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Abstract

Bluetongue (BT) is still present in Europe and the introduction of new serotypes from endemic areas in the African continent
is a possible threat. Culicoides imicola remains one of the most relevant BT vectors in Spain and research on the
environmental determinants driving its life cycle is key to preventing and controlling BT. Our aim was to improve our
understanding of the biotic and abiotic determinants of C. imicola by modelling its present abundance, studying the spatial
pattern of predicted abundance in relation to BT outbreaks, and investigating how the predicted current distribution and
abundance patterns might change under future (2011–2040) scenarios of climate change according to the
Intergovernmental Panel on Climate Change. C. imicola abundance data from the bluetongue national surveillance
programme were modelled with spatial, topoclimatic, host and soil factors. The influence of these factors was further
assessed by variation partitioning procedures. The predicted abundance of C. imicola was also projected to a future period.
Variation partitioning demonstrated that the pure effect of host and topoclimate factors explained a high percentage
(.80%) of the variation. The pure effect of soil followed in importance in explaining the abundance of C. imicola. A close link
was confirmed between C. imicola abundance and BT outbreaks. To the best of our knowledge, this study is the first to
consider wild and domestic hosts in predictive modelling for an arthropod vector. The main findings regarding the near
future show that there is no evidence to suggest that there will be an important increase in the distribution range of C.
imicola; this contrasts with an expected increase in abundance in the areas where it is already present in mainland Spain.
What may be expected regarding the future scenario for orbiviruses in mainland Spain, is that higher predicted C. imicola
abundance may significantly change the rate of transmission of orbiviruses.
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Introduction

Understanding the patterns and mechanisms of species

occurrence and abundance is a central issue in ecology and

epidemiology. Biogeography is an increasingly important disci-

pline and is highly useful for addressing determinants of animal,

plant or pathogen species distribution, since the broad-scale factors

influencing species spatial patterns can be accurately identified

from biogeographical modelling [1]. The increased application of

spatial models to conservation biology and wildlife management

has been driven, at least in part, by the advent of extensive

computerised spatial databases — for example the Worldclim

project (www.worldclim.org) — and powerful analytical tools [2].

This discipline has rarely focused on pathogen ecology (but see

[3]), i.e. epidemiology [4], as was demonstrated at the 4th meeting

of the International Biogeography Society in 2009, where a

symposium was designed to introduce to biogeographers the many

ways that this discipline can contribute to the study of disease

ecology [5]. The scarcity of epidemiological studies conducted

from a biogeographical perspective is probably due to the fact that

epidemiological processes have key differences compared to other

biological phenomena [6]. Thus, abiotic conditions may have less

influence on pathogen distribution than on animal or plant species

distribution. This is due to the dependence of pathogens on other

species, for example hosts, which is even more complex in the case

of vector-borne pathogens [7]. Hence, biotic factors in these

systems are the main determinants of pathogen distribution, and

abiotic factors may indirectly affect their distribution by interfering

with host and vector distribution and abundance [8].

In this sense, some studies have been conducted to explain and

predict vector distribution and abundance from an epidemiolog-

ical perspective. Most of them were motivated by disease
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outbreaks [9], such as bluetongue, malaria or Crimean-Congo

hemorrhagic fever [10–12]. Nevertheless, a better approach would

be to determine the distribution and abundance of vectors in

advance of disease outbreaks to establish sound disease risk

management policies.

Bluetongue (BT) is one of the vector-borne diseases that has

raised increasing interest in vector ecology among epidemiologists.

Currently, BT outbreaks are still ongoing in Europe and new

introductions remain a risk. An important route of the BT virus

(BTV) being introduced into Europe is via wind-borne infected

midges arriving from northern African countries. This potential

threat should be addressed by research-based protection and

prevention policies; in fact, ecological studies on BTV vectors are

one of the main targets of scientific preventive research [13]. In this

respect, Culicoides imicola (Diptera: Ceratopogonidae) is the major

vector of BTV in the African continent and Mediterranean Europe

[14] where it shares vector ability with other Culicoides spp. [15,16].

C. imicola biogeography has already been studied from an

epidemiological perspective. These models, based on climate and

satellite imagery, identified some of the key parameters determin-

ing C. imicola distribution in the Mediterranean area. C. imicola

spatial distribution in Europe is very patchy, showing a high

dependence on local habitat conditions, such as soil type, soil

moisture and topography [10,17,18]. Different Culicoides spp. have

specialized in using different conditions [19], and breed in a range

of moist microhabitats. Nonetheless, soil type strongly determines

the ability of C. imicola to become established in any given zone,

presumably by interfering with the availability of breeding sites

[18–20]. In South Africa, C. imicola has been found to be absent

from sandy areas [17,21], whereas distance from moisture-

retentive soil was the most important factor determining C. imicola

presence in Italy [18]. However, to date, no study has been

designed to explore the pure and combined effects of a wide

variety of factors (both abiotic and biotic) that determine the

distribution and abundance of this arthropod vector species,

including the influence of hosts on C. imicola population dynamics.

