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Abstract
Molecular dynamics (MD) simulation is a natural approach for studying protein dynamics, and
coupled with the ideas of multiscale modeling, MD proves to be the gold standard in
computational biology to investigate mechanistic details related to protein function. In principle, if
MD trajectories are long enough, the ensemble of protein conformations generated allow
thermodynamic and kinetic properties to be predicted. We know from experiments that proteins
exhibit a high degree of fidelity in function, and that empirical kinetic models are successful in
describing kinetics, suggesting that the ensemble of conformations cluster into well defined
thermodynamic states, which are frequently metastable. The experimental evidence suggest that
more efficient computational models that retain only essential properties of the protein can be
constructed to faithfully reproduce the relatively few observed thermodynamic states, and perhaps
describe transition states if the model is sufficiently detailed. Indeed, there are many so called
ensemble-based methods that attempt to generate more complete ensembles than MD can provide
by focusing on the most important driving forces through simplified representations of how
elements within the protein interact. Although coarse-graining is employed in MD and other
approaches, such as in elastic network models, the key distinguishing factor of ensemble-based
methods is that they are meant to efficiently generate a large ensemble of conformations without
solving explicit equations of motion. This review highlights three types of ensemble-based
methods, illustrated by COREX and WSME, FRODA and PRM, and the DCM.
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Introduction
The purpose of my review is to discuss ensemble-based methods for computationally
studying thermodynamic, kinetic and other intrinsic properties of proteins. These methods
can be extended to applications in pharmacology involving protein-ligand and protein-
protein interactions. Before I delve into details about methodology, it is important to
understand why we should care about generating an ensemble of conformations in the first
place. An overarching principle in chemistry is the thermodynamic concept of free energy;
used to determine if a chemical reaction will be spontaneous, or if work must be