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Purpose: To demonstrate the feasibility of reconstructing a cone-beam CT �CBCT� image by
deformably altering a prior fan-beam CT �FBCT� image such that it matches the anatomy portrayed
in the CBCT projection data set.
Methods: A prior FBCT image of the patient is assumed to be available as a source image. A CBCT
projection data set is obtained and used as a target image set. A parametrized deformation model is
applied to the source FBCT image, digitally reconstructed radiographs �DRRs� that emulate the
CBCT projection image geometry are calculated and compared to the target CBCT projection data,
and the deformation model parameters are adjusted iteratively until the DRRs optimally match the
CBCT projection data set. The resulting deformed FBCT image is hypothesized to be an accurate
representation of the patient’s anatomy imaged by the CBCT system. The process is demonstrated
via numerical simulation. A known deformation is applied to a prior FBCT image and used to create
a synthetic set of CBCT target projections. The iterative projection matching process is then applied
to reconstruct the deformation represented in the synthetic target projections; the reconstructed
deformation is then compared to the known deformation. The sensitivity of the process to the
number of projections and the DRR/CBCT projection mismatch is explored by systematically
adding noise to and perturbing the contrast of the target projections relative to the iterated source
DRRs and by reducing the number of projections.
Results: When there is no noise or contrast mismatch in the CBCT projection images, a set of 64
projections allows the known deformed CT image to be reconstructed to within a nRMS error of
1% and the known deformation to within a nRMS error of 7%. A CT image nRMS error of less than
4% is maintained at noise levels up to 3% of the mean projection intensity, at which the deforma-
tion error is 13%. At 1% noise level, the number of projections can be reduced to 8 while main-
taining CT image and deformation errors of less than 4% and 13%, respectively. The method is
sensitive to contrast mismatch between the simulated projections and the target projections when
the soft-tissue contrast in the projections is low.
Conclusions: By using prior knowledge available in a FBCT image, the authors show that a CBCT
image can be iteratively reconstructed from a comparatively small number of projection images,
thus saving acquisition time and reducing imaging dose. This will enable more frequent daily
imaging during radiation therapy. Because the process preserves the CT numbers of the FBCT
image, the resulting 3D image intensities will be more accurate than a CBCT image reconstructed
via conventional backprojection methods. Reconstruction errors are insensitive to noise at levels
beyond what would typically be found in CBCT projection data, but are sensitive to contrast
mismatch errors between the CBCT projection data and the DRRs. © 2010 American Association
of Physicists in Medicine. �DOI: 10.1118/1.3515460�
Key words: deformable image registration, 2D/3D registration, cone-beam CT
I. INTRODUCTION

Image-guided adaptive radiation therapy �IGART� uses re-
petitive imaging to observe and track changes in patient
anatomy from the initial treatment planning study to the end
of the treatment regimen.1 The imaging data can be used to

compile cumulative dose distributions that show the actual
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patterns of dose deposition in the changing anatomy.2 If nec-
essary, the treatment plan can then be adjusted to compensate
for any changes that are observed.3

The present imaging paradigm for IGART is the acquisi-
tion of daily �or near-daily� CT images4 because CT is the
core imaging modality for treatment planning, dose calcula-

tion, and adaptation. Presently, these images are used prima-
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rily for improved setup of targeted soft-tissue structures via
3D/3D registration,5 but IGART has the greater ambition of
using them for daily plan adaptation as well.6 Because the
daily CT images should be acquired just prior to the begin-
ning of each fraction, they are commonly obtained via cone-
beam CT �CBCT� imaging systems attached directly to the
linear accelerator gantry.6 However, this procedure prolongs
treatment and delivers non-negligible imaging dose to the
patient. For example, 40 daily pelvic CBCTs using 400 pro-
jections acquired at standard technique delivers approxi-
mately 100 cGy.7 While this dose may seem inconsequential
in the context of radiotherapy, it cannot be neglected. The
general principle of managing imaging dose is to make it as
low as reasonably achievable. If an acceptable image can be
obtained with less dose, then one should try to do so. Con-
sequently, dose reduction for daily CBCT has become a topic
of growing concern.5,8 Furthermore, in the case of CBCT,
conventional backprojection reconstruction methods produce
images that have more artifacts, more noise, and less accu-
rate CT numbers than the conventional fan-beam planning
CT image.9 The IGART process would benefit if these draw-
backs to daily CBCT imaging could be rectified.