Ever since the initial C. imicola distribution models were

developed, in which a close link between species distribution and

climatic variables was demonstrated, researchers began to assess

the effects of climate change on this species [22]. The conventional

wisdom was that global climate change would result in an

expansion of tropical pathogens, particularly those transmitted by

vectors, throughout temperate areas [23,24]. Despite its high

potential relevance, the first approaches conducted on C. imicola

were quite simplistic — authors considered a putative increase of

2uC in mean temperature and then recalculated the potential

species distribution using transformed climatic variables. None-

theless, projected future scenarios of climate change suggested that

global warming would be the main factor modulating the

northward expansion of C. imicola into Europe [22]. However,

the predictions of the climatic models did not perfectly fit the

observed abundance data since other factors regulate species

distribution (as mentioned) and therefore its expansion [25,26]. C.

imicola is able to spread northwards but probably only into those

areas where non-climate factors are suitable for the species, as

suggested by [10].

In this respect, few statistical models include potentially

important non-climate variables. The accuracy of these predic-

tions could be increased by including other ecogeographical

variables in the models [27], such as soil characteristics [20], the

presence of wild or domestic potential hosts [28] or geographical

factors, e.g. showing species population dynamics [29].

In this context, we attempted to improve our understanding of

the biotic and abiotic determinants of C. imicola as follows: i) by

modelling its present abundance with topoclimatic, host, spatial

and soil conditions using variation partitioning procedures; ii) by

studying the spatial pattern of the predicted abundance of C.

imicola relative to BT outbreaks to assess the spatial association

between vector abundance and BT occurrence; and iii) by

investigating how the predicted current distribution and abun-

dance patterns of C. imicola might change under future (2011–

2040) scenarios of climate change according to the Intergovern-

mental Panel on Climate Change.

Materials and Methods

Study area and C. imicola abundance data
The study area was peninsular Spain. This is situated in

southwest Europe and covers 493,518 km2 (nearly 85% of the

Iberian Peninsula). It is a heterogeneous territory in climatic terms,

with a mainly eastward and southward decreasing precipitation

gradient (range 200–2000 mm) and a mainly northward

decreasing temperature gradient [30]. The northern and Medi-

terranean coasts are bordered by mountain ranges and there are

some east-to-west mountain chains in the centre of the Peninsula.

C. imicola capture data from 2005 to 2008 were provided by the

Spanish bluetongue national surveillance programme; for details

see [31]. In line with previous studies [31], only catch data

obtained between April and October — annual peak abundance

for C. imicola in Spain [32] — were used for analytical purposes.

The only localities included in the analyses were those where

sampling was performed at least once a month between April and

October. For each sampled locality we obtained the maximum

number of C. imicola captured per night during that period (April–

October) and during the 3 years considered in this study as this

abundance index (our response variable) has been shown to be

consistently related to the real Culicoides spp. annual abundance

[33].

The geographical coordinates of the sampled sites were

recorded using a hand-held GPS receiver and this information

was transferred to UTM 10610 km square (n = 263, see Figure 1)

which was the territorial unit – locality – used in this study.

Predictor variables
To identify the factors that affected C. imicola abundance in each

square, we performed spatial modelling to compare the observed

abundance of the species with 21 explanatory ecogeographical

variables related to the following factors (see Table 1): spatial

situation (2 variables), topoclimatic conditions (7 variables), hosts

(5 variables), and soil (7 variables). These variables were chosen on

the basis of their availability at our study scale and their potential

predictive power according to previous knowledge on C. imicola

ecology [16,18,19,34,35].

The spatial resolution of the predictors was not homogeneous

between factors and thus all the ecogeographical information was

finally translated into UTM 10610 km squares using the Extract

module of the Idrisi Andes software package.

Spatial factors. We included spatial variables (the longitude

and latitude of each square’s centroid point) in the models to

reveal geographical trends in species distribution associated with

historical events or species population dynamics [29,36].

Topoclimatic factors: topography and climate. The

importance of the topoclimatic factor in explaining species

distribution and abundance at large spatial scales is well known

[37,38]. Thus, we compared the observed abundances with two

predictor variables (altitude and slope) that provide orographical

information. Altitude was available in digital format by the Land

Processes Distributed Active Archive Center (http://LPDAAC.

Modelling C. imicola Abundance
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usgs.gov) at a resolution scale of 1006100 m, and slope was

calculated based on altitude using the Idrisi SLOPE command

[39].

Climate data (temperature and precipitation) were obtained

from the Spanish ‘Agencia Estatal de Meteorologı́a’ (AEMET;

http://www.aemet.es). These data were created by the regional-

ization to Spain of the climate change models produced by the

Intergovernmental Panel on Climate Change. This study used a

general circulation model, CGM2, from the Canadian Climate

Centre for Modeling and Analysis. CGM2 was run with the

conditions forecast by the Special Report on Emissions Scenarios

A2 and B2 [40] for the period 1961–1990 (later projected to future

periods). Scenarios A2 and B2 represent an intermediate position

of the range of projected temperature change scenarios for Spain,

A2 being medium-high and B2 medium-low [41]. So, A2 is

defined as a world of strengthening regional cultural identities,

with an emphasis on family values and local traditions, high

population growth, and less concern for rapid economic

development. In turn, B2 is defined as a world in which the

emphasis is on local solutions to economic, social, and environ-

mental sustainability, with lower population growth than A2. The

scenario A2 is predicted to change in temperature between periods

at a higher rate than the B2 scenario, but in contrast, the

precipitation is expected to change in a slightly higher rate in B2

than in A2 [41]. These scenarios are usually selected to study the

effect of climate change on species distribution in the Iberian

Peninsula [27,42]. Further details on the peculiarities of each

emission scenario and the expected climatic changes in the future

can be revised, among others, in [27,41].

