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Abstract
Organic cation/carnitine transporter (OCTN2; SLC22A5) is an important transporter for L-
carnitine homeostasis, but can be inhibited by drugs, which may cause L-carnitine deficiency and
possibly other OCTN2-mediated drug-drug interactions. One objective was to develop a
quantitative structure–activity relationship (QSAR) of OCTN2 inhibitors, in order to predict and
identify other potential OCTN2 inhibitors and infer potential clinical interactions. A second
objective was to assess two high renal clearance drugs that interact with OCTN2 in vitro
(cetirizine and cephaloridine) for possible OCTN2-mediated drug-drug interactions. Using
previously generated in vitro data of 22 drugs, a 3D quantitative pharmacophore model and a
Bayesian machine learning model were developed. The four pharmacophore features include two
hydrophobic groups, one hydrogen-bond acceptor, and one positive ionizable center. The Bayesian
machine learning model was developed using simple interpretable descriptors and function class
fingerprints of maximum diameter 6 (FCFP_6). An external test set of 27 molecules, including 15
newly identified OCTN2 inhibitors, and a literature test set of 22 molecules were used to validate
both models. The computational models afforded good capability to identify structurally diverse
OCTN2 inhibitors, providing a valuable tool to predict new inhibitors efficiently. Inhibition results
confirmed our previously observed association between rhabdomyolysis and Cmax/Ki ratio. The
two high renal clearance drugs cetirizine and cephaloridine were found not to be OCTN2
substrates and their diminished elimination by other drugs is concluded not to be mediated by
OCTN2.
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INTRODUCTION
The Organic Cation/Carnitine Transporter (OCTN2) is a high affinity cation/carnitine
transporter widely expressed in human tissues, including skeletal muscle, kidney, brain,
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heart, and placenta. OCTN2 is essential for L-carnitine transport in humans.1 Mutations of
the OCTN2 gene in humans cause primary systemic carnitine deficiency, with clinical
significant symptoms that include hypoketotic hypoglycemia, cardiomyopathy, and skeletal
myopathy.2, 3 In addition to L-carnitine, some drugs are also transported by OCTN2,4-7
implying a potentially important role of OCTN2 in the disposition of such drugs in humans.

The role of OCTN2 in L-carnitine transport provides for potential drug-L-carnitine and
drug-drug interactions. Long-term treatment with structurally and therapeutically diverse
drugs has been reported to cause secondary L-carnitine deficiency. In the kidney, OCTN2 is
localized on the apical membrane of renal proximal tubular cells and ensures minimal loss
of L-carnitine by re-absorption. One possible mechanism for drug induced secondary L-
carnitine deficiency is inhibition of OCTN2-mediated L-carnitine renal re-absorption. For
example, the use of cephaloridine is associated with L-carnitine deficiency and enhanced
renal excretion of L-carnitine8, consistent with the in vitro studies that cephaloridine
competitively inhibited OCTN2-mediated L-carnitine transport.

No crystal structure or three dimensional (3D) protein model of OCTN2 exists. Hence, in a
previous study, we generated an in silico common features (HipHop) pharmacophore model
that consisted of three hydrophobic features and a positive ionizable feature, derived from
initial screening data using an in vitro cell culture.9 The HipHop pharmacophore was used
to predict the molecular requirements of OCTN2 inhibition and identify more potent
inhibitors of OCTN2.9 Among the 33 tested drugs that were predicted to map to the
pharmacophore, 27 inhibited OCTN2 in vitro. The pharmacophore was shown to accurately
prioritize compounds for testing. We identified novel low micromolar inhibitors that
belonged to diverse therapeutic classes of drugs, such as vinblastine, carvedilol, raloxifene,
thioridazine and clozapine. We also identified an association that compounds were more
likely to cause rhabdomyolysis if the Cmax/Ki ratio was higher than 0.0025.9 This
preliminary work illustrated that a combined computational pharmacophore and in vitro
approach could suggest new, structurally diverse inhibitors for OCTN2 that may possibly
cause clinical significant toxicity.

One objective in the present work was to extend the earlier HipHop pharmacophore by
developing a quantitative structure–activity relationship (QSAR) of OCTN2 inhibitors, in
order to predict additional molecules and identify potential OCTN2 inhibitors. To date, no
homology model or QSAR model for OCTN2 has been generated. In the current study, the
first 3D-QSAR model for OCTN2 inhibition is described, as well as a Bayesian model, both
of which were subjected to validation with external molecules. Inhibition results are
discussed in terms of possible relationship to rhabdomyolysis or carnitine deficiency.