There are three ways to reduce dose in CBCT: �1� Reduce
the technique �mA s� at the cost of higher noise in the projec-
tions,5,8 �2� reduce the field of view of the projections,10 and
�3� reduce the total number of projections.11 Current research
is examining several methods to reduce dose via these strat-
egies, including tomosynthesis,12 prior image constrained
compressed sensing �PICCS�,13 and volume-of-interest
CBCT �VOICT�.10 Tomosynthesis adapts filtered backprojec-
tion to handle projection data acquired over less than a full
gantry rotation, which reduces the total number of projec-
tions. PICCS builds a sparsified image representation that is
consistent with a limited set of projection data and then in-
verts the sparsified representation to obtain the reconstructed
image. The VOICT method uses the conventional number of
projections, but substantially reduces dose by filtering the
beam so that areas outside the VOI receive less radiation.
Tomosynthesis and VOICT attempt to reconstruct the CT
image entirely from information in the �limited� projection
data set, while PICCS additionally uses a prior source CT
image for sparsification.

In IGART, each successive CT image adds only incre-
mental information to the original planning CT image. Con-
sequently it should not be necessary, in principle, to obtain a
complete new CBCT data set each day. We demonstrate here
a novel deformable image registration �DIR� method to re-
construct a CBCT image from a limited number of projec-
tions by incorporating prior anatomical imaging knowledge
from a planning FBCT into the reconstruction process,
thereby reducing acquisition time and imaging dose while
maintaining the quality and CT number fidelity of a fan-
beam CT �FBCT� image. In our proposed method, we use the
planning FBCT image as a source image and then perturb it
with a deformation function such that it matches the anatomy
recorded in the projection image data set of a subsequent
CBCT scan. We reduce the number of CBCT projection im-

ages to the minimum number that, in combination with the
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prior FBCT information, can provide an accurately recon-
structed new image. Figure 1 shows a flowchart for the
method which proceeds as follows:

�1� A set of N cone-beam CT projection images are obtained
as the target data set;

�2� A parametrized displacement vector field �DVF� is ap-
plied to the prior planning FBCT image;

�3� A set of N digitally reconstructed radiographs �DRRs�
are calculated from the deformed FBCT image using the
CBCT imaging geometry;

�4� The deformation parameters for the DVF are iteratively
adjusted until the DRRs optimally match the target
CBCT projections;

�5� The resulting deformed FBCT image portrays the
anatomy as it appears during the CBCT scan and can
thus be used for IGART in place of the backprojected

FIG. 1. A flowchart showing how the method takes the initial parameters,
the source CT image, and the target radiographs to produce the estimated
displacement vector field.
reconstruction of a complete CBCT scan.
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This is essentially a generalization of 2D/3D rigid regis-
tration to incorporate deformation. We will refer to it as
CBCT image reconstruction via forward iterative projection
matching. It is similar in concept to the projection-to-volume
method recently proposed by Long et al.14

An initial proof of concept for this method, using 2D
source images and 1D projections, was reported by Docef
and Murphy in 2005.11 To continue developing the method
under progressively more realistic conditions, we have car-
ried out two simulation studies using 3D CBCT imaging sce-
narios. The first study used a synthetic source image to
which a known deformation was applied. Synthetic target
radiographs representing the CBCT projection data were
then generated. The reconstruction method was then applied
to the source image and target radiographs and the resulting
DVF and deformed source CT image were compared to the
known deformation and the known deformed target CT im-
age. The second study was simulated in the same way using
an actual pelvic CT image as the source image.

To emulate a realistic data and reconstruction scenario, we
added varying levels of noise to the synthetic target projec-
tions and altered their contrast relative to the iterated source
DRR projections. This way we simulated the kind of DRR/
CBCT projection discrepancies that will exist in the real
world and explored the DRR fidelity needed to achieve ac-
curate CBCT reconstruction.

To find the minimum necessary number of CBCT projec-
tion images, we systematically reduced the number of pro-
jections used in the iterative matching process until a sub-
stantial loss of reconstruction accuracy was observed.