Following the procedure to obtain the climatic variables

described by [27], we calculated mean temperature and

precipitation, and their seasonalities, for each emission scenario

(A2 and B2) and study period (present and future 2011–2040).

Mean temperature and precipitation were quantified from May to

October only since this period includes the annual peak

abundance for C. imicola [32,43]. Seasonality was measured as

Figure 1. Location of the sampling localities. Spatial distribution of the sites (UTM 10610 km squares) in which the abundance of Culicoides
imicola was recorded (n = 263) by the Spanish national bluetongue surveillance programme between 2005 and 2008 (symbol size is proportional to
the maximum number of C. imicola captures per night). These were used as a training dataset to forecast the species abundance in peninsular Spain.
Regional veterinary units in which bluetongue outbreaks were declared in livestock in 2007 are shown (grey areas).
doi:10.1371/journal.pone.0014236.g001
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the variation coefficients of monthly means in a year [16]. Mean

solar radiation was also considered as potential predictor of species

abundance. Unfortunately, mean solar radiation was not included

in the list of variables quantified for each emission scenario, and

thus we used the same radiation data for both A2 and B2 emission

scenarios.

Hosts: wild ungulates and livestock. In addition to

livestock, several wild species were described as potential hosts

for BTV in Spain [44,45,46] and therefore for BTV vectors. Thus,

the relative abundances of both wild and domestic hosts were

considered to explore their effect in explaining the abundance of

C. imicola.

Unfortunately, data on wild species abundance at a geograph-

ical scale are very scarce. We therefore used the favourability

function [47] to obtain the environmental favourability for wildlife,

i.e. red deer (Cervus elaphus), roe deer (Capreolus capreolus) and wild

boar (Sus scrofa), from presence/absence data, as an index of

species abundance. The favourability for a species was significantly

related to species abundance as described in a previous study [48].

Briefly, the favourability function is basically a logistic regression

that assesses the local variations in presence probability relative to

the overall species prevalence (ratio of the number of presences to

absences). Using the favourability function, the values for all

models are levelled according to the species prevalence in each

area [47].

The environmental predictors shown in Table 2 were used to

model the environmental favourability for potential wild hosts for

C. imicola. Wild ungulate distribution data were extracted from the

study by [49] and were offered for 10610 km UTM cells. For

each species, we performed a forward-backward stepwise logistic

regression procedure to select a subset of significant predictors of

the species distribution. Probabilities yielded by logistic regression

(P) may be used to calculate favourability values (F), where n1 is the

number of presences and n0 the number of absences [47].

F~

P

1{Pð Þ
n1

n0
z

P

1{Pð Þ

Data on livestock were provided by the Spanish ‘Ministerio de

Medio Ambiente y Medio Rural y Marino’ (http://www.marm.es)

at a regional veterinary unit level (n = 490 in continental Spain) for

2008. Census data on cattle and small ruminants (sheep and goats)

were used to estimate two predictors, livestock density (sheep, goat

and cattle) and cattle density. We considered that all domestic

ruminants are susceptible to host BTV — and therefore to C.

imicola — and thus they were together considered in a livestock

abundance index which was used in the models. Cattle density was

independently considered in the models because of the greater

amount of dung production compared to other domestic

ruminants. The higher amounts of organic material contributed

by cattle may promote breeding sites favourable to C. imicola

despite the fact that this midge species does not directly breed in

cattle dung unlike other Culicoides spp. [19]. These variables were

transferred from counties to UTM 10610 km squares, assuming

that the mentioned densities were constant through the regional

veterinary unit. Therefore, all UTM squares included in a unit —

the major part of its surface area — had the same density values.

Soil: land cover and pedological variables. Six predictors

were included in our model which were related to land cover

Table 1. Variables used to model the abundance of bluetongue vector Culicoides imicola.

Code Variable description Factor

LO Longitude (m) Spatial location

LA Latitude (m)

A Mean altitude (masl) Topography Topoclimate

S Slope (degrees; calculated from A)

T Mean temperature in May–October (uC) Climate

Ts Temperature seasonality

P Precipitation in May–October (mm)

Ps Precipitation seasonality

R Annual radiation (Kwh m22 day21)

Fred Favourability for red deer Wild hosts Hosts

Froe Favourability for roe deer

Fwild Favourability for wild boar

DL Livestock density sheep/goat/cattle (ind/Ha) Livestock

DC Cattle density (ind/Ha)

WL Woodland (%) Soil

IL Irrigated land (%)

UL Sparsely vegetated areas (%)

SL Scrublands (%)

NDVI Normalized difference vegetation index (NDVI)

NDVIs NDVI seasonality

SP Soil permeability

doi:10.1371/journal.pone.0014236.t001
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(including two NDVI-related predictors) and one related to soil

permeability (Table 1). NDVI, and its seasonality, were included

within this factor, and not within climate [50]; even when it is

indirectly related to precipitation, NDVI is a measure of the

amount and vigour of vegetation on the land surface directly

related to soil moisture [51].

For each UTM square, the frequency of occurrence was

calculated of four land cover variables (woodland, irrigated land,

sparsely vegetated areas and scrubland) — which were obtained

from the CORINE Land Use/Land Cover database [52] — at a

spatial resolution of 2506250 m (Table 1). The annual mean

value and seasonality (see above for details on the calculations) of

the NDVI were derived from a monthly imagery dataset over an

18-year period (from 1982 to 2000) downloaded from the NASA

Goddard DAAC website (ftp://daac.gsfc.nasa.gov/data/avhrr/)

at a resolution scale of 1000 m. Finally, soil permeability was

obtained from a map of synthesis of ground-water aquifers with

three different permeability classes [53]. We determined soil

permeability for each UTM 10610 km square by calculating the

average of the values assigned to the pixels within the square.