A second objective was to assess two high renal clearance drugs that interact with OCTN2
in vitro (cetirizine and cephaloridine) for possible OCTN2-mediated drug-drug interactions.
Cetirizine and cephaloridine exhibit reduced renal clearance with coadministration of
ritonavir and furosemide, respectively, yielding the hypothesis that cetirizine and
cephaloridine tubular secretion via OCTN2 can be inhibited by other drugs to reduce their
renal clearance. However, neither cetirizine nor cephaloridine was an OCTN2 substrate,
such that their diminished elimination upon co-administration of other drugs is concluded
not to be mediated by OCTN2.

EXPERIMENTAL SECTION
Materials

Fetal bovine serum, trypsin-EDTA, and Dulbecco’s modified Eagle medium (DMEM) were
purchased from Invitrogen Corporation (Carlsbad, CA). L-[3H]carnitine was purchased from

Diao et al. Page 2

Mol Pharm. Author manuscript; available in PMC 2011 December 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



American Radiolabeled Chemicals (St. Louis, MO). All other drugs were purchased from
Spectrum Chemicals & Laboratory Products (Gardena, CA), Sigma Chemical (St. Louis,
MO), AK Scientific (Mountain View, CA), or TCI America (Portland, OR).

Cell Culture
Stably transfected hOCTN2-MDCK cells and MDCK cells were cultured at 37 °C, 90%
relative humidity, and 5% CO2 atmosphere and fed every 2 days. Media was composed of
DMEM supplemented with 10% FBS, 50 units/ml penicillin, and 50 μg/ml streptomycin.
Cells were passaged after reaching 80% confluence.

Inhibition Study
Inhibition studies of L-carnitine were conducted as previously described.9 Briefly, after
reaching 90% confluence, cells were seeded in 12 well cluster plates at a density of 1.5
million cells/well and cultured for four days. The culture medium was changed every 48 hr.
Uptake studies were performed on the fourth day and were conducted in presence of Hank’s
balance salts solution (HBSS). Cells were exposed to donor solution containing 2.5 μM L-
carnitine (spiked with L-[3H]-carnitine) in the presence or absence of drug at 37 °C and 50
rpm orbital shaking for 10 min. The donor solution was removed and the cells were washed
thrice with ice-cold sodium-free buffer (SFB). Subsequently, cells were lysed using 0.25 mL
of 1 M NaOH for 2 hr at room temperature and neutralized with 0.25 mL of 1 M HCl. Cell
lysate was then counted for associated radioactivity using a liquid scintillation counter. Jmax
of L-carnitine was measure on each inhibition study occasion. Unless otherwise noted, data
are summarized as mean (±SEM) of three measurements.

Kinetic Analysis
To measure Ki, inhibition studies were performed as described above, where a range of drug
concentrations were applied to inhibit L-carnitine uptake. The following competitive
inhibition model was applied:

(1)

where Ki is the competitive inhibition coefficient, I is the concentration of inhibitor, and S is
the 2.5 μM concentration of L-carnitine. In applying eqn 1, only Ki was estimated using
nonlinear regression fitting performed by WinNonlin 4.1 (Pharsight, Mountain View, CA).
The other three parameters (i.e. Jmax, Kt, and Pp) were estimated from L-carnitine uptake
studies without inhibitor.

Cetirizine and cephaloridine studies
Cetirizine and cephaloridine are drugs that are mainly renally eliminated. Uptake studies of
cetirizine and cephaloridine into OCTN2-MDCK cells were conducted, along with
inhibition studies. Inhibition studies were performed to study the possible effect of ritonavir
on OCTN2-mediated transport of cetirizine, as well as the possible effect of furosemide on
OCTN2-mediated transport of cephaloridine. Cetirizine and cephaloridine samples were
quantified by LC/MS/MS.

Analytical methods
L-[3H]-carnitine was quantified by scintillation counting. Cetirizine and cephaloridine
samples were quantified by LC/MS/MS. The LC/MS/MS instrumental system consisted of
Finnigan Surveyor® Plus Autosampler, Finnigan Surveyor® LC Pump Plus and Finnigan
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TSQ® Quantum Discovery MAX™ mass spectrometer with an electrospray ionization
source and triple-quadrupole mass analyzer.

The column used was Synergi™ Polar-RP column (4 μm, 50 × 2.00 mm; Phenomenex,
Torrance, CA). Gradient of acetonitrile with 0.1% formic acid and 50 mM ammonia formate
(pH 3.2) was used as the mobile phase, with organic phase rising from 50% to 80% in 3
mins. Cetirizine and cephaloridine were monitored by selective reaction monitoring (SRM)
at m/z transition 389.3 → 200.9 and 416.1 → 151.9, respectively. The flow rate was 0.4 mL/
min. The assay was linear (r2>0.999) over 10–1000 nM for both cetirizine and
cephaloridine.

Data analysis
Data were expressed as mean ± SEM derived from three independent wells. Statistical
significance was evaluated using Graphpad Prism (Graphpad Software, Inc.; La Jolla, CA).

