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Abstract
Nanoparticle-based arrays have been used to distinguish a wide range of biomolecular targets
through pattern recognition. In this report, we highlight new “chemical nose” methodologies that
use nanoparticle systems to provide high sensitivity sensing of biomolecular targets, including
fluorescent polymer/gold nanoparticle complexes that can discriminate between different
bioanalytes including proteins, bacteria, and mammalian cells as well as dye-based micellar
systems for the detection of clinically important metallo- and non-metallo proteins.

1. Introduction
Most biological recognition processes occur via specific interactions. However, sensory
processes such as taste and smell use “differential” binding where the receptors bind to their
analytes through interactions that are selective rather then specific [1,2]. These array based
sensing platforms can be trained to generate a response pattern analogous to olfaction,
providing versatile detectors [3]. Recently, a variety of array based sensor platforms have
been developed for biomacromolecule sensing, including porphyrins [4], oligopeptide
functionalized resins [5], and polymers [6,7].

Nanoparticles (NPs) feature sizes commensurate with biomacromolecules, coupled with
useful physical and optical properties [8,9]. Modulation of these physicochemical properties
can be readily achieved by changing of core and/or ligand structure. In this report, we
highlight the recent advances of array based/chemical nose sensors using materials such as
gold, dendrimer, and magnetic nanoparticles for the detection and identification of analytes
such as proteins, bacteria, and cells.

2. Nanoparticle arrays for sensing proteins
Irregular protein concentration levels in biofluids, e.g., serum, urine, and saliva, provide
essential information for the early diagnosis of many pathological conditions
[1,10,11,12,13,14]. Substantial efforts have been devoted to developing precise and efficient
methods for protein sensing [15] including enzyme-labeled immunoassays [16],
electrophoresis methods [17], and analytical techniques [18]. Detection and identification of
imbalance through of an array-based sensing approach provides a promising alternative to
these methods [5]. Array-based sensing approaches are complementary to more traditional
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immunosensing strategies (e.g. ELISA), providing versatile systems that can be “trained” to
recognize analytes and potentially disease states. In 2007, Rotello et al. fabricated a sensor
array composed of six cationic functionalized gold nanoparticles (AuNPs) and an anionic
PPE polymer that can properly identify seven common proteins [19••]. The polymer
fluorescence is quenched by gold nanoparticles; the presence of proteins disrupts the
nanoparticle–polymer interaction (Figure 1a), producing distinct fluorescence response
patterns (Figure 1b) based on particle-protein affinity. The effeciency of this system is
attributed to both the quenching ability of AuNPs as well as the ‘molecular wire’ effect of
PPE polymer [20]. Since the protein-nanoparticle interactions are determined by their
respective structural features such as charged, hydrophobic, hydrophilic, and hydrogen-
bonding sites [21], the differing affinities lead to a fluorescence response fingerprint pattern
for individual proteins (Figure 1b). The raw data responses obtained were subjected to linear
discriminant analysis (LDA) [22,23] to differentiate the fluorescence patterns of the
nanoparticle–PPE systems against the different protein targets. This system showed a limit
of detection of 4–215 nM depending on Mw protein and identifed correctly 52 out of 55
unknowns samples (94.5% accuracy) [19••].

Polymeric nanoparticles provide a separate class of scaffolds for sensor design.
Thayumanavan et al. developed a polymeric micellar nanosystem that responded to
electronic complementarity, allowing the system to be selective for metalloproteins [24].
They used eight different fluorescence dye molecules non-covalently bound to the micellar
interior of an amphiphilic homopolymer to generate a pattern that allowed the differentiation
of four different metalloproteins with limits of detection of 1–200 μM. In another approach,
Thayumanavan et al. reported a micellar disassembly process for transduction [25]. Five
different noncovalently assembled receptors were generated, and the disassembly was
studied by monitoring the encapsulated dye release in response to five different non-
metalloproteins. The disassembly-induced fluorescence change of the guest molecule
produces protein-specific patterns. The limit of detection in this approach was 8 μM. More
recently, Thayumanavan et al. introduced a new method where the differential response was
generated from a single polymer-surfactant complex with two approaches, i.e. the
disassembly and guest release based pathways and photoinduced charge/energy transfer
quenching (excited state quenching) (Figure 2a). By varying the transducer using non-
metalloprotein and metalloproteins [26•] they were able to generate a limit of detection for
non-metalloproteins of 8 μM (Figure 2b). In the case of the metalloproteins, the limit of
detection was 80 nM (Figure 2c). Thayumanavan et. al also studied the use of a fluorescent
anthracene-core dendrimer system that has carboxylic acid groups on the periphery that
affords a differential response protein pattern though the binding energy transfer process at
analyte concentrations between 1–5 μM [27]. Upon binding, an energy transfer process
occurs with quenching of the fluorescent core. The interchange between quenching and
binding lead to differential responses that allowed discrimination of 3 different
metalloproteins.