Statistical analyses
Abundance model. Firstly, we avoided correlations between

predictor variables related to a specific factor since mul-

ticollinearity within a factor unnecessarily affects the automatic

stepwise variable selection procedures in regression analysis. Two

variables are correlated when the absolute value of Spearman’s

coefficient is higher than or equal to 0.8 [54]. When two or more

explanatory variables were correlated we selected the variable that

was most significantly related to the response variable [55] for

inclusion in the models.

For each emission scenario we related the observed C. imicola

abundance (response variable) to the distribution of the climatic

variables and the other predictors previously described (Table 1).

Given the over-dispersion of our data, for modelling purposes we

used generalized linear models (GLM) with a negative binomial

distribution and a logarithmic link function [56]. Count models,

such as Poisson and negative binomial, were successfully used for

studying factors affecting population abundance and for conduct-

ing population estimates [57,58]. We estimated the scale

parameter (K) for the dependent variable [59], with x and s2 as

the mean and variance of the data:

K~
x2

s2{xð Þ

To select a subset of significant predictors we used a forward-

backward stepwise model-selection procedure. All steps were

assessed to decrease the Akaike Information Criterion, AIC [60].

Finally, we compared the predicted C. imicola abundance with

the number of BT outbreaks detected in livestock at the regional

Table 2. Variables used to model the environmental favourability for potential wild hosts of Culicoides imicola: red deer, roe deer
and wild boar.

Variable description Red deer Roe deer Wild boar

Mean annual precipitation –P– (mm)(1) + +

Maximum precipitation in 24 h –MP24– (mm)(1) + +

Relative maximum precipitation ( = MP24/P)

Mean annual number of days with precipitation $0.1 mm(1) 2

Mean annual number of hail days(1)

Mean annual number of foggy days(1) + + +

Mean annual potential evapotranspiration –PET– (mm)(1) 2 2

Mean annual actual evapotranspiration (mm) ( = min [P,PET]) + +

Mean relative air humidity in January at 07:00 h –HJN– (%)(1) + + 2

Mean relative air humidity in July at 07:00 h –HJL– (%)(1) 2 +

Annual air humidity range (%) ( = HJL-HJN)(1)

Mean temperature in January –TJN– (uC)(1) 2 2

Mean temperature in July –TJL– (uC)(1) + +

Annual temperature range (uC) ( = TJL-TJN)(1) +

Mean annual temperature (uC)(1) +

Mean annual number of frost days (minimum temperature #0uC)(1) 2

Continentality index(1) +

Humidity index(1) + + +

Mean annual insolation (hours year21)(1) 2

Distance to the nearest town with more than 100,000 inhabitants (km)(2) + +

Distance to the nearest town with more than 500,000 inhabitants (km)(2) +

Distance to the nearest highway (km)(2) + 2 +

Variables included in each model and the sign of their coefficients (positive or negative) are shown. All variables were retained at p,0.01.
Sources:
(1)[30];
(3)[53]; data on the number of inhabitants of urban centres taken from the ‘Instituto Nacional de Estadı́stica’ (http://www.ine.es).
doi:10.1371/journal.pone.0014236.t002
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veterinary unit level (outbreak data were taken from: http://rasve.

mapa.es) to assess the spatial association between vector

abundance and the BT occurrence rate [50,61]. For this purpose,

five thresholds were fitted to define the highest abundance of C.

imicola (500, 5000, 12000, 20000 and 50000). We quantified the

percentage of localities under each threshold in which at least one

BT outbreak was detected in 2007 as an index of spatial overlap

between C. imicola abundance and the number of outbreaks. Data

on BT outbreaks were considered for 2007 only because of the

emergence of the highly pathogenic BTV s1 in the Iberian

Peninsula and the absence of preventive vaccination of livestock at

that time. Thus, the number of BTV outbreaks in 2007 resembled

the natural expansion of BTV within the Spanish mainland. This

allowed us to associate an epidemiologic meaning to C. imicola

abundance predictions under scenarios of future climate change.

All statistical calculations were made using the SPSS 17 software.

Variation partitioning procedure. Variation partitioning is a

quantitative method in which the variation in a dependent variable can

be separated into independent components reflecting the relative

importance of different groups of explanatory variables (factors) and

their joint effects. This allows us to specify how much of the variation of

the final model is explained by the pure effect of each factor, i.e. not

affected by collinearity with other factors in the model, and which

proportion is attributable to their shared effect [36,62,63].

To do this, independent models for each factor were developed

using the statistically significant variables of each factor included in

the final model. These partial models are a measure of all the

variability explained by each factor (the circles in the Venn

diagram). Similarly, we developed partial models for each pair and

trio of factors. Then, variation partitioning procedures were applied

to the final model output (FMO), i.e. C. imicola abundance predicted

with all factors. For the partition of 4 factors (a, b, c and d), the FMO

was correlated against the partial predicted abundance calculated

with the retained variables pertaining to 3 of the factors (a, b and c,

for example). The residuals of this correlation represent the pure

effects of the 4th factor (d in this example), i.e. the part of the FMO

not explained by the other 3 factors. The amount of variation

explained by the pure effect of d (R2
p) was obtained with the

Pearson’s coefficient (squared to obtain the amount of variation

explained) obtained correlating the FMO with the partial predicted

abundance with the 3 included factors as follows: R2
p~1{R2

azbzc.