Quantitative pharmacophore development
We generated a 3D-QSAR using HypoGen in Discovery Studio version 2.1 or 2.5.5. (San
Diego, CA) that has been previously applied to P-glycoprotein10. The pharmacophore
model training set included 22 compounds, including phenothiazine antipsychotics, atypical
antipsychotics, selective estrogen receptor modulators, calcium channel blockers, anti-
cancer compounds, and tricyclic antidepressants drug classes. Previously reported OCTN2
Ki values were used as the biological activity.9 In the HypoGen approach, ten hypotheses
were generated, using hydrophobic, hydrogen bond acceptor, hydrogen bond donor, and the
positive and negative ionizable features. After assessing all ten generated hypotheses, the
hypothesis with lowest energy cost was selected for further analysis, as this model possessed
features representative of all the hypotheses and had the lowest total cost.

The total energy cost of the generated pharmacophore was calculated from the deviation
between the estimated activity and the observed activity, combined with the complexity of
the hypothesis (i.e. the number of pharmacophore features). A null hypothesis, which
presumed no relationship between chemical features and normally distributed biological
activities, was also calculated. The greater the difference between the energy cost of the
generated and null hypotheses, the less likely the generated hypothesis reflected a chance
correlation. Also, the quality of the structure-activity correlation between the predicted and
observed activity values was estimated via correlation coefficient.

For testing the quantitative pharmacophore, two validation test sets of molecules were used.
The first test set included additional 15 retrieved compounds from the SCUT 2008 database
(796 molecules), US Drug Microsource database (1034 molecules) and Natural products
Microsource database (787 molecules), and 12 drugs from our previous published study (i.e.
11 non-inhibitors and the renally-eliminated compound cephaloridine). The second test set
consisted of molecules collated from the literature. These structures were retrieved from the
ChemSpider database (www.chemspider.com) as .mol files and imported in Discovery
Studio.

In all cases, the databases or test sets were created from sdf files and up to 100 conformers/
molecule were created with the Build 3D database protocol using the FAST conformation
method. The BEST method was also used for the test set molecules; results employing the
BEST method note its use. Each dataset was then searched using the search 3D database
protocol. The ligand pharmacophore mapping protocol was also used to search these
databases and allowed one or more feature misses.

Diao et al. Page 4

Mol Pharm. Author manuscript; available in PMC 2011 December 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.chemspider.com


Model assessment via test sets was pursued by treating observed and predicted data as
binary using 1000 μM as the Ki upper limit for an inhibitor. Hence, each prediction was
assessed as being a true positive, false negative, false positive, or true negative. This binary
approach was taken since the goal was to assess model predictability simply in terms of
inhibitors versus non-inhibitors.

Bayesian machine learning model development
Laplacian-corrected Bayesian classifier models were generated using Discovery Studio 2.1
or 2.5.5. This approach employs a machine learning method with 2D descriptors. Molecular
function class fingerprints of maximum diameter 6 (FCFP_6), AlogP, molecular weight,
number of rotatable bonds, number of rings, number of aromatic rings, number of hydrogen
bond acceptors, number of hydrogen bond donors, and molecular polar surface area were
calculated from input sdf files using the “calculate molecular properties” protocol. The
“create Bayesian model” protocol was used for model generation. A custom protocol for
validation, involving leave 50% out 100 times, was also used.

Comparison of training and test sets
Principal Component Analysis (PCA) available in Discovery Studio version 2.5.5 was used
to compare the molecular descriptor space for the test and training sets (using descriptors
ALogP, molecular weight, number hydrogen bond donors, number of hydrogen bond
acceptors, number of rotatable bonds, number of rings, number of aromatic rings, and
molecular fractional polar surface area). In each case, the respective test set and the training
set compounds were combined and used to generate the PCA analysis.

Additionally, each molecule from the two test sets were evaluated for their similarity to
training set molecules using MDL keys and the Tanimoto similarity in Discovery Studio
version 2.5.5. MDL keys are a set of 960, mostly substructural features, developed for rapid
substructural searching. The presence or absence of features was denoted with bits (e.g. 1 or
0). The Tanimoto is:

(2)

where SA represents the number of bits present in both the target and the reference
molecules, SB is the number of bits in the target but not the reference molecule, and SC is
the number of bits in the reference but not the target molecule.