Our numerical tests provide a ground truth for the accu-
racy of the CBCT reconstructed via our method. Under these
idealized circumstances, we show here that an accurate re-
construction of the anatomy recorded by the CBCT projec-
tions can be obtained with only a small fraction of the total
number of projections needed to reconstruct a CBCT image
from scratch via backprojection. This shows that successive
daily CBCT images can be acquired in considerably less
time and with much less imaging dose than a conventional
CBCT reconstruction while preserving the CT number fidel-
ity and image quality of the planning FBCT image.

II. METHOD AND MATERIALS

We begin by defining some terms. We will refer to the
initial FBCT image as the source image and the patient’s
anatomy at that moment as the source anatomy. This is the
“prior knowledge” that will be used by the iterative recon-
struction process. We will refer to the patient’s anatomy at
some later time as the target anatomy. The CBCT projections
of the target anatomy will be called the target projection data
set. The anatomy that results from applying the DVF to the
source anatomy during the iterative process will be called the
deformed source anatomy.

For the present feasibility study we have applied a known
deformation to the source CT images to create a simulated

target anatomy, from which we have created a synthetic set
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of target CBCT projection images. We have then used our
method to determine the accuracy with which we can recover
the known deformation.

We hypothesize that the accuracy with which the actual
target anatomy deformation can be reproduced in the de-
formed source CT image will depend on three factors: �a�
The number of target projections and their angular sampling
range, �b� the noise in the target images, �c� and imperfec-
tions in the DRRs relative to the actual target radiographs,
exemplified by contrast differences. We have therefore orga-
nized our simulations to test the effect of these three vari-
ables.

II.A. Source and target CT image data

Our simulations used two different 3D image data sets as
source CT images: �1� A simple numerical phantom object
consisting of a sphere with spatially variable internal texture
and �2� a 3D fan-beam CT image of a male prostate cancer
patient. The synthetic sphere CT had 256�256�74 voxels
of dimension 1.844�1.844�3.000 mm3. A slice through
the numerical phantom is shown in Fig. 2. A representative
projection through this object is also shown in Fig. 2. The
pelvic CT image had 512�512�74 voxels of dimension
0.9219�0.9219�3.00 mm3, which was downsampled to
256�256�74 voxels. Figure 3 shows a representative pel-
vic CT slice and a representative projection through this
anatomy.

To create a deformed version of the source CT image to
represent the target anatomy at a later time, we deformed a
region of interest �ROI� having 86�86�30 voxels �154.9
�154.9�90 mm3� and centered at the source image center.
The deformation was a free-form DVF u�x� that transformed
the 3D source image IS to the target image IT according to
IS�x+u�x��= IT�x�. The DVF repositions each anatomical
point in the source image to its new position in the target
image. This DVF and the associated deformed image became
the known DVF and target CT image that we attempted to
recover via the forward iterative projection matching proce-
dure.

The known DVF had a three-dimensional Gaussian shape
as follows:

u�x� = �Ax,Ay,Az�

�exp�−
�x − �x�2 + �y − �y�2

�xy
−

�z − �z�2

�z
� , �1�

where �Ax ,Ay ,Az�= �0,0 ,−14.75 mm�, �x=0, �y =0, �z=0,
�xy =208.9 mm, and �z=70.5 mm. This was applied to each
of the two source CT images to create the synthesized target
CT images, which were then used to create synthetic sets of
target CBCT projection images via DRR ray-tracing.

II.B. Digitally reconstructed radiograph projections

DRRs can be made from a CT image by ray-tracing a line
integral of x-ray attenuation coefficients from the center of
each pixel in the projected image plane back through the CT

image to the x-ray source position, taking incremental steps
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of length � along the ray and interpolating the nearby CT
numbers at each step to get the local x-ray attenuation coef-
ficient. A pixel value p is calculated according to Eq. �2�,

p = exp�− �
i

�I�xi��� , �2�

where I�xi� is the CT number at the position of the ith step
along the ray, � is the conversion factor from CT number to
attenuation coefficient, and � is the step length.

From each of the target deformed CT images, we made 64
target projections at equally spaced angular intervals about
the superior-inferior axis to simulate the CBCT target projec-
tion data. This is the typical cone-beam axial projection ge-
ometry. Each projection had dimensions of 232.8
�135.2 mm2 and had 149�87 pixels. We then added noise
to the target radiographs and altered their contrast relative to
the iterated DRRs to emulate conditions that will be encoun-
tered when applying this method to real CBCT data.

