvious cell free layer as in our Figure 6.
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4.2. Whole Blood Simulations
Numerical experiments presented in this section were performed on a rectangular domain
representing a 50 micron wide channel. The left and right boundary conditions were periodic
with no-slip bounce-back boundary conditions at the top and bottom to represent blood
vessel walls. The flow was driven by a constant pressure gradient in the x direction, which
was included in the external force along with the immersed boundary force. Lattice
Boltzmann particle density functions were initially set to their equilibrium values for a given
initial parabolic fluid velocity whose magnitude was determined from the pressure gradient.
Membrane parameters for each red blood cell and platelet are given in Table I and Table II,
respectively.

The grid resolution of the following simulations is 350 × 700, comparable to the resolution
chosen by Bagchi for his simulations [36]. Parallelization with OpenMP was used to
improve the performance of our method since the time step is restricted to be 2 × 10−8

seconds. To represent a nearly-incompressible fluid, the ratio u/cs must be small enough that

the density ρ does not vary more than approximately 0.1% in space and time. Since 

and we have already chosen a spatial discretization  μm, to increase the speed of sound
cs sufficiently, we must choose a small time step δt.

We include details of numerical experiments performed at hematocrits of 20% and 40%. In
both cases, red blood cells were initially placed in a structured way with some amount of
randomness in both position and rotation such that no overlapping occurs. Platelets were
then distributed in the domain so that their initial lateral distribution was roughly uniform
and there was no intersection with red blood cells (see Figure 7). The pressure gradient was
set so that once the flow has developed, the wall shear rate would be approximately 1100
sec−1 for both cases. Shear rate in our simulations was found by computing a time average
of the gradient of the computed velocity at the wall.

Within the first 400 milliseconds of simulated time, the red blood cells drift away from the
walls and the cell free layer develops in both numerical simulations. In Figure 8 we also see
what could be a near-wall excess of platelets. However, in order to show that we do indeed
see this phenomenon we need to consider a much larger data set. By sampling from
Eckstein's empirical bead distribution function [7] and forming a histogram of the sample
results, we infer that 50-60 samples are needed to see clear evidence of a near-wall enhanced
concentration, and that additional samples are required to adequately characterize the height
and width of the region of enhanced concentration.

Figure 9 shows histograms of 72 platelets for the 20% case and 72 platelets for the 40% case
after 400 msec of simulated time. This data was obtained from a series of similar
experiments with different random initial placements of the cells. Although it is not clear
that the profile is in equilibrium yet, Figure 9 illustrates that a non-uniform distribution of
platelets has developed in a short amount of time. The data here is still quite noisy and more
data is necessary to make firm conclusions about the actual shape of this non-uniform
distribution. Even so, this near-wall excess is very similar to what has been seen
experimentally [3]. The heights of peaks in both cases are about three to four times larger
than the platelet concentration at the center of the channel. It is also apparent that peaks
occur at different distances from the wall depending on hematocrit; this is most likely due to
the size of the cell free layer.

Figure 10 shows lateral positions of selected platelets over the course of 600 milliseconds. In
the case where there are no red blood cells in the flow affecting the motion of platelets (a)
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there is only a negligible amount of lateral motion. In fact, we see platelets move slightly
away from the walls when they are a few microns from the wall, a region in which they
experience high levels of shearing. Unless platelets interact with each other, they have only
a small affect on the fluid, and appear to simply advect with the flow. Contrast this to the
20% and 40% hematocrit cases shown in (Figure 10(b-c)); platelets are either pushed toward
the walls into the cell free layer or move much more erratically in the center of the vessel
due to interactions with the deformable red blood cells. The platelets' tranverse excursions
seem to be larger for higher volume fraction (40%) suspensions than for lower ones (20%),
but this conclusion is preliminary and requires more extensive study.