RESULTS
Quantitative Pharmacophore

A 3D-QSAR pharmacophore model was developed using 22 compounds from diverse drug
classes in the previous study.9 Of the 22 compounds, 14 were OCTN2 inhibitors, while 8
were non-inhibitors. The resulting quantitative pharmacophore is illustrated in Figure 1,
composed of one hydrogen bond acceptor, two hydrophobic features, and a positive
ionizable feature. Table 1 lists the predicted and observed Ki values of the training set.
Energy cost values for the generated hypothesis were total cost = 101.67, fixed cost = 90.98,
and null cost = 122.93. Ideally, the magnitude of the difference between the total and null
cost should be larger. The correlation coefficient r for the training set was 0.89, indicating
that the model was acceptable.
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Bayesian Model
The same training set of 22 compounds was also applied to develop a Bayesian model11
with molecular function class fingerprints of maximum diameter 6 (FCFP_6) and eight
interpretable descriptors. The model had a leave-one-out cross-validation receiver operator
curve (ROC) statistic of 0.93 (Supplemental Table S1) and enrichments (Supplemental
Table S2 and S3) that suggested that OCTN2 inhibitors (Ki < 1000 μM) were well separated
from non-inhibitors (Supplemental Table S4). After leaving 50% out 100 times, three
models failed. When these three were removed, the mean values for the 97 remaining
models were calculated. The external ROC [mean (±SD)] was 0.90 (±0.09), while internal
ROC was 0.79 (±0.18%); concordance was 73.4% (±14.5); specificity was 88.2% (±21.2);
and sensitivity was 64.2% (±26.17). The Bayesian method showed favorable cross
validation data. However, these results may be impacted by the small training set (N= 22),
especially when 50% are left out. Use of the FCFP_6 descriptors allowed the identification
of molecular features that favored inhibition (Figure 2), as well as features that did not
promote inhibition (Figure 3).

Table 1 lists the observed Ki values, as well as the Bayesian score of the training set. The
best split value was −3.512 (Supplemental Table S1) and demarcated inhibitors from non-
inhibitors (Table 1). The best split value was calculated by minimizing the number of
compounds that were incorrectly predicted as either inhibitors or non-inhibitors, using the
cross-validated score for each sample.

The Bayesian model correctly ranked the most active compounds, producing only 4.5%
false negatives and 4.5% false positives. Model evaluations using test sets are described
below and represent a better evaluation of the model. This Bayesian model with 2D
fingerprints also represents a classification approach to building models that can be used for
rapid screening of compound libraries. From the molecular fingerprints, descriptors
identified regions in the training set molecules (e.g., the tertiary amine) that were likely
important for OCTN2 inhibition (Figure 2), as well as substructures that were associated
with non-inhibitors (Figure 3).

Test Set Evaluations
To validate the quantitative pharmacophore and the Bayesian model, 27 additional
compounds were used as the first test set. This test set included an additional 15 retrieved
compounds from SCUT 2008 database, US Drug Microsource database and Natural
products Microsource database, and tested here, as well as 12 drugs (11 non-inhibitors and
the weak inhibitor cephaloridine) from our previous published study 9. Figure 1B shows
cetirizine, a representative molecule from the literature test set, mapped to the quantitative
pharmacophore.

Table 2 lists the predicted Ki values using the quantitative model and experimentally
observed counterparts, as well as the Bayesian scores from the Bayesian model. For the
quantitative pharmacophore model using FAST conformer method, the majority were
correctly predicted (over 70%). There were 29.6% true positives plus 40.7% true negatives;
29.6% of the predictions were false negatives and zero percent were false positives. Use of
the BEST conformer methods provided similar results (Table 3). For the Bayesian model,
the majority were also correctly predicted (over 80%). There were 48.1% true positives plus
33.3% true negatives; 11.1% of the predictions were false negatives and 7.4% were false
positives.

Furthermore, a second test set (Table 4) was used employing 32 chemically-diverse OCTN2
inhibitors from the literature. Figure 1C shows emetine, a representative molecule from the
literature test set, mapped to the quantitative pharmacophore. Table 4 lists the predicted Ki
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values, the reported Ki or IC50 values, and the Bayesian score for the literature test set. The
experimental literature data is derived from different expression systems and different
laboratories, which can be interpreted as a strength or weakness in the QSAR validation
approach here. We view this approach as a significant challenge of the developed QSAR
models, since biological activity can depend upon assay conditions (e.g. different cell
cultures). Previous studies have also used additional external test sets derived from the
literature as a means to further test models derived and this is acceptable as long as the
limitations of such data are fully understood this should not be an impediment to their use.
12,13

In Table 3, the quantitative pharmacophore model miss-predicted compounds that were
inhibitors in the literature test set, yielding a false negative rate of 37.5%, but a favorable
zero false positive rate, using the FAST method. The BEST method provided similar results.
The Bayesian model was more balanced, with lower false negative rate of 15.6% and a false
positive rate of 18.8%, however it did not perform as well on the literature test set compared
with the test set generated in our laboratory for 27 compounds.