FIG. 2. A slice through the spherical CT image
FIG. 3. A slice through the pelvic CT image �left� a
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II.C. Parameterized displacement „i.e., deformation…
vector field

To iteratively deform our source FBCT image for the pro-
jection matching process, we applied a parametrized model
of u�x� that transformed the 3D source image IS into a de-
formed source image IS� according to IS�x+u�x��= IS��x�. The
3D deformed source image IS� was then used to generate the
DRRs for matching against the target CBCT projection im-
ages. We used parametric B-splines to model u�x�, thus
greatly reducing the dimensionality of the problem.15 In this
representation, the vector field u�x� is expanded on a basis of
nth order B-spline functions B�n��x� as follows:

u�x� = �
ijk

aijkBi
�n��x�Bj

�n��y�Bk
�n��z� , �3�

where �x ,y ,z� are coordinates in the CT image coordinate
frame, the subscripts �i , j ,k� designate the �x ,y ,z� B-spline

and a projection through the CT image �right�.
�left�
nd a projection through the CT image �right�.
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functions, and the B-spline basis functions are defined by the
following recursion relations:

Bi
�n��x� = ��x − xi�/�xi+n − xi��Bi

�n−1��x� + ��xi+n+1

− x�/�xi+n+1 − xi+1��Bi+1
�n−1��x� ,

Bi
�0��x� = 1; xi � x � xi+1,

Bi
�0��x� = 0; otherwise. �4�

The control points aijk are adjustable parameters in the
iteration process. In our tests, we used second order
B-splines with up to seven control points uniformly distrib-
uted along each axis. The DVF is constructed by evaluating
Eq. �3� at points x that correspond to the voxel centers in the
deformed CT. The control points aijk are free parameters that
alter the deformation of the CT.

II.D. Iterative matching procedure and similarity
metric

The model DVF was iterated via the nonlinear conjugate
gradient method �NCGM�.16 The NCGM uses the gradient of
the similarity function to update the model parameters. For
the proposed method, the similarity function S is the sum of
the squared differences of the pixel intensities in all of the
DRRs di and the target radiographs pi

S = �
i

�di − pi�2. �5�

To determine the gradient of the similarity function, the
derivative of each test DRR with respect to the DVF model
parameters �i.e., the B-spline control points� is needed. Fol-
lowing from Eqs. �2� and �3�, the derivative of the DRR pixel
value �p� with respect to some control point component �aijk�
is given in Eq. �6�

�

�aijk
p = �Hp� �I ·

�

�aijk
u� . �6�

FIG. 4. A projection through the pelvic CT image with a 1
n
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The iterative process was terminated when the rate of
change of the similarity function dropped below a threshold
value. To be explicit, the termination condition is 2�Si

−Si−1����Si+Si−1�.
This iterative matching procedure was carried out in

stages beginning with two control points and continuing with
three, five, and seven control points. This multiscale tech-
nique is a common and effective strategy for avoiding traps
in local minima. At each stage, a multiresolution method was
employed whereby the number of pixels used in the similar-
ity function was 1/64, 1/16, 1/4, and 1 times the total number
of pixels. This also helps defend against trapping in local
minima.

II.E. Testing matrix and evaluation

We made a set of tests in which we varied three param-
eters: Projection noise, projection contrast mismatch, and
number of projections. Noise levels were 1%, 3%, or 5% of
the mean pixel value. Figure 4 shows one of the projections
for the 1% noise case for the pelvic CT image. Contrast
mismatch was introduced by altering the target projection
pixel intensities by the nonlinear gamma function of Eq. �7�

p = p − �pmax sin�2�p/pmax� , �7�

with � values of 0.0025 and 0.005, which is also shown in
Fig. 4. The numbers of radiographs used were 64, 32, 16, 8,
and 4. For each test, the projection matching process was run
to convergence, after which the estimated DVF was com-
pared to the known Gaussian DVF using the normalized root
mean squared error �nRMSE� between the two as the simi-
larity metric. The similarity of the final deformed source CT
image to the known target CT image was also measured via
the nRMSE. The nRMSE of an iterated test data set Ai com-

ise level added �left�; �=0.0025 contrast mismatch �right�.
% no
pared to the target data set Bi is defined as
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nRMSE = ��
i

�Bi − Ai�2

�
i

�Bi − ��2 	
1/2

, �8�

where � is the average of all the Bi in the target data. For the
CT image nRMSE, A and B represent CT numbers within the
ROI, while for the DVF nRMSE, A and B represent the
�x ,y ,z� components of the DVF within the ROI. Note that
the DVF nRMSE calculation was carried out using the x, y,
and z components of the all of the vectors of the DVF and
not on the magnitudes of these vectors. To obtain a more
clinically useful error measure, the difference between the
known DVF and estimated DVF was taken to obtain a set of
error vectors. Then, the mean and maximum of the magni-
tude of the error vectors was calculated.