This process was repeated to obtain the variation explained by the

pure effect of each factor. The variation explained simultaneously

by two factors (R2
a\b; combined effects) was obtained using the

partial predicted abundance calculated with the other two factors,

specifically with the R2 obtained by correlating FMO and this

partial predicted abundance, and the R2 of the pure effects of the

two factors involved in the intersection as follows:

R2
a\b~1{R2

p:a{R2
p:b{R2

czd . The variation attributable to inter-

sections among trios can be analogously subtracted as follows:

R2
a\b\c~1{R2

p:a{R2
p:b{R2

p:c{R2
a\b{R2

a\c{R2
b\c{R2

d [63].

For applications and further details see [8,29,64,65].

Future projections: comparing present and future C.

imicola abundances. The predicted abundance of C. imicola for

each emission scenario was projected to the future by replacing the

current temperature and precipitation variables in the models with

those expected according to each climate change scenario for the

future period. Thus, two predictions of C. imicola abundance were

forecast, one per emission scenario. To do this, the values of the

other variables included in the final models (spatial, topography,

host and soil factors) were not modified between periods [27].

Multicollinearity among predictors can be a real problem when a

model is projected in other spatial or temporal situations outside the

range where it was calibrated [66]. So, we used each predictors’

variance inflation factor (VIF) to quantify collinearity among

predictors in the models for the present (A2 and B2) because they

were projected to a future situation. VIFs were calculated for each

predictor as the inverse of the coefficient of non-determination for a

regression of that predictor on all others (see [67]). VIF is a positive

value representing the overall correlation of each predictor with all

others in a model. Previous authors used a value of VIF.10 as the

threshold over which multicollinearity can be considered a problem

[68], but a more stringent approach is to use values as low as 3 [67].

We used a dual approach to compare present and future C.

imicola abundances. On the one hand, we quantitatively assessed

the relationship between C. imicola abundances predicted for the

present and abundances forecast for the future. This was

performed to assess if the predicted abundances would be higher

(or lower) in the future than those predicted for the present at a

locality level. Thus, we simply represented in a scatterplot the

abundance forecast for the future (y-axis) relative to the abundance

predicted for the present (x-axis), and visually evaluated if values

for the future were over (or under) the diagonal, which represents

the situation where the abundance forecast for the future equals

that predicted for the present. On the other hand, we assessed the

differences between periods (present and future) in terms of the

number of localities with ‘high’ predicted C. imicola abundance. To

this end we used the same procedure based on C. imicola

abundance thresholds previously described. We quantified (as

percentages) the localities with a predicted abundance over each

threshold for the present that were also forecast over this threshold

for the future as an index of the localities maintaining high C.

imicola abundance. We also quantified localities that were forecast

to be over the threshold for the future and that were predicted to

be under the threshold in the model for the present, which is

indicative of the localities where C. imicola was forecast to

substantially increase its abundance in the future.

Results

Wildlife abundance indices
The final functions for wild ungulate favourability models are

shown in Table 2. Favourability values for red deer were high

across the southwestern and northern areas of peninsular Spain

(Figure 2). Higher favourability values were found in the northern

half of peninsular Spain for roe deer and in eastern and

northeastern areas for wild boar.

Environmental conditionants of C. imicola abundance
The mean observed abundance of C. imicola, quantified as the

maximum number captured per night between April and October,

was (mean 6 SE, minimum–maximum): 679.196200.39, (0–

43000) in the period 2005–2008.

Only 3 out of the 21 considered predictors (latitude, temperature

seasonality and annual radiation) were not included in the final A2

and B2 models due to collinearity. The final models for A2 and B2

scenarios explained 59.1% and 59.2% of the total deviance,

respectively, and retained variables of the four factors (see Table 3).

Table 3 shows the variables which were found to drive C. imicola

abundance in peninsular Spain. The models obtained for the studied

emission scenarios were very similar both in relation to the variables

retained and the predicted abundance (Figure 3) regarding the

deviation explained. Given the high similarity detected between both

final models, we performed the variation partitioning procedure on

one of them only. The one selected was B2 since it explained a higher

deviance than A2. Variation partitioning demonstrated that the pure

effect of host and topoclimate factors explained a high percent

(.80%) of the variation (see Figure 4a). The pure effect of soil was the
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next in importance in explaining the abundance of C. imicola. As

expected, a high amount of variation was explained by the combined

effect of hosts-soil, hosts-topoclimate and soil-topoclimate, since there

is a close relationship between each pair of factors, such as the NDVI

linking topoclimate and soil. Partitioning complex factors (topocli-

mate and hosts) into their components (topography/climate and

wild/domestic hosts, respectively) demonstrated that within topocli-

mate the highest amount of variation was explained exclusively by

climate (Figure 4b), whereas wild ungulates explained a higher

variation than livestock within host factors (Figure 4c).