DISCUSSION
Quantitative Pharmacophore and Bayesian Modeling

The quantitative pharmacophore, derived from the HypoGen approach, was developed by
using a training set of 22 compounds (Figure 1). This quantitative pharmacophore differs
slightly from our previously developed common features (HipHop) pharmacophore, which
was devised using chlorpheniramine, imipramine, and diltiazem as actives, and
physostigmine and guanfacine as ‘inactive’ compounds. This common features
pharmacophore consisted of three hydrophobic features and a positive ionizable feature. The
current quantitative pharmacophore model replaced a hydrophobic feature with a hydrogen
bond acceptor and is acceptable based on models statistics and, more importantly, external
test set performance. These results indicate the 3D-QSAR model is useful for identifying
additional hOCTN2 inhibitors from compound databases.

The Bayesian model performed well in correctly ranking the most active compounds and
represents a machine learning classification approach to building models that can be used for
rapid screening of compound libraries. Molecular fingerprint descriptors identified
molecular regions (e.g., the tertiary amine, aromatic hydrophobic groups) that were likely
important for hOCTN2 inhibition (Figure 2), as well as substructures (e.g. purine, imidazole,
and sulfonamides) that were associated with non-inhibitors (Figure 3).

Validation Results
Both the quantitative pharmacophore and the Bayesian classification model performed better
on the test set generated in this study, compared with the literature test set. Although there
were some compounds in common in both datasets (e.g. cetirizine, cephaloridine,
metformin, zidovudine and levofloxacin), these findings suggest that the training set and test
set should (ideally) be generated under identical conditions in the same laboratory. In both
cases, the test and training sets overlapped in simple descriptor molecular space upon PCA
analysis (Supplemental Figures S1 and S2). However, when each of the training and test set
molecules were analyzed using the Tanimoto similarity using the MDL keys (Table 2 and
4), very few of the test set molecules had a similarity > 0.75 to any one training set molecule
(i.e. only four molecules in our test set and only three molecules in the literature test), which
is considered an acceptable arbitrary cutoff for making reliable predictions.14,15 The mean
maximal Tanimoto similarity for the test set in Table 2 is 0.61 (± 0.15), while the mean
maximal Tanimoto similarity for the literature test set shown in Table 4 is 0.58 (± 0.17).
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These mean values are not statistically different when analyzed for all molecules in this
study using the Students t-test (JMP, SAS Institute Cary, NC), so data variability rather than
molecular similarity was the more likely reason for the poor predictions for the literature test
set. The correlation between the maximal Tanimoto similarity and Bayesian score was very
low, but statistically significant, for the test set in Table 2 (r2 = 0.19, p = 0.02, data not
shown) and Table 4 (r2 = 0.42, p = 0.0001, data not shown). Considering the low level of
similarity to any training set member, it is remarkable that the pharmacophore and Bayesian
models performed as well as observed.

This observation suggests that prediction would likely improve dramatically if the maximal
Tanimoto similarity of test sets to training set members was > 0.75. It is also interesting to
note that ritonavir, ezetimide, and simvastatin (maximal Tanimoto similarity to training set
0.48-0.61) were not predicted by the pharmacophore, but have Ki values less than 30 μM. In
cases in which the molecules did not map to the pharmacophore (database searching requires
hits to map all features in Discovery Studio), the ‘ligand mapping protocol’ in the software
was subsequently applied to enable at least one feature miss. In these cases, some molecules
mapped three out of four features (data not shown). For example, omeprazole did not map to
the positive ionizable feature. Such molecules would be expected to have a lower Fit score.
Interestingly, in cases in which molecules miss a feature, results suggest that OCTN2 may
enable some flexibility in the number of pharmacophore features mapped. Omeprazole was
however predicted by the Bayesian model to be an inhibitor.

Overall, there was little difference in the binary validation analysis (Table 3) between using
the FAST and BEST conformer generation for the test sets. The FAST conformers provided
fewer false positives. The FAST conformation method also quickly produces diverse low
energy conformations whereas BEST conformer covers greater conformation space which
requires more computational time. The results suggest that the FAST method adequately
covers the conformational space.

hOCTN2 Inhibition and Rhabdomyolysis or Carnitine Deficiency
The main objective was to develop a QSAR for OCTN2 inhibition, in order to predict and
identify potential OCTN2 inhibitors. This objective was motivated by OCTN2 being an
important transporter for L-carnitine homeostasis (e.g. energy utilization in muscle tissue)
and the basis for OCTN2-mediated drug-drug interactions (e.g. rhabdomyolysis). We
previously observed that compounds were more likely to cause rhabdomyolysis if the Cmax/
Ki ratio was higher than 0.0025.9