To establish a gold standard for the accuracy with which
the known Gaussian DVF can be estimated, we fitted it di-
rectly with a 3D B-spline model with seven control points
and calculated the nRMSE. This is the best result one can
obtain. We then registered the original source CT images to
their known target counterparts using a 3D/3D B-spline DIR
algorithm17 and calculated the nRMSE for that. This gave us
a second gold standard defined by a conventional 3D/3D
registration process. The quality of our DVF estimated via
the 2D projection matching process can be compared to these
two standards.

III. RESULTS

Figure 5 depicts the center y-z planes of the ROIs of the
source CT image, the known deformed CT image, and the
reconstructed CT images for both the numerical phantom and
the pelvic CT image. �Note: The reconstructed CT images
are for the cases with no noise or contrast mismatch.� A
comparison of the resultant images with the source images
shows that the method is able to reconstruct the CT image
with a visual quality comparable to that of the source CT
image. Also, it is difficult to �visually� distinguish the differ-
ences between the known deformed CT image and the de-
formed image resulting from the reconstruction. However,
the quantitative assessment which follows reveals some dif-
ferences.

The 3D Gaussian DVF applied to the two source CT im-
ages can be fit by a 3D B-spline model with seven control
points per axis with a nRMSE of 0.0227. When the deformed
target CT images were registered directly to the source CT
images using the parametric B-spline DVF model with seven
control points, the Gaussian DVF was recovered with a
nRMSE of 0.0271 for the numerical phantom and nRMSE of
0.0299 for the pelvic CT image. These results represent gold
standards against which the accuracy of the iterative projec-
tion matching process can be compared.

The results using 64 target projections are summarized in
Tables I and II for the numerical phantom and pelvic CT
image, respectively. �We note that the maximum errors in-

variably occur around the perimeter of the reconstructed im-
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age volume, due to edge effects.� Table III shows the results
for 1% noise with the 64, 32, 16, 8, and 4 target projections
for the pelvic CT image. When there is no noise or contrast
mismatch in the CBCT projection images, a set of 64 projec-
tions allows the known deformed CT image to be recon-
structed to within a nRMS error of 1% for both the numerical
phantom and pelvic CT image. Under the same conditions,
the known deformation is reconstructed to within a nRMS
error of 3% for the numerical phantom and 7% for the pelvic
CT image. A CT image nRMS error of less than 4% is main-
tained at noise levels up to 3% of the mean projection inten-
sity for both CT images and under these conditions, the de-
formation error is 5% for the numerical phantom and 12%
for the pelvic CT image. At a 1% noise level, the number of
projections can be reduced to 8 while maintaining CT image
and deformation errors of less than 5% and 13%, respec-
tively, for the pelvic CT image.

For the contrast mismatch, the reconstruction errors for
the numerical phantom and pelvic CT image differ greatly.
With contrast mismatch, the pelvic CT image was recon-
structed with a nRMS error approximately four times greater
than that of the numerical phantom for both cases.

IV. DISCUSSION

The method described here, which supplements a limited
set of CBCT projection data with prior knowledge from a
FBCT image, differs fundamentally from tomosynthesis and
other limited projection methods that reconstruct a CBCT
image entirely from the projection data set. These other lim-
ited projection methods will have more artifacts and image
irregularities than a CBCT image reconstructed from a full
projection set, which itself is inferior to a FBCT image. Our
method preserves the quality and integrity of a FBCT image.

A method similar to ours has recently been described by
Hurvitz and Joskowicz18 but in their approach, the prior in-
formation is supplied by an atlas model rather than a patient-
specific CT image and they are primarily concerned with
bone surface reconstruction for intraoperative purposes. We
require accurate reconstruction of all soft-tissue image con-
tent, which is inherently a more difficult problem.