Figure 2. Maps of potential wild hosts abundance. Favourability, where 0 represents minimum favourability and 1 represents maximum
favourability, in UTM 10610 km squares for potential wild hosts of Culicoides imicola: red deer (a), roe deer (b) and wild boar (c). Current distributions
of these species, referring to 10610 km UTM grid cells, are depicted in the maps of the right; adapted from [49].
doi:10.1371/journal.pone.0014236.g002
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C. imicola abundance and risk of BT outbreaks
A close link was confirmed between C. imicola abundance and

BT outbreaks, even when the vector abundance predicted for the

present was low (Table 4), i.e. over 500 individuals maximum

capture. In addition, only around 5% of localities where C. imicola

abundance was predicted as absent (zero abundance) for the

present had at least one BTV outbreak. We should mention that

the predicted maximum C. imicola abundance of over 500

individuals in the present was almost exclusively restricted to

those areas where BT outbreaks took place in 2007 (see Figure 1).

C. imicola abundance under future scenarios of climate
change

The projection of the final C. imicola abundance models to future

climatic scenarios showed an expected increasing total predicted

abundance for each locality (Figures 3 and 5) although this increase

was not marked. According to the obtained VIF values no relevant

effects of multicollinearity are expected in the projections (mean

VIF value and range: 2.778, 1.346–4.433; 2.632, 1.345–4.164; for

A2 and B2 scenarios, respectively). Our predictions suggested that

the distribution area of this vector species will remain quasi-constant

in the future (Figure 3, Table 4). Nonetheless, the abundance of C.

imicola will substantially increase in the localities already occupied.

Finally, the higher rates of increases in distribution between periods

were obtained for the lower threshold, that is, the increased

distribution area is expected to present low abundance of C. imicola.

The depicted situation was consistent for both emission scenarios;

nevertheless, the obtained increment rates were higher for B2 than

A2 emission scenarios (Figure 5, Table 4).

Discussion

Considerations regarding the methodological approach
We studied the relative contribution of several factors to

determine the spatial pattern of abundance of a disease vector

arthropod using variation partitioning techniques. This was done

with the aim of deepening our understanding of the probable

causalities and explanatory powers of predictors in multivariate

models, but not with the aim of generating a predictive equation

[69]. Thus, it is relevant to enhance the explanatory power of

spatial predictive models. The variation partitioning procedure has

been widely used to explain the distribution of biodiversity [29],

but it has been less frequently applied to epidemiological studies

[8,70].

A large diversity of factors influencing C. imicola life-cycle were

considered in the present study, and the application of variation

partitioning allowed us to determine how much of the variation in

the predicted C. imicola abundance was explained by the pure

effect of each factor (topography and climate, host, soil and spatial

factors), and what proportion could only be attributed to their

shared effects. To date, only predictors related to climate,

topography and soil have been considered for determining the

distribution and abundance of C. imicola [10,16,18,22,71]. To the

best of our knowledge, this is the first broad assessment of factors

determining C. imicola — and any vector species — abundance at a

large geographical scale. In view of the emergence of the concept

of ‘environmental health’ (http://www.oneworldonehealth.org),

variation partitioning may help to analyse data on emerging

diseases as follows: i) by identifying the most relevant factors

determining disease prevalence and spread; and ii) by delimitating

epidemiological management units in relation to the factors

involved in the transmission of the studied pathogen, e.g. by using

freely available data from web-based epidemiological surveillance

networks [72].

To date, the effect of climate change on C. imicola distribution

and abundance only has been assessed in an oversimplified way

using idealized scenarios, sensu [73], in which an increase in

temperature is assumed to be constant for all territorial units in the

study area [22]. In this study, changes in climate between periods

were considered according to one circulation model and two

emission scenarios following the guidelines of the Intergovern-

mental Panel on Climate Change. In addition, some authors have

questioned the validity of models based only on climatic variables

for forecasting future species distributions [74,75], since many

factors other than climate play an important role in determining

species distributions and their dynamics over time. Consequently,

and as conducted in this study, climate effects on species

distributions should be considered together with other influential

factors to be able to forecast modifications in species ranges due to

climate change [27].

Factors determining C. imicola abundance
The models obtained for the two studied emission scenarios were

very similar regarding both their explanatory and predictive power.

This result agrees with previous studies in which low levels of

uncertainty between emission scenarios were reported when

modelling species distribution [42,65,76]. The climate scenario

modelled for the present using the CGM2 circulation model

obtained higher precipitations under the A2 emission scenario than

under the B2 scenario, although they were quite similar. Differences

between scenarios were even less in terms of monthly temperatures.

Table 3. Variables included in the Culicoides imicola
abundance model (GLM binomial negative distribution with
logarithmic link function) according to the CGM2 circulation
model and the A2 and B2 emission scenarios.

Variable A2 B2

Estimate Wald Estimate Wald

LO 2.11*1026 57.624 1.80*1026 43.931

A 20.004 1435.267 20.004 1540.023

S 0.366 824.084 0.369 846.350

T 0.134 42.766 0.147 51.287

P 20.010 248.338 20.011 276.241

Ps 20.010 9.811 20.017 29.835

Fred 7.551 2273.938 7.619 2314.680

Froe 22.465 298.214 22.530 310.008

Fwild 23.911 871.300 23.932 882.893

DL 0.258 33.594 0.255 32.732

DC 21.925 123.697 21.929 124.670

WL 20.038 270.870 20.038 270.036

IL 0.007 23.012 0.007 23.607

UL 0.016 44.732 0.017 52.074

SL 0.010 30.608 0.010 30.282

NDVI 0.033 213.084 0.036 248.979

NDVIs 0.068 232.390 0.069 243.169

SP 1.196 1666.474 1.201 1687.036

Intercept 22.945 48.666 22.882 46.331

All variables were retained at p,0.01. Variables coded as in Table 1.
doi:10.1371/journal.pone.0014236.t003
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For example, a 1 mm and 0.02uC difference was observed between

the A2 and B2 scenarios for the present period relative to annual

precipitation and annual mean temperature, respectively [27].