Drugs from the test set in Table 2 and literature test set in Table 4 are collated in Table 5 to
further evaluate the possible association between hOCTN2 inhibition and clinical
rhabdomyolysis or carnitine deficiency. Twenty-three drugs exhibited a Cmax/Ki ratio higher
than 0.0025, while the remaining 23 drugs were lower than 0.0025. Ki of 18 drugs were
measured here, while Ki of the remaining 28 other drugs were obtained from the literature.
Among the 21 drugs that were associated with rhabdomyolysis or carnitine deficiency, 14
(66.7%) provide a Cmax/Ki ratio higher than 0.0025. In contrast, among 25 drugs that were
not associated with rhabdomyolysis or carnitine deficiency, only 9 (36.0%) show a Cmax/Ki
ratio higher than 0.0025. Therefore, consistent with the previous observation9, clinical
rhabdomyolysis or carnitine deficiency was associated with a Cmax/Ki value above 0.0025
(Pearson’s chi-square test p=0.0382). The limitations of Cmax/Ki serving as a predictor for
rhabdomyolysis have been previously discussed9. For example, Cmax/Ki does not consider
the effects of drug tissue distribution or plasma protein binding.

Diao et al. Page 8

Mol Pharm. Author manuscript; available in PMC 2011 December 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Drug-drug interaction
Among the newly discovered OCTN2 inhibitors in this study, some are mainly renally
excreted and involved in drug-drug interactions. These observations motivated a second
objective, which was to assess two high renal clearance drugs that interact with OCTN2 in
vitro (cetirizine and cephaloridine) for possible OCTN2-mediated drug-drug interactions.
This objective emanated from the hypothesis that competition for tubular excretion via
OCTN2 expressed on the apical side of proximal tubular cells reduced cetirizine or
cephaloridine renal clearance.

Coadministration of racemic cetirizine and ritonavir increases the plasma AUC and half-life
of cetirizine by approximately 42% and 53%, respectively, and resulted in a 29% reduction
in cetirizine clearance.16 In vitro experiments were conducted here to examine if OCTN2
was the possible transporter involved in the drug-drug interaction. Cetirizine (10 – 500 μM)
uptake into OCTN2-MDCK cells in HBSS was not inhibited by L-carnitine (100 μM).
Additionally, cetirizine (100 μM) uptake into OCTN2-MDCK cells in HBSS was not
affected by ritonavir (1-50 μM). Uptake and inhibition results are provided in Supplemental
Figure S3. Therefore, cetirizine was likely not a substrate for OCTN2; other transporters
such as P-glycoprotein (P-gp) might mediate the interaction between cetirizine and ritonavir.
17

Another drug-drug interaction is cephaloridine and furosemide. Concurrent administration
of furosemide and cephaloridine results in a decrease in the renal clearance and a
corresponding increase in the plasma concentrations of cephaloridine.18-19 Nephrotoxicity,
reversible encephalopathy, and acute renal failure have been reported during high-dose
therapy with cephaloridine, and the concomitant use of furosemide may increase the risk of
developing cephaloridine toxicity.20-22 In vitro experiments were thus conducted to
examine if OCTN2 was the possible transporter involved in the drug-drug interaction. No
significant difference was observed between cephaloridine (0.5 mM) uptake into OCTN2-
MDCK cells and MDCK cells (Supplemental Figure S4A). Furthermore, cephaloridine (0.5
mM) uptake into OCTN2-MDCK cells was not affected by furosemide from 0.5 to 2.5 mM
(Supplemental Figure S4B). Basolateral uptake is the first step of tubular secretion. Both
furosemide and cephaloridine were substrates for organic anion transporters (OATs)
expressed on the basolateral side of proximial tubular cells.23-27 Therefore, the competition
for tubular excretion between furosemide and cephaloridine might occur at the basolateral
side, perhaps mediated by OATs.

