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Abstract
In many energy transducing systems which couple electron and proton transport, for example,
bacterial photosynthetic reaction center, cytochrome bc1-complex (complex III) and E. coli
quinol-oxidase (cytochrome bo3 complex), two protein-associated quinone molecules are known
to work together. T. Ohnishi and her collaborators reported that two distinct semiquinone species
also play important roles in NADH-ubiquinone oxidoreductase (complex I). They were called
SQNf (fast relaxing semiquinone) and SQNs (slow relaxing semiquinone). It was proposed that QNf
serves as a “direct” proton carrier in the semiquinone-gated proton pump (Ohnishi and Salerno,
FEBS Letters 579 (2005) 4555), while QNs works as a converter between one-electron and two
electron transport processes. This communication presents a revised hypothesis in which QNf
plays a role in a “direct” redox-driven proton pump, while QNs triggers an “indirect”
conformation-driven proton pump. QNf and Q together serve as (1e−/2e−) converter, for the
transfer of reducing equivalent to the Q-pool.
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Introduction
A major role of NADH-quinone oxidoreductase (complex I) is to transfer electrons from
NADH to the quinone pool (Q-pool). Accompanying the transfer of two electrons, it is
believed that approximately four protons are transported across the membrane to create the
proton electrochemical potential (ΔμH+). Protein-associated quinone molecules are known to
play important roles in energy transducing system. QA and QB in the bacterial
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photosynthetic reaction center [1-2], Qi and Qo in cytochrome bc1 complex (complex III)
[3-4] and QL and QH in E coli quinol oxidase (bo3) are good examples [5].

In complex I, the importance of two protein-associated quinone molecules have been
emphasized [6-8]. From the measurement of the electron spin relaxation profiles, T. Ohnishi
and her collaborators proposed the existence of distinct two semiquinone species, fast
relaxing SQNf and slow relaxing SQNs. The SQNf signal is extremely sensitive to the
transmembrane ΔμH

+ poise, while that of SQNs is ΔμH
+ insensitive. Based on a detailed

analysis of the direct spin-spin interaction between reduced cluster N2 and SQNf, their
mutual distance was calculated as 12 Å. The projection of the N2-SQNf vector along the
membrane normal is only 5 Å [9]. Therefore, we proposed a directly quinone-coupled,
SQNf-gated proton-pumping mechanism [10], which differs from the reversed Q-cycle
mechanism [11].

Here, we will present a revised proton pump model in which two different mechanisms
operate in series. Two protons per electron pair are transported via a quinone-gated “direct”
proton pump, and the additional two protons are transported by a quinone-induced
conformation-driven “indirect” proton pump. The concept of the “indirect proton transport”
has been extensively discussed for complex I [12-16]. This terminology may be somewhat
misleading because it gives the impression that the transport takes place independent of the
redox energy. Even “indirect” proton pump associated with respiration are still ultimately
driven by the exergonic electron transfer reactions between NADH and Q-pool.

A question would be raised: What is the immediate energy source, and how does it
communicate to the remote indirect proton pumps?

In this paper, we will present a new hypothesis that the “indirect” pump is triggered by
energy related to the site occupancy of QNs. The energy is conducted by means of a
conformational change of the protein structure to the antiporter homologs to cause the
relocation of the channel structure.

Discussion
Direct proton pump mechanism

A scheme of the respiratory chain of complex I is shown in Fig. 1. If we approximate the
redox reactions in complex I using the standard redox midpoint potential (Em) instead of the
actual redox potential (Eh), they cover the range between NADH/NAD+ (Em,pH7= −0.32 eV)
and the ubiquinone pool QH2/Q (Em,pH7=+0.09 eV: this was quantitatively measured in
photosynthetic reaction center [17]. Thus ΔEm,7 factor for one electron transfer in this redox
span is −0.41 eV. The other critical component of the respiratory energy is ΔμH

+ across the
inner mitochondrial membrane. Its current optimal values for 2 electron transfer is known in
the range of 0.16 to 0.19 eV [17]. The available free energy for proton translocation is −ΔG°
= ne− ΔEm7 in eV, where ne− is the number of electrons transferred. Then for 2 electron
transfer across the mitochondrial or bacterial cytoplasmic membranes, 5.1 ~ 4.3 protons can
be transported with 0.82 eV under standard conditions. From this approximation, complex I
has enough redox energy to account for the 4H+/2e− stoichiometry.

Ohnishi and Salerno published a hypothesis to explain the high (4H+/2e−) ratio in the
coupling of complex I. They used the value of the vertical depth of the electron transport

between iron-sulfur cluster N2 and QNf of only , which was obtained from the analysis
of the direct spin-spin coupling [9]. From this, they deduced that the QNf is located close to
the membrane interface level, and is directly connected to the entrance of the proton well.
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However, we recognized that explaining the (4H+/2e−) ratio by only one QNf may be
difficult.

