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Abstract

Studies of the size and morphology of anatomical structures rely on accurate and reproducible 

delineation of the structures, obtained either by human raters or automatic segmentation 

algorithms. Measures of reproducibility and variability are vital aspects of such studies and are 

usually acquired using repeated scans and repeated delineations (in the case of human raters). 

Methods exist for simultaneously estimating the true structure and rater performance parameters 

from multiple segmentations and have been demonstrated on volumetric images. In this work, we 

extend the application of previous methods onto two-dimensional surfaces parameterized as 

triangle meshes. Label homogeneity is enforced using a Markov random field formulated with an 

energy that addresses the challenges introduced by the surface parameterization. The method was 

explored using both simulated raters and surface labels obtained from an atlas registration. 

Simulated raters are computed using a global error as well as a novel and more realistic boundary 

error model. We study the impact of raters and their accuracy based on both models, and show 

how effectively this method estimates the true segmentation on simulated and real surfaces.
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1. INTRODUCTION

Assessment of structural and morphological anatomical characteristics plays an essential 

role in the application of medical imaging in clinical research. Such assessments depend 

upon the ability to accurately and precisely label structures in multidimensional images. The 

labeling process may be carried out by human raters or by automated segmentation 

algorithms. Statistically motivated approaches1,2 have been developed (e.g., Simultaneous 

Truth and Performance Level Estimation, STAPLE ) to fuse or combine labels from 

multiple individuals or algorithms into an estimate of a truth label set that can be made more 

reliable than any of the individual, underlying labelings. These approaches have been 

applied to volumetric studies, and additionally provide measures of rater or algorithm 

performance. Although typically acquired in two or three dimensions, medical images may 

be processed and/or analyzed to form representations on manifolds (e.g., cortical surfaces). 

In this paper, we extend the STAPLE algorithm1 to two-dimensional surfaces represented 
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by triangle meshes in the STAPLE Surface (STAPLES) method. To characterize this 

approach, we develop a new, realistic model of “simulated rater” behavior and explore 

application of STAPLES in an atlas-based approach for determining gyral labels on brain 

cortical surfaces.

2. METHODS

STAPLE1 simultaneously estimates a true segmentation and a reliability characterization for 

each rater. It was originally presented on a voxel-wise basis for multiple-label, volumetric 

images, and included a Markov Random Field (MRF) to model spatially correlated 

structures. Here we modify the original approach to operate on surface labels. First, the 

update equations of the STAPLE algorithm are applied vertex-wise to the triangle mesh 

(Section 2.1). Second, a new mesh-based MRF accounts for spatial consistency with 

multiple labels (Section 2.2).

2.1 STAPLE on Triangle Meshes

In this formulation, labels exist on a surface parameterized as a triangle mesh with vertices 

, i ∊{1 … N} and labels edges ej ∊ (i, i’), j ∊ {1 … M}. A label is to be assigned each 

vertex, Ti ∊ {0, 1, …L,} given the labels from R raters Di = Dir, r ∊ {1 … R}. As well, we 

seek to estimate rater performances, modeled as a set of confusion matrices Θ = θrs’s, s, s’ ∊ 

{1 … L}.For any vertex vi, θrs’s denotes the probability that rater r assigns label s when s’ is 

the true label.

The algorithm is initialized by setting the performance parameters equal to a matrix close to 

the identity for all raters as suggested in Warfield et al.1 At iteration k, the segmentation 

given the performance parameters is then estimated using the update equation

(1)

Next, the rater performance parameters for the (k + 1)th iteration are estimated with

(2)

These equations are identical to the conventional STAPLE algorithm since at this level the 

specifics of the locations of the points on which labels are defined are irrelevant. The 

segmentation and performance estimation are iterated until a convergence criterion is met.

2.2 Markov Random Field

As with the original approach, we utilize a Markov Random Field (MRF) to model the 

spatial homogeneity of labels. However, a reformulation of the MRF model was required 

due to two major challenges of the mesh parameterization not present in the conventional 
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pixel or voxel image representation. First, vertices need not be equally spaced nor regularly 

connected as they are in the volumetric framework. A Gaussian kernel was applied to 

account for this, as the relative contribution to the local conditional probability from vertices 

within the clique are weighted by the distance of the clique vertex to the vertex itself. 

Second, cliques need not be of the same order (i.e. vertices are connected by different 

numbers of edges with different angular separation). Here we have addressed via simple 

normalization, but more sophisticated approaches will be explored in the future. Multiple 

labels are addressed by penalizing any “wrong” labels equally. The necessary changes were 

incorporated by defining the following MRF potential function

(3)

where T is the full label configuration, dij is the distance between vertices i and j, d0 is fixed 

and controls the size of the kernel. The interaction weight, βii’ = β/Mi if i and i’ are 

neighbors where β is fixed and Mi denotes the number of neighbors of vertex i. If vertices i 

and i’ are not neighbors, βii’ = 0. Optimization was achieved using an iterative conditional 

modes (ICM) scheme,3 which successfully converged for the presented problems.