With contrast mismatch, the reconstruction accuracy for
the deformed pelvic CT image differed greatly from that of
the numerical phantom. We hypothesize that this is due to the
inherent differences in the CT image contrast. The numerical
phantom has a pronounced variation from high CT number
to low CT number, resulting in projections with high-contrast
deformed structures, while the pelvic CT image has low-
contrast deformed structures interspersed with high-contrast
structures. In the projections, the apparent deformation of the
low-contrast structures can be substantially affected by a
slight DRR/projection contrast mismatch. From the results
for the pelvic CT image, we conclude that when the de-
formed anatomical structures appear with low contrast in the
CBCT projections, the method requires accurate projection
simulation.

The results for both the numerical phantom and the pelvic

CT image show that the method is tolerant of noise levels
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that exceed what is found in actual CBCT projections. This is
consistent with the earlier findings of Murphy et al.17 for
3D/3D CT deformable registration and may allow for an in-
crease in noise during image acquisition in order to lower

FIG. 5. The region of interest for the source CT images for the numerical p
CT images for the numerical phantom �middle left� and the pelvic CT image
for the numerical phantom �lower left� and the pelvic CT image �lower righ
imaging dose to the patient.
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Using as few as eight images �with a 1% noise level�, the
pelvic CT image could be reconstructed with reasonable ac-
curacy �nRMS error of 0.0370�. The typical CBCT scan con-
sists of 600–700 images. Our results show that if a prior

m �upper left� and the pelvic CT image �upper right�, the known deformed
le right�, and the resultant CT images reconstructed via projection matching

ow that the source �FBCT� image quality is preserved.
hanto
�midd
FBCT image is available, then this number can be reduced
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by an order of magnitude or more. This shortens the scan
time and allows a significant reduction of imaging dose to
the patient.

All optimizations were carried out using an Intel Core i7
2.8 GHz processor. A complete calculation required from 47
to 194 iterations, each iteration requiring the calculation of
anywhere from 136 to 238 DRRs. For the numerical phan-
tom, the time to run 194 iterations of 238 DRRs was 19.61
min and for the pelvic CT image the corresponding time was
20.75 min. These times are not practical for clinical use in
online IGART therapy. Profiling the code has shown that
90% of this time is spent doing DRR calculations. We are
consequently porting the DRR calculations to a graphics pro-
cessing unit that is capable of computing 160 DRRs per sec-
ond. This will bring running times below 6 min for the most
computationally intensive cases.

Our feasibility study has so far relied on numerical simu-
lations to maintain a ground truth for accuracy assessments.
A real clinical reconstruction case will present additional
complications. For example, CBCT projection images re-
ceive considerable scatter on top of the directly attenuated
x-ray flux. This scatter is responsible for the degradation of
CT number in CBCT images reconstructed via backprojec-
tion. For our application, it reduces the contrast in the pro-
jections. However, unlike scatter correction methods for

TABLE II. Summary of the DVF and CT image errors for the pelvic CT
image with 64 target radiographs and varying levels of noise and contrast
mismatch.

DVF nRMSE CT nRMSE

Mean/Max. DVF
error magnitude

�mm�

Direct fit 0.0227 0.0116 0.045/0.396
3D3D registration 0.0299 0.0072 0.060/0.693

2D3D No noise, �=0 0.0706 0.0108 0.123/3.35
2D3D 1% noise 0.1071 0.0182 0.185/4.36
2D3D 3% noise 0.1208 0.0356 0.295/3.33
2D3D 5% noise 0.1682 0.0630 0.447/1.96
2D3D �=0.0025 0.3700 0.1222 0.990/4.85
2D3D �=0.005 0.8905 0.2388 2.279/10.4

TABLE I. Summary of the DVF and CT image errors for the spherical CT
image with 64 target radiographs and varying levels of noise and contrast
mismatch.

DVF nRMSE CT nRMSE

Mean/max. DVF
error magnitude

�mm�

Direct fit 0.0227 0.0116 0.045/0.396
3D3D registration 0.0271 0.0125 0.063/0.334

2D3D No noise, �=0 0.0300 0.0137 0.071/0.603
2D3D 1% noise 0.0338 0.0170 0.083/1.31
2D3D 3% noise 0.0499 0.0300 0.128/1.14
2D3D 5% noise 0.0873 0.0552 0.220/1.56
2D3D �=0.0025 0.0560 0.0331 0.146/0.755
2D3D �=0.005 0.0924 0.0574 0.241/0.940
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backprojection, in our method we do not need to remove the
scatter, we only need to match it approximately by adding a
scatter contribution to the DRRs. To determine the scatter
contribution exactly would require a Monte Carlo calculation
for each patient, which would be prohibitively time-
consuming. We anticipate, though, that for our purposes we
can use a generic first-order scatter approximation made a
priori using a representative patient’s anatomy and the
known imaging geometry. Contrast in the projections will
also be affected by beam hardening, which will not be so
readily mimicked in the DRRs. The present study of contrast
mismatch effects gives us some guidance on how accurately
we must compensate these effects.