In order to solve the problem, we now propose a revised two semiquinone models. As
shown on the left side of Fig. 2, QNf accepts an electron from iron-sulfur cluster N2 (a) to
form SQNf which was found to be anionic form below pH 8.5 [9]. Since SQNf intensity is
increased by the membrane potential poise and it has a higher affinity constant than both Q
and QH2, it binds tightly to the quinone pocket (b). When the semiquinone accepts a second
electron from cluster N2, it takes up two protons from the matrix side (N-side). This triggers
eversion of the semiquinone-binding protein. When protons bound to the semiquinone are
fully reduced to QH2, 2 protons are released into the proton-well. Two electrons are also
transferred one by one to QNs (c). This concludes a cycle in which (2H+/2e−) were
vectorially transported by the direct pump.

Indirect proton pump mechanism
The Klebsiella pneumonia complex I was reported to act as a Na+ pump with a
stoichiometry of 2Na+/2e− [18-19]. It was also claimed that E. coli, which is a close relative
of K. pneumonia, acts as a Na+ pump [20]. However, Stolpe and Friedrich reported that E.
coli complex I is fundamentally a H+ pump, but it is capable of performing a Na+/H+

antiport [21]. In bovine heart complex I, it has become widely accepted that the Na+/H+

antiporter homologs are utilized as the proton channels [21-23].

Although these antiporter homologs are utilized for proton translocation in bovine heart
complex I, protons are still pumped across the membrane by the redox energy provided by
the electron transport from flavin to quinone, not by an ion gradient as in the antiporters
themselves There is no other energy source in complex I. In considering the role of
antiporter homologs in the proton pump, several questions may be addressed.

It is interesting that the activity of the antiporter channel is controlled by pH [24]. Effects of
pH on the activity of bovine heart complex I was also observed [25]. We do not yet know
whether this is related to the mechanism of the antiporters in complex I.

An important point is that the authentic antiporters utilized the electrochemical potential of
the Na+ gradient to pump H+, while in complex I, the only available driving force is redox
energy. An obvious question is how the energy is transferred to the H+ pump. Investigators
in the antiporter field reported that a conformation change causes a reorientation of the
channel protein. It also changes the affinity of the key component of the channel to both
proton and the monovalent cation [26-28]. Krishnamurthy et al. who studied the Na+-
coupled transporters [29], concluded that the antiporters usually employ proton or sodium
transmembrane gradients [30-31]. A hypothetical mechanism for the complex I indirect
proton pumps that takes all of these points into consideration is shown in the right side of
Fig. 2.

QNs is originally in the oxidized form (see (d)). When it accepted an electron, it is reduced to
the semiquinone form, which must bind more strongly to the quinone-pocket since it is
many order of magnitude more stable than free ubiquinone (Kstability = 2.0 at pH 7.8; [8])
(see (e)). Reduction with a second electron causes the uptake of 2 scalar proton from the N-
side, producing the quinol (QNsH2) which has a much weaker binding constant. When the
reduced quinone is released from the quinone-pocket, it causes a large conformational
change of the pocket as shown in (f). This change will be conducted through the membrane
structure to reach the antiporter homologs to cause the relocation of the channel proteins
[27]. We assume that the indirect pump releases two protons to the P-side (intermembrane
space).
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In this figure, QNf-gated direct proton pump (Fig.2(a)-(c)) and QNs-induced indirect
conformation-driven proton pump (Fig.2(d)-(f)) are shown as suggested by Sazanov et al.
[12]. It is suggested that QNf binding site is located in the NuoH subunit close to the
negative side membrane surface [32-36] and QNs -binding site is located on a negative side
loop of the NuoN subunit [37].

In summary, QNf and QNs transport 2 protons each, first by the direct mechanism and then,
through an indirect mechanism. Then, both QNf and QNs jointly perform the role of
converter between one electron transfer and two electron transfer processes.
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Abbreviations

Complex I NADH-quinone oxidoreductase

DBQ decylubiquinone

SQNf fast relaxing semiquinone

SQNs slow relaxing semiquinone
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Fig. 1.
A scheme is to show the flows of electrons and protons in bovine heart complex I. Aarrows
of direct pump and indirect pump indicate that these two pumps are driven by two kinds of
ubiquinone species. At the end of the cycle, bc1 indicates the coupling to complex III via
Qpool.
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Fig. 2.
Schematic mechanisms of the (a)-(c) QNf-gated “direct” proton pump which transports 2
protons, and (d)-(f) QNs-induced conformation-driven “indirect” proton pump which also
transports 2 protons.
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