Hosts. Variation partitioning showed that the abundance of

potential hosts, regardless of the other factors considered, attained

the highest explanatory power among the factors considered to

predict C. imicola abundance. To our knowledge, host abundance

has never been considered in predictive modelling for an

arthropod vector species, despite hosts being suggested as

potential conditioning factors of vector distribution patterns

[9,22]. Additionally, host competence (referring to livestock only)

in the epidemiology of BT was recently demonstrated when

analyzing factors determining the occurrence of BT outbreaks in

Spain [61]. The high explanatory power of wildlife abundance,

which is substantially higher than even that attained by livestock

density, may be mediated by different explanations as follows: i)

wildlife — mainly red deer — may really be playing an important

role in the ecology of C. imicola, since high densities – up to 69

deer/100 ha [77] – are present in southwestern mainland Spain;

and ii) wildlife abundance was modelled with climatic variables,

and thus the percentage explained by wildlife can probably be

attributed in part to the topoclimate factor.

Unfortunately, the true role of wildlife in explaining C. imicola

abundance cannot be inferred from our study design, and

experimental studies may be necessary. Nonetheless, it should be

mentioned that C. imicola may feed on wild ungulates, as BTV was

detected in these animals [44] in areas where other competent

BTV reservoir Culicoides spp. are not abundant [16]. Thus, local

variations in host availability and composition may impair

suitability for C. imicola and thus drive its local abundance and

local C. imicola-borne disease epidemiology. In this respect, and

even though our results should be taken with caution, a gap in our

knowledge concerning the role of wildlife in C. imicola ecology and

BTV epidemiology was found and this should be addressed in

future studies.

Topography and climate. Topography and climate play a

relevant role in spatial modelling since the geographic ranges of

species at large-spatial scales are limited by abiotic conditions [38].

Figure 3. Predicted Culicoides imicola abundance. Current predicted Culicoides imicola abundance (maximum number of captures per night)
according to the CGM2 circulation model and the A2 (a) and B2 (c) emission scenarios (see text for details). Abundance was forecasted for the 2011–
2040 period using CGM2 circulation model and the A2 (b) and B2 (d) emission scenarios.
doi:10.1371/journal.pone.0014236.g003
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Thus, our results showed a high explanatory power of the pure

effect of the topoclimate factor, mainly due to climatic conditions.

Precipitation and its seasonality, and to a lesser extent

temperature, were the climatic variables represented in the final

models. Our findings contrast with previous studies in which

temperature-related variables achieved the highest explanatory

power for C. imicola distribution models [22], suggesting a degree

of temperature-related limitation of vector persistence [35]. The

high weight of precipitation found may agree with the requirement

of C. imicola for humid organically enriched soil as breeding sites

[17]. The importance of precipitation over temperature was also

reported when modelling BT outbreaks in Spain [61]. Thus,

different climatic requirements are probably modulating species

distribution and species abundance at a biogeographical scale.

Abundance models for C. imicola are ecologically (climatically)

more similar to BTV distribution models than species distribution

models; thus, the former are probably more suitable for

consideration in BTV epidemiological studies.

Soil. The pure effect of soil (land cover and soil permeability)

was the next in importance in explaining C. imicola abundance. In

our model, the high explanatory power of NDVI, and its

seasonality, is consistent with previous studies modelling both C.

imicola distribution [16,71,78] and BT occurrence [50,61]. Even

when NDVI variables were retained in the final models, soil

permeability — a variable closely related to the water-holding

capacity of soil — was shown to be the most relevant of the soil-

related variables [18]. These relationships between NDVI and soil

permeability and C. imicola abundance can be interpreted from the

perspective of the basic requirements of C. imicola larvae [79].

Whereas moisture is critical to their survival, nutrients are essential

for their development and for the completion of their life-cycle, as

mentioned. Thus, C. imicola prefers water-saturated, barely

permeable, soil with high levels of organic matter, as shown by

NDVI values. The land cover variables considered in our study

were also retained in the final models, but were less significant

than the remaining soil-related variables. This result is consistent

with the findings of [20] who reported the limited ability of

CORINE classification to accurately predict Culicoides breeding in

Danish farmland.

Spatial components. C. imicola abundance was barely

explained by the spatial component, demonstrating the absence

(or weak presence) of a spatial structure in the abundance data

[36]. This factor should be considered in all spatially explicit

models in order to reveal geographical trends associated with

historical events or species population dynamics [29]. The results

obtained can be understood by the high dependence of C. imicola

on suitable local conditions [10,17,18]. To the best of our

Table 4. Spatial overlap between predicted Culicoides imicola
abundance for present and future periods according to the
CGM2 circulation model.

Thresholds/Model P FP BT

500 A2 100 2.72 89.62

B2 100 4.36 88.93

5000 A2 100 1.67 98.71

B2 100 2.34 99.13

12000 A2 100 0.79 100

B2 100 0.98 100

20000 A2 100 0.42 100

B2 100 0.63 100

50000 A2 100 0.08 100

B2 100 0.08 100

The A2 and B2 emission scenarios are shown. Different thresholds for the
abundance of C. imicola were fitted to conduct the estimations. We estimated
the percentage of localities with a predicted abundance over each threshold for
the present that were also over the same threshold for future periods (P).
Additionally, we estimated the percentage of localities predicted over each
threshold for the future and under the same threshold in the present model
(FP). Similarly, we estimated the percentage of localities with C. imicola
abundance over the threshold — only with models for the present — with at
least one bluetongue outbreak detected in 2007 (BT).
doi:10.1371/journal.pone.0014236.t004

Figure 4. Variation partitioning results. Results of variation partitioning of the final model for the B2 emission scenario (a), and of the partial
models obtained for the topoclimatic factor (b), and for the host — wild ungulates and livestock — factor (c). Values shown in the diagrams are the
percentages of variation explained exclusively by topoclimate (TC), hosts (H), spatial location (G), and soil (S) and by the combined effect of these
factors. See Table 2 for details of the variables included in each of the mentioned factors.
doi:10.1371/journal.pone.0014236.g004
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knowledge, only [61] included the autologistic term in their

models on BT epidemiology. Similarly, they found a low degree of

spatial correlation, which was attributed to the BT data used in

modelling that probably oversimplified the true spatial structure of

BTV occurrence.

Combined effects. Our results show that a high amount of

variation can only be explained by the combined effect of two (or

more) factors. Specifically, topoclimate, hosts and soil, in pairs,

attained higher amounts of variation. This is due to the

interactions between factors and the effects being overlaid

subsequently [70]. In this regard, the results obtained were

expected since the factors mentioned above are interrelated, such

as NDVI linking topoclimate and soil. Variation partitioning or

similar tools [80] allow measuring the pure effect of each factor

involved in a multi-factorial analysis.

Projections to future scenarios of climate change
Forecasted projections of C. imicola abundance for the near

future are only based on changes in precipitation and temperature

according to the Intergovernmental Panel on Climate Change

[40]. However, indirect effects of climate on land use, host

distribution or host population dynamics may modulate the life-

cycle of C. imicola in the future and hence our predictions.

Predicting climate change-associated indirect effects on these

factors is difficult but they have to be borne in mind when

interpreting our predictions on C. imicola abundance.

The projection of the final models to future climatic scenarios

showed that the forecast C. imicola abundance is expected to

increase in each locality (Figure 5), whereas its forecast distribution

area will increase by a smaller amount (increase rate less than

4.5%). A stable trend in the C. imicola distribution range was

recently reported using field data from surveillance programmes,

such as those conducted in Portugal [81] and in Italy [26]. C.

imicola has not appeared to increase its distribution range in

Portugal since the mid-1990s, and the results from Italy

demonstrated no detectable species range expansion between

2002 and 2007. However, it has been suggested that C. imicola is

undergoing range expansion in the Mediterranean region, based

on field data and on modelling [22], demonstrating a contrasting

species response to changing climatic conditions. Other authors

concluded that these regional differences are probably related to

climatic characteristics [82]. Thus, this species has mainly

expanded into warm areas (eastern Spain, northern Italy, southern

France and northeastern parts of Greece), whereas areas where

temperatures have remained largely unchanged, such as Portugal,

have not experienced this type of expansion.

Several hypotheses have been proposed to explain C. imicola

range stability [26], some of which aid in interpreting the results

obtained in this study. The first hypothesis is related to the fact

that C. imicola may be expanding its distribution ranges at rates

which were too low to be detected during our study periods. If the

models obtained are projected to more future periods, then

significant species expansions will probably be detected. However,

the accuracy of the predictions will be reduced, and thus their

applicability to disease risk management policy, due to the current

uncertainty associated with circulation models and emission

scenarios [42]. In addition, a clear increase in abundance was

forecast, demonstrating an effective response of the species to

climate change between the study periods. Thus, some evidence

suggests that factors other than climatic ones may be involved

[9,83].

In this sense, an alternative hypothesis emerges. As previously

stated, several factors play an important role in explaining vector

and host dynamics over time [75]. Thus, they could determine

species ranges in future scenarios [27], with subsequent implica-

tions for pathogen emergence and spread [84]. A broad

assessment, as conducted in this study, suggests that C. imicola

may spread, but probably only into those areas where other

requirements are fulfilled, rather than moving along a wide front

of increased temperature, as suggested by [22].

Relationships between vector abundance and BTV
Although our study focussed on the factors driving C. imicola

abundance, our main aim was epidemiological and centred on the

study of the determinants of orbiviruses threatening animal health

in Europe. Our findings on C. imicola abundance suggest that the

geographic distribution of orbiviruses expected in future scenarios

would not increase if C. imicola was the only, or at least the most

relevant, competent reservoir of orbiviruses. Nonetheless, recent

evidence shows that the ecology of orbiviruses in Europe is more

complex than previously thought due to other Culicoides spp. acting

as new competent vectors [13,15]. We suggest that a higher C.

imicola abundance may significantly change the rate of transmis-

Figure 5. Present/future comparisons in Culicoides imicola
abundance. Relationships between the predicted Culicoides imicola
abundance (maximum number of captures per night) for present and
future periods according to the CGM2 circulation model and the A2 and
B2 emission scenarios.
doi:10.1371/journal.pone.0014236.g005
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sion of orbiviruses and facilitate more severe epidemics. It is

nonetheless essential to conduct specific studies on the epidemi-

ologic factors driving orbivirus circulation rates, including the

influence of competent vectors, before being able to accurately

forecast future epidemics.
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