We presently use parametric uniform B-splines to reduce
the dimensionality of the DVF. This can have the unwanted
side effect of smoothing out the fine structure in the DVF. To
reproduce locally complex or discontinuous DVF features
can require an impractically large number of uniformly
spaced control points. We will address this limitation through
the use of nonuniform rational B-splines to enhance the DVF
resolution where it is most needed.

Reconstruction methods that incorporate prior informa-
tion tacitly assume that the basic anatomical structures re-
main more or less unchanged from one day to the next, aside
from shape differences. In particular, they assume that there
are no image features that are present one day but not the
next. This will not be the case if, for example, there are
significant differences in bowel gas from one day to the next.
This problem confounds all deformable registration pro-
cesses for pelvic CT images. Methods to deal with it are
being researched, but it remains a challenge for image regis-
tration.

Even in clinical cases involving mismatched image con-
tents �such as bowel gas� that will complicate the complete
reconstruction of a CBCT via projection matching, the
method will still have utility in soft-tissue image-guided tar-
get setup of, e.g., the prostate. In this case we are simply
performing a 2D/3D �semi�rigid registration of a low-
contrast soft-tissue structure to find its translational shifts.

V. SUMMARY

We conclude that CBCT reconstruction via forward itera-

TABLE III. Summary of the DVF and CT image errors for the pelvic CT
image with 1% noise level added to a varying number of target radiographs.

DVF nRMSE CT nRMSE

Mean/Max. DVF
error magnitude

�mm�

Direct fit 0.0227 0.0116 0.045/0.396
3D3D registration 0.0299 0.0072 0.060/0.693

2D3D 64 projections 0.1071 0.0182 0.185/4.36
2D3D 32 projections 0.0921 0.0203 0.189/3.73
2D3D 16 projections 0.1126 0.0272 0.247/4.62
2D3D 8 projections 0.1316 0.0370 0.309/4.53
2D3D 4 projections 0.2043 0.0846 0.532/4.50
tive projection matching, using prior FBCT data, has the po-
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tential to maintain FBCT image quality in a CBCT image
while reducing the number of projection images and allow-
ing for increased noise in them. One can then reduce total
acquisition time and imaging dose to the patient with no
adverse impact. This can be particularly important when im-
aging is done on a �near� daily basis.

ACKNOWLEDGMENTS

This research has been supported in part by NIH Grant
Nos. T32CA113277 and R01CA123299.

a�Electronic mail: mjmurphy@vcu.edu
1L. Xing, B. Thorndyke, E. Schreibmann, Y. Yang, T. Li, G. Kim, G.
Luxton, and A. Koong, “Overview of image-guided radiation therapy,”
Med. Dosim. 31, 91–112 �2006�.

2B. Schaly, J. A. Kempe, G. S. Bauman, J. J. Battista, and J. Van Dyk,
“Tracking the dose distribution in radiation therapy by accounting for
variable anatomy,” Phys. Med. Biol. 49, 791–805 �2004�.

3L. A. Dawson and M. B. Sharpe, “Image-guided radiotherapy: Rationale,
benefits, and limitations,” Lancet Oncol. 7, 848–858 �2006�.

4D. A. Jaffray, “Emergent technologies for 3-dimensional image-guided
radiation delivery,” Semin. Radiat. Oncol. 15, 208–216 �2005�.

5M. Wierzbicki, B. Schaly, T. Peters, and R. Barnett, “Automatic image
guidance for prostate IMRT using low dose CBCT,” Med. Phys. 37,
3677–3686 �2010�.

6M. Ghilezan, D. Yan, J. Lian, D. Jaffray, J. Wong, and A. Martinez,
“Online image-guided intensity-modulated radiotherapy for prostate can-
cer: How much improvement can we expect? A theoretical assessment of
clinical benefits and potential dose escalation by improving precision and
accuracy of radiation delivery,” Int. J. Radiat. Oncol., Biol., Phys. 60,
1602–1610 �2004�.

7M. J. Murphy, J. Balter, S. Balter, J. BenComo, I. Das, S. Jiang, C. Ma,
G. Olivera, R. Rodebaugh, K. Ruchala, H. Shirato, and F. Yin, “The
management of imaging dose during image-guided radiotherapy. Report
Medical Physics, Vol. 37, No. 12, December 2010
of the AAPM Task Group 75,” Med. Phys. 34, 4041–4063 �2007�.
8S. Kim, S. Yoo, F. F. Yin, E. Samei, and T. Yoshizumi, “Kilovoltage
cone-beam CT: Comparative dose and image quality evaluations in partial
and full-angle scan protocols,” Med. Phys. 37, 3648–3659 �2010�.

9J. H. Siewerdsen and D. A. Jaffray, “Cone-beam computed tomography
with a flat-panel imager. Magnitude and effects of x-ray scatter,” Med.
Phys. 28, 220–231 �2001�.

10C. Lai, L. Chen, H. Zhang, X. Liu, Y. Zhong, Y. Shen, T. Han, S. Ge, Y.
Yi, T. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Reduction in
x-ray scatter and radiation dose for volume-of-interest �VOI� cone-beam
breast CT—A phantom study,” Phys. Med. Biol. 54, 6691–6709 �2009�.

11A. Docef, M. J. Murphy, P. Keall, J. Siebers, and J. Williamson, “Forward
CT reconstruction from limited projection data,” in Proceedings of the
19th Conference on Computer-Assisted Radiology and Surgery, 2005, pp.
104–108.

12D. J. Godfrey, F. Yin, M. Oldham, S. Yoo, and C. Willett, “Digital tomo-
synthesis with an on-board kilovoltage imaging device,” Int. J. Radiat.
Oncol., Biol., Phys. 65, 8–15 �2006�.

13G. Chen, J. Tang, and S. Leng, “Prior image constrained compressed
sensing �PICCS�: A method to accurately reconstruct dynamic CT images
from highly undersampled projection data sets,” Med. Phys. 35, 660–663
�2008�.

14Y. Long, J. A. Fessler, and J. M. Balter, “Accuracy estimation for
projection-to-volume targeting during rotational therapy: A feasibility
study,” Med. Phys. 37, 2480–2490 �2010�.

15J. Kybic and M. Unser, “Fast parametric elastic image registration,” IEEE
Trans. Image Process. 12, 1427–1442 �2003�.

16J. Nocedal and S. J. Wright, Numerical Optimization �Springer-Verlag,
New York, 1999�.

17M. J. Murphy, Z. Wei, M. Fatyga, J. Williamson, M. Anscher, T. Wallace,
and E. Weiss, “How does CT image noise affect 3D deformable image
registration for image-guided radiotherapy planning?,” Med. Phys. 35,
1145–1153 �2008�.

18A. Hurvitz and L. Joskowicz, “Registration of a CT-like atlas to fluoro-
scopic x-ray images using intensity correspondences,” Int. J. CARS 3,

493–504 �2008�.

http://dx.doi.org/10.1016/j.meddos.2005.12.004
http://dx.doi.org/10.1088/0031-9155/49/5/010
http://dx.doi.org/10.1016/S1470-2045(06)70904-4
http://dx.doi.org/10.1016/j.semradonc.2005.01.003
http://dx.doi.org/10.1118/1.3446800
http://dx.doi.org/10.1016/j.ijrobp.2004.07.342
http://dx.doi.org/10.1118/1.2775667
http://dx.doi.org/10.1118/1.3438478
http://dx.doi.org/10.1118/1.1339879
http://dx.doi.org/10.1118/1.1339879
http://dx.doi.org/10.1088/0031-9155/54/21/016
http://dx.doi.org/10.1016/j.ijrobp.2006.01.025
http://dx.doi.org/10.1016/j.ijrobp.2006.01.025
http://dx.doi.org/10.1118/1.2836423
http://dx.doi.org/10.1118/1.3425998
http://dx.doi.org/10.1109/TIP.2003.813139
http://dx.doi.org/10.1109/TIP.2003.813139
http://dx.doi.org/10.1118/1.2837292
http://dx.doi.org/10.1007/s11548-008-0264-z