5. Discussion
In this paper, we describe a hybrid lattice Boltzmann-Immersed Boundary computational
model for studying the behavior of concentrated suspensions of red blood cells and other
particles. The Immersed Boundary method is well suited to this problem which involves
interactions, through the suspending fluid, among highly deformable red blood cells that
move and change shape substantially during a simulation. In the IB method, the fluid
equations are solved on a simple Cartesian grid, while each IB object, such as a red blood
cell, is represented by a grid of Lagrangian points. Elastic forces generated within the cell
because of its deformation can be calculated solely in terms of the current configuration of
the Lagrangian points that make up the cell. The elastic forces are then communicated from
the Lagrangian IB points to the Cartesian fluid grid, using a discrete approximation to the
Dirac delta function, to define the fluid force density, and it is only through the influence of
this force density (rather than an explicit change in geometry of the fluid domain) that the
fluid ‘feels’ the presence of the suspended cells. The same discrete delta function is used to
define the velocity at each IB point so that the position of that point can be updated
consistent with there being no-slip between points of the cell boundary and the adjacent
viscous fluid.

In the computational model we describe, the motion of the fluid is determined using the
lattice Boltzmann method. This method involves only local interactions among lattice points
and therefore offers the potential through parallel computation of substantial reduction in the
time required to carry out extensive simulations. The IB method facilitates the use of
realistic models of cellular mechanics, such as the Skalak model for red blood cell
membrane tension. It also has the advantage, compared to many other particle tracking
methods, of not requiring special procedures for detecting and handling particle-particle
collisions and for preventing particles from overlapping with one another. In the IB
formulation, particles cannot interpenetrate provided the spacing of the Lagrangian IB points
is sufficiently fine (less than about h/2, where h is the fluid lattice spacing) and the time step
is sufficiently small.

In simulations of single red blood cells in a shear flow we see the expected behaviors:
tumbling at low shear rates or if the red cell membrane bending rigidity is high, orientation
at a fixed angle to the flow accompanied by membrane tank treading for high shear rates or
lower bending rigidity. For suspensions of red blood cells flowing through a tube, we see the
development of a near-wall cell free layer. The thickness of the layer depends on the volume
fraction of red blood cells in the suspension in a way that accords with experimental
observations reported in Blackshear et al. [37]. In these simulations, the red blood cells that
are in the higher shear regions near the walls orient at an angle to the bulk flow and their
membranes undergo tank treading.

To explore the influence of red blood cells on the motion and distribution of platelet-sized
beads, we added a number of small circular particles to the suspensions of red blood cells.
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For each of the hematocrits 20% and 40%, we performed a series of computational
experiments, that differed only in the initial random placement of the red blood cells, in
order to get sufficient data from which to begin to draw statistically meaningful conclusions.
Following the motion of a total of 48 beads (6 simulations with 8 beads/simulation) at 20%
hematocrit, and 72 beads (6 simulations with 12 beads/simulation) at 40% hematocrit, we
see clearly the development of a near-wall enhancement of bead concentration at both
hematocrits within the first 400 msec of suspension flow at a shear rate of about 1100 sec−1.
The general features of the bead concentration profile are similar to those seen by Eckstein
et al. [3] and we have the new information that this profile can develop quickly. We do not
yet know whether the profiles we see would develop further in longer simulations. It
remains to do more and longer simulations for a range of shear rates, hematocrits, and bead
sizes to see how well the simulation results match experimental observations.

Our study shares features with the work of Sui et al. [14,15], Bagchi [36], and AlMomani et
al. [38]. Sui and co-workers used a lattice Boltzmann Immersed Boundary method much
like that we present, but with local refinement of the lattice around the cell, to look at the
behavior of single red blood cells in different flow situations. For the dense suspension of
cells we consider, a uniformly fine grid is required. Bagchi used a traditional Navier-Stokes-
based Immersed Boundary method to look at the rheological properties of concentrated
suspensions of red blood cells, but did not explore the influence of red blood cell motion on
the transluminal distribution of platelets. AlMomani et al. used a different fluid-particle
interaction method to look at the effect of red blood cells on platelet motion and on the
forces experienced by the platelets. Their approach requires detection of particle proximity
to neighboring particles and the use of repulsive forces obtained from a ‘soft’ potential.
Their model of red blood cells constrains the cell's shape to be elliptical. Their level-set
representation of cell boundaries seems to preclude tracking tangential motions of cell
membranes making it impossible to simulate tank-treading. They look at several low
hematocrit cases and present evidence of platelet displacement toward the walls. The paper
gives no information about the number of platelets considered and so allows no assessment
of the statistical power of the results.