In summary, for the first time, a 3D-QSAR pharmacophore model and a Bayesian model of
OCTN2 inhibition were developed and validated using external test sets with data generated
in a single laboratory. When predictions from both modeling approaches are treated as
binary (i.e. inhibitor or non-inhibitor), we can directly compare the approaches in terms of
the number of false positives and false negatives. Using the test set from our laboratory, the
Bayesian method correctly identified over 80% of the compounds (i.e. 48.1% true positives
plus 33.3% true negatives), whereas the pharmacophore could classify over 70% of the
compounds (i.e. 29.6% true positives plus 40.7% true negatives). There was minimal
difference between using the FAST and BEST conformer generation for the test sets using
binary validation analysis (Table 3), although the FAST conformers yielded fewer false
positives. Results show the benefit of obtaining data from the same laboratory for training
and testing the models; that the training and test sets covered similar chemical space using
PCA and simple descriptors (Supplemental Figure S1 and S2); and that the test set
compounds did not possess a high degree of structural similarity to the training set based on
MDL keys, yet predictions were still useful. In the absence of a crystal structure of OCTN2,
we believe that our pharmacophore model coordinates (Supplemental Table S5 and
Supplemental Figure S5) and the Bayesian model may provide novel insights into the
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molecular interaction of inhibitors with OCTN2 and identify important molecular features
for OCTN2 inhibition, which might be useful for predicting potential drug induced
secondary L-carnitine deficiency and OCTN2 mediated drug-drug interactions. A second
objective was to assess cetirizine and cephaloridine for possible OCTN2-mediated drug-
drug interactions. However, neither was an OCTN2 substrate, such that their reduced
clearance by other drugs is concluded to not be mediated by OCTN2. Finally, our results
here continue to support the previous observation that clinical rhabdomyolysis or carnitine
deficiency may be associated with a high Cmax/Ki ratio higher than 0.0025.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Quantitative pharmacophore for OCTN2 inhibition. Panel A shows the most active drug in
the training set, vinblastine, mapped to the quantitative pharmacophore. Panel B shows
cetirizine mapped to the quantitative pharmacophore. Panel C shows emetine mapped to the
quantitative pharmacophore. Quantitative pharmacophore features represent: cyan =
hydrophobes, red = positive ionizable which maps to the basic nitrogen, green = hydrogen
bond acceptor.
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Figure 2.
FCFP_6 features associated with OCTN2 inhibitors. Each of the 20 panels shows the
naming convention for one fragment, the numbers of inhibitors containing the fragment, and
the Bayesian score for the fragment. In all cases, a compound containing any of these 20
fragments was an OCTN2 inhibitor.
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Figure 3.
FCFP_6 features associated with OCTN2 non-inhibitors. Each of the 20 panels shows the
naming convention for one fragment, the numbers of inhibitors containing the fragment, and
the Bayesian score for the fragment. In all cases, a compound containing any of these 20
fragments was not an OCTN2 inhibitor.
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Table 1

Training set of 22 compounds for the quantitative pharmacophore and the Bayesian model. Compounds are
listed in decreasing order of fit value

Drug Observed Ki

(μM)a (±SEM)
Quantitative

pharmacophore fit valueb
Predicted
Ki (μM)b

Bayesian
scorec

Vinblastine 4.85±0.71 5.82 3.5 15.095

Verapamil 17.6±3.1 5.00 23 7.212

Carvedilol 10.7±1.6 4.89 30 4.550

Amlodipine 96.0±15.2 4.86 32 −0.250

Bromocriptine 16.6±2.0 4.79 37 11.148

Thioridazine 23.0±4.1 4.74 42 9.155

Raloxifine 13.8±2.4 4.73 44 7.882

Duloxetine 118±13 4.64 53 4.684

Propantheline 20.4±4.1 4.62 56 5.448

Trifluoperazine 67.3±10.1 4.62 55 10.320

Prochlorperazine 51.3±10.5 4.54 67 10.375

Cerivastatin 425±12 4.52 70 3.770

Clozapine 47.3±8.6 4.43 87 6.082

Desloratidine 53.3±6.7 4.33 110 4.369

Atenolol 3000* 3.38 970 −14.701

Atropine 3000* 3.27 1200 −15.079

Lomefloxacin 3000* 3.20 1500 −26.875

Acyclovir 3000* 3.20 1500 −30.617

Pramipexole 3000* 3.20 1500 −20.237

Guanosine 3000* 3.20 1500 −35.675

Hydrochlorothiazide 3000* 3.05 2100 −18.578

Sulfanilamide 3000* 1.60 58000 −12.923

a
Observed Ki values were from our previous study.9

b
Fit values and predicted Ki values are derived from the pharmacophore using the BEST conformer method.

c
Bayesian score was predicted from the Bayesian model, using the best split value of −3.512. A score higher than −3.512 predicts the compound to

be an inhibitor; a score lower than −3.512 predicts the compound to be a non-inhibitor.

*
Ki value was estimated from a single concentration and indicates drug was not a potent inhibitor. A Ki value of 3000 μM was assigned.
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Table 3

Validation analysis for the training and test sets when treating the data as binary using 1000μM as the Ki upper
limit for an inhibitor.a

true positivesb false negativesc false positivesd true negativese

quantitative model training set (n=22) 14 (63.6%) 0 (0%) 1 (4.55%) 7 (31.8%)

quantitative model test set (n=27, FAST conformer) 8 (29.6%) 8 (29.6%) 0 (0%) 11(40.7%)

quantitative model test set (n=27, BEST conformer) 9 (33.3%) 6 (22.2%) 1 (3.70%) 11(40.7%)

quantitative model literature test set (n=32, FAST conformer) 2 (6.25%) 12 (37.5%) 0 (0%) 18 (56.25%)

quantitative model literature test set (n=32, BEST conformer) 2 (6.25%) 12 (37.5%) 2 (6.25%) 16 (50%)

Bayesian model training set (n=22)f 13 (59.1%) 1 (4.55%) 1 (4.55%) 7 (31.8%)