3. DATA

3.1 Simulated Raters

Simulated rater errors were modeled in two ways. First, we used confusion matrix in which 

the i, jth element indicates the probability that the rater will assign the jth label when the ith 

label is correct at any particular location. In this case, the identity matrix describes the 

“perfect” rater. In these simulations, confusion matrices were constructed such that each 

rater had equal expected performance for all labels, and errors were uniformly distributed 

among the remaining labels. Modeled errors are equally likely to occur throughout the 

image domain, i.e., every vertex is equally likely to be incorrectly labeled. An example of 

such a rater is shown in Figure 1(b).

Since in practice, raters are more likely to make errors near the object boundaries, we 

introduce a second rater error model that models this kind of behavior. Three vector 

parameters describe a rater’s performance: r, l, and b. The scalar r is the rater’s global true 

positive fraction. The vector l encodes the probability, given an error occurred, that it was at 

the ith boundary. Finally the vector b describes the error bias at every boundary. The 

unbiased rater has bi = 0.5 ∀i, while values of 0.0 or 1.0 indicate that one label or the other is 

always favored when an error occurs. A labeling produced by this type of simulated rater is 

shown in Figure 1(c). This is visually similar to the types of errors commonly observed in 

automatic gyral labeling approaches.
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4. RESULTS

4.1 Simulations

We first examined how the quality of the segmentation estimate produced with STAPLES 

varies with changes in the number of raters and their performance parameters. This was 

done by measuring the average label overlap (measured by the Dice Coefficient, defined as 

DC = 2ǀA ∩ Bǀ/(ǀAǀ + ǀBǀ)), between the true label configuration and estimated the true 

configuration. Figure 2 shows the results of 50 Monte Carlo iterations for the confusion 

matrix raters. We observe that the quality of the estimated true segmentation improves as the 

number of raters increases, and as the rater performance increases. A more detailed analysis 

will be provided in the full manuscript.

4.2 Multi-Atlas Parcellation

We also examined the applicability of STAPLES as part of a multi-atlas parcellation scheme 

in the spirit of Rohlfing et al.,2 using a leave-one-out experiment. Four subjects were drawn 

from the OASIS data7 (http://www.oasis-brains.org) and gyral labels were obtained using 

Freesurfer.5 These labels were transferred to cortical surfaces that were obtained using 

CRUISE.4 Three labeled surfaces were used as an atlas, and the remaining brain surface 

were considered as a target for the atlas-based parcellation. The parcellation was done by 

first partially inflating8 both the target and source surfaces. Next, the iterative closest point 

algorithm9 was used to register the target to the source using an affine tranformation. Labels 

were then transfered to vertices on the source surface from the nearest vertex on the target 

surface. This method was repeated to obtain a labelling of the source surface for each of the 

three atlases. These were combined using STAPLES to provide an estimate of the true 

labeling of the cortical gyri on the source surface, the results of which are shown in Figure 3. 

We see that a reasonable parcellation is obtained, despite the variability in the atlases and 

the simplicity of the registration and label transfer. Future work will include the 

incorporation of surface features such as curvature in this labelling scheme. Figure3(d) 

shows a quantitative, fair comparison of STAPLES against average individual atlas 

performance in our four test cases. Though not conclusive, these results suggest that 

STAPLES may improve the segmentation obtained relative to single-atlas methods. More 

thorough results with larger data pools will be provided in the full manuscript.

5. CONCLUSION

This work introduced STAPLES, an extension of STAPLE that enables statistical label 

recombination on 2D surfaces parameterized as a triangle meshes. This enables the 

improvement of labels on surfaces obtained from biomedical images, including surface 

representations of the cortex, cerebellum, and subcortical structures, for example. It also 

suggests a further generalization to arbitrary higher dimensional manifolds such as time 

series, tensor spaces and the like. This type of generalization is easily accomplished for a 

point-wise STAPLE approach, as demonstrated in this work. Generalizing the MRF 

potential for any manifold, however, presents a significant challenge, but would be 

extremely beneficial to research involving these types of high-dimensional data.
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Figure 1. 
Examples of simulated cortical surface raters. (a) The true surface segmentation. Sample 

segmentations by a rater with true positive rates of 0.7 parameterized by (b) a confusion 

matrix and (c) boundary error rate.

Bogovic et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2010 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Results for simulated surfaces: (a) The ground truth phantom parcellation, (b) simulated 

confusion matrix rater (true positive fraction = 0.7), (c) STAPLES result using 7 such raters 

without spatial correlation, (d) the results of 50 Monte Carlo iterations varying the expected 

rater performance and the number of raters, and (e) the STAPLES result using a MRF. Also 

shown are (f) a sample simulated boundary error rater (true positive fraction = 0.7), and (g) 

the STAPLES result using 7 such raters without spatial correlation.
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Figure 3. 
An example of our method applied to a cortical gyral labeling task. Shown are (a) the true 

cortical parcellation, (b) the parcellation estimated from this multi-atlas / STAPLES 

approach, (c) one of the atlas subject surfaces, and (d) a comparison of STAPLES and 

single-atlas parcellation schemes.
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