Our Immersed Boundary-based whole blood simulation model allows us to simulate the
complex fluid-structure interactions that take place in flowing blood. By allowing
observation and tracking of each red blood cell and platelet (or platelet-sized bead) during
their interactions, our simulations offer access to a wealth of information unavailable from
experiments. The ability to track individual cells and to perturb physical properties on a cell-
by-cell basis, if desired, makes our computational model a unique and powerful tool for
elucidating the physical mechanisms that underly the lateral redistribution of platelets. That
said, these simulations are computationally intensive and currently take a long time even in
two spatial dimensions. To overcome this limitation, we are developing an MPI-based
distributed-memory parallel algorithm for carrying out the simulations. Because the lattice
Boltzmann method uses only local information, that portion of the method is straightforward
to parallelize. We have also devised and are testing parallelization strategies for the
Immersed Boundary parts of the calculations: the IB force calculation, the transmission of
the IB forces to the Eulerian fluid grid, and the interpolation of fluid velocities to the IB
points in order to update their positions. When completed, we expect that the new parallel
version of our method will give us the ability to carry out a much more extensive and
systematic exploration of the conditions under which platelets undergo the substantial lateral
motion that leads to the development of a near-wall enhanced platelet concentration. Once
we have confidence that the simulations produce results in agreement with experiment, we
will use the unique capabilities of our method to begin to dissect the physical mechanisms
that underly these phenomena.
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Figure 1.
In flowing blood, platelets are highly concentrated in a narrow region near the channel wall.
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Figure 2.
The discrete velocity vectors for the 2D9Q model.
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Figure 3.
An immersed boundary object: The Lagrangian points X(q, t) located on the immersed
boundary are allowed to move anywhere in the fluid domain; they are not constrained to
points of the Eulerian grid.
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Figure 4.
An immersed boundary point spreads forces to and interpolates velocities from sixteen
nearby Eulerian grid points.
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Figure 5.
Simple shear experiment. A simulated red blood cell exhibits tank treading and obtains an
equilibrium shape with a major to minor axis ratio of 5.3:1 and a inclination angle of 17°
The x and y axes shown are in microns. The lattice spacing is such that in its undeformed
state, the red blood cell is approximately 40 lattice points along its major axis.

Crowl and Fogelson Page 21

Int j numer method biomed eng. Author manuscript; available in PMC 2010 December 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
High concentrations of red blood cells in channel flow after 500 milliseconds of simulated
time. Note the cell free layer (2-6 μm) near channel walls. Lengths are in microns.
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Figure 7.
Initial positions of red blood cells and platelets at 20% hematocrit (a) and at 40% hematocrit
(b). Lengths are in microns.
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Figure 8.
After 400 milliseconds cells have laterally redistributed: 20% hematocrit (a) and 40%
hematocrit (b). A cell free layer has developed in both cases and platelets have become more
concentrated near the channel walls. Lengths are in microns.
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Figure 9.
Histograms of data from 72 platelets at 20% hematocrit (a) and 72 platelets at 40%
hematocrit (b) after 400 msec of simulated time. The x-axis is distance from the channel
center in microns. The wall lies 25 microns away from the center.
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Figure 10.
Lateral platelet motion in: (a) the absence of red blood cells, (b) presence of red blood cells
at 20% hematocrit, and (c) presence of red blood cells at 40% hematocrit. Time (horizontal
axis) is measured in milliseconds.
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Table I
Red blood cell parameters

G = 6 × 10−3 dynes/cm [29,30]

K = 5 × 10−2 dynes/cm [29,30]

EB = 2 × 10−12 dynes-cm [29,30]
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Table II
Platelet parameters

S = 1 × 10−1 dynes/cm

EB = 2 × 10−11 dynes-cm
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