Bayesian model test set (n=27) 13 (48.1%) 3 (11.1%) 2 (7.41%) 9 (33.3%)

Bayesian model literature test set (n=32) 9 (28.1%) 5 (15.6%) 6 (18.8%) 12 (37.5%)

a
Values in table are numbers of compounds that were true positives, false negatives, false positives, or true negatives. Values in parenthesis are

simply the percent of compounds that were true positives, false posi tives, true negatives, or false negatives.

b
True positives were both predicted and observed to be inhibitors (Ki < 1000μM).

c
False negatives were predicted to non- inhibitors but were inhibitors.

d
False positives were predicted to be inhibitors but were non-inhibitors.

e
True negatives were both predicted and observed to be non-inhibitors (Ki > 1000μM).

f
The calculation was based on the leave-one-out cross-validation approach.
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Table 5

Evaluation of possible association between clinical rhabdomyolysis and/or carnitine deficiency and hOCTN2
inhibition. Cmax/Ki was computed for compounds in Table 2 and 4.a Compounds in bold text employ Ki (or
IC50) values from literature (i.e. Table 4). Compounds listed in descending order of Cmax/Ki value. See
Supplemental Table S6 for references 1-65 in this table

Compound name Ki (μM) Documented to
cause

rhabdomyolysis
and/or carnitine
deficiency in the

literature

Cmax (μM) b Cmax/Ki

Mildronate 26 No 174 6.71

Valproic acid 139 Yes1 159 1.15

Cefazolin 6740 Yes2 1640 0.252

Cefepime 1700 Yes3 378 0.222

Cephaloridine 230 Yes3 41.7 0.181

Cephaloxin 3037 Yes4 74.0 0.135

Gabapentin 1700 No 172 0.101

Ritonavir 7.73 Yes with statin5 0.610 0.079

Omeprazole 14.6 Yes6 0.909 0.0622

Cefoselis 6400 Yes3 174 0.0271

Irinotecan 219 Yes7 5.01 0.0229

Cetirizine 79.8 No 1.73 0.022

Cimetidine 336 No 6.97 0.0208

Vincristine 15.9 Yes8 0.325 0.0204

Cefuroxime 525 Yes9 10.6 0.0201

Grepafloxacin 300 No 5.51 0.0184

Roxithromycin 333 Yes with statin10 6.06 0.0182

Propafenone 74.2 No 0.812 0.0109

Nizatidine 183 No 1.67 0.00911

Vinorelbine 26.8 No 0.133 0.00497

Spironolactone 26 No 0.114 0.00438

Emetine 4.2 Yes11 0.0173 0.00413

Simvastatin 12.4 Yes12 0.0410 0.00331

Cisapride 66.7 Yes13 0.159 0.00239

Metformin 4963 Yes14 10.1 0.00203

Furosemide 1350 No 2.70 0.00200

Ezetimibe 29.3 Yes with statin15 0.0559 0.00191

Ipratropium 30 No 0.139 0.00146

Procainamide 1400 Yes16 1.55 0.00111

Ciclotropium 95 No 0.0206 6.88×10−4

Penfluridol 26.5 No 0.0104 3.93×10−4
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Compound name Ki (μM) Documented to
cause

rhabdomyolysis
and/or carnitine
deficiency in the

literature

Cmax (μM) b Cmax/Ki

Tacrine 500 No 0.134 2.68×10−4

Risperidone 144 Yes with statin17 0.0188 1.31×10−4

Famotidine 1920 Yes18 0.240 1.25×10−4

Daunorubicin 502 No 0.0290 5.78×10−5

Reserpine 32.2 No 0.00181 5.61×10−5

Acebutolol Not inhibitor No 2.59 0

Captopril Not inhibitor No 3.70 0

Cisplatin Not inhibitor Yes19 8.13 0

Digoxin Not inhibitor No 0.00282 0

Diphenhydramine Not inhibitor No 0.343 0

Lidocaine Not inhibitor No 1.21 0

Memantine Not inhibitor No 0.26 0

Metoprolol Not inhibitor No 0.357 0

Oxaliplatin Not inhibitor No 5.91 0

Probenecid Not inhibitor No 701 0

a
The following compounds from Table 2 or 4 are not listed below, since they were previously considered9 in evaluating a possible association to

hOCTN2 inhibition: zidovudine, lamivudine, ketorolac, levofloxacin, succinylcholine, and procarbazine. Although listed in Table 4, (−)-N-
butylscopolamine is not included in Table 5 since its Cmax is unknown.

b
Values for Cmax in units of μM were computed using compound molecular weight and Cmax from the literature. References 20-65 provide

literature Cmax values for listed compounds in Table 5, respectively. See Supplemental Table S6 for references 1-65 in this table.
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