The above studies focused on protein sensing in buffer. The plasma/serum proteome, in
contrast, contains more than 20,000 different proteins and an overall protein concentration
of ~1 mM, (71 mg ml−1), providing a complex matrix for sensor design [28,29]. To
construct a more effective protein sensing system, Rotello et al. selected green fluorescent
protein (GFP) [30], a stable dimeric biomolecule used as transducer. The use of GFP
minimizes aggregation, improving sensor efficiency as compared with the previous method
using conjugated polymers. In this sensing process, the biocompatible AuNP/GFP
conjugated array was able to identify five of the more abundant human serum proteins, i.e.
human serum albumin, immunoglobulin G, transferrin, fibrinogen and α–antitrypsin, (Figure
3a) in an undiluted solution of human serum (overall protein concentration ~1 mM),
obtaining a limit of detection of 500 nM [31•]. Further experiments indicated that mixtures
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of different proteins and the addition of one protein in different concentrations also led to a
specific and reproducible change in the LDA-based patterns (Figure 3b).

The sensitivity of fluorophore displacement strategies is limited by the inherent emissivity
of the transducer. To overcome this limitation, Rotello et al. used enzyme-amplified array
sensing (EAAS) to provide a platform with enhanced sensitivity [32••]. Functionalized
cationic AuNPs electrostatically bind to the anionic β-Galactosidase (β-Gal), reversibly
inhibiting the enzyme (Figure 4a) [33]. Displacement of the particle by analyte proteins
restores β-Gal activity towards a fluorogenic substrate, generating a readout signal that is
amplified through enzymatic catalysis. This EAAS system couples the signal amplification
process of ELISA with the versatility of the “chemical nose” approach, as it is able to sense
and identify a range of biomedically relevant proteins with a limit of detection of 1 nM in
both buffer as well as in desalted urine solution (Figure 4b).

3. Nanoparticle arrays for sensing bacteria and mammalian cells
The efficient detection of pathogenic microorganisms is of great importance in clinical,
forensic, medical, and environmental sciences [34]. In clinical diagnostics, bacterial
infections are identified by plating and culturing, a time-consuming methodology. While
several newer methods including PCR, have been used to detect specific microorganisms
[35], a facile wet-chemical method for the timely detection and identification of
microorganisms would be of interest in both a clinical setting as well to test for food
spoilage in industrial settings [36].

Rotello et al. created an array-based sensing system based on non-covalent conjugates of
AuNPs and a modified PPE that allows the detection of bacteria within minutes [37•]. As
shown in Figure 5, the anionic PPE polymer is bound initially to the functionalized cationic
gold nanoparticle creating a fluorescence-quenched species. When these complexes are
exposed to bacteria in solution, there is a competitive equilibrium for the positively charged
AuNPs by both the polymer species and the surface of the bacteria. Depending on the
interaction of bacteria with the functionalized head group, there is a differential polymer
release from the surface of the AuNP whose fluorescence is restored providing a readable
response. To test the efficacy of this methodology, they were able to differentiate between
12 different bacteria that contain both Gram-positive (e.g. A. azurea, B. subtilis) and Gram-
negative (e.g. E. coli, P. putida) species. As shown in Fig. 5c, LDA analysis of the
fluorescence responses discerns not only the species, but also betweens strain of E. coli at
2×105 cells/mL. In initial studies, they were able to successfully identify 61 out of 64
unknowns (95% accuracy) taken from the training set, showing the inherent reliability of
this system.

Recent research using nanoparticle arrays for cell surface identification has focused on the
detection of cancer. Cancerous cells can be differentiated from non-cancerous ones on the
basis of intracellular and extracellular (cell surface) biomarkers [38]. Cell detection based on
cell surface protein biomarkers generally involves the development of specific antibodies
[39,40,41]. Intracellular protein biomarkers [42] have been explored by emerging proteomic
techniques, e.g. gel electrophoresis (2D-SDS-PAGE) [43] and mass spectrometry [44].
Although these lysate-based strategies provide a potential approach for cancer detection,
they require both the presence and prior knowledge of intracellular biomarkers [45].

Rotello et al. have employed gold NP–fluorescent conjugated polymer constructs to
differentiate normal cells from their cancerous and metastatic counterparts [46••]. Due to
their cationic surfaces, the functionalized nanoparticles interact with cell surfaces through
both electrostatic and hydrophobic/hydrophilic interactions. In their study, Three AuNP–
PPE constructs were able to differentiate between cell types, but more significantly they are
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able to differentiate between isogenic cell lines are either normal, cancerous, or metastatic,
e.g. CDBgeo, TD, and V14 using 20,000 cells. To lower the detection limit of these systems,
they were able to develop a differential patterning array biosensor using a complex of
functionalized AuNPs with green fluorescent protein (GFP) [47] that effectively identified
and differentiated between several types of normal, cancerous, and metastatic isogenic
mammalian cancer cells. Changing only the transducer, they have been able to achieve high
sensitivity and full differentiation of the mammalian cells at concentrations of ~5000 cells, a
four-fold enhancement of sensitivity relative to prior NP-polymer sensors.

Using an alternate approach to transduction, Huang et al. reported a magnetic glyco-
nanoparticle (MGNP) based nanosensor array system utilizing carbohydrates as the ligands
to not only detect and differentiate cancer cells but also to quantitatively profile their
carbohydrate binding abilities using magnetic resonance imaging (MRI) signatures (Figure
6) [48••]. These glyco-nanoparticles were incubated with the cell suspensions in media, and
then analyzed by MRI for changes in transverse relaxation times (T2). Through this process,
they were able to differentiate using LDA 10 different cell types at concentrations as low as
105 cells/mL (Figure 6c).

4. Conclusions
Based on the results presented in the review, it is apparent that nanoparticle-based sensors
provide a powerful platform for analysis of proteins and cell surfaces. Through variation of
sensor design it would appear that almost any system could be differentiated through
appropriate sensor design. As we learn the strategies required for this differentiation,
however, we will have to address the complexity of the target systems. Biofluids, such as
undiluted human serum, contains a large amount of various proteins, salts, and cells that not
only can inhibit or alter the sensing elements’ ability to detect target analytes, but also
complicate pattern generation. Clearly, creation of clinically useful sensor will require co-
evolution of chemical and data analysis strategies.
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Figure 1.
Schematic illustration of ‘chemical nose’ sensor array based on AuNP-fluorescent polymer
conjugates. a) The competitive binding between protein and quenched polymer-AuNP
complexes leads to the fluorescence light-up. b) The combination of an array of sensors
generates fingerprint response patterns for individual proteins [19].
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Figure 2.
a) Schematic of the fluorescence response due to metalloproteins/nonmetalloprotein either
due to the disassembly or due to the energy/electron transfer based quenching for
metalloproteins. b) Analyte-dependent patterns from emission changes at 8 μM
concentration of the nonmetalloprotein. c) Analyte-specific sensing patterns for
metalloproteins with different dye molecules at 80 nM concentration of proteins (coumarin
(10−6 M; λex = 400 nm); pyrene (10−6 M; λex = 339 nm); nile red (10−6 M; λex = 550 nm);
9-anthracene methanol (10−5 M; λex = 365 nm)). Figure reproduced with permission from
reference [26].
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Figure 3. GFP-NP sensor array
a) Schematic illustration showing the competitive binding between proteins and quenched
AuNP-GFP complexes whose aggregation leads to the fluorescence “turning on” or further
quenching using a library of cationic nanoparticles. b) Discrimination of HAS and IgG at
different concentrations and mixture of proteins. At the top, canonical score plot for the
fluorescence patterns as obtained from LDA for HAS and IgG at different concentrations
(500 nM, 1 μM, and 2 μM) with 95% confidence ellipses. At the bottom, HAS and IgG were
mixed at 1:1 molar ratio with 250 nM each and 500 nM each, and added to five AuNP-GFP
complexes. The canonical score plot obtained from LDA analysis were compared with those
for the 500 nM individual proteins [31].
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Figure 4.
A schematic representation of a sensor element in the sensor comprised of β-galactosidase
(β-Gal) and cationic AuNPs and differentiation of proteins in 3-D. a) As shown, β-gal is
displaced from the β-Gal/AuNP complex by protein analytes, restoring the catalytic activity
of β-Gal towards the fluorogenic substrate 4-methylumbelliferyl-β-D-galactopyranoside,
resulting in an amplified signal for detection. b) Differential protein pattern of the nine
proteins at 1 nM. c) Canonical score plot of the first three factors of fluorescence response
patterns obtained through β-Gal/AuNP sensor array against nine target proteins in 1 nM
concentration [32].

Miranda et al. Page 11

Curr Opin Chem Biol. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Array-based sensing of bacteria. a) Schematic diagram of the displacement assay between
bacteria and the NP-PPE complex. b) Fluorescence response (ΔI) patterns of the NP-PPE
sensory array against various classes of bacteria (2×105 bacteria/mL). As shown on the plot,
the same strains of bacteria can also be identified. c) Canonical score plot for the first two
factors of simplified fluorescence response patterns obtained with NP-PPE assembly arrays
against bacteria (95% confidence ellipses shown) [37].
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Figure 6.
a) Percentage changes of T2 relaxation time (%ΔT2) obtained upon incubating MGNPs 2–6
or the control NP 1 (20 μg/mL) with 10 cell lines (105 cells/mL). The ΔT2 was calculated by
dividing the T2 differences between MGNP and MGNP/cancer cell by the corresponding
highest ΔT2 from each MGNP category. b) LDA plots for the first three LDs of ΔT2 patterns
obtained with the MGNP array upon binding with the 10 cell lines (105 cells/mL). Full
differentiation of the 10 cell lines was achieved. Figure reproduced with permission from
reference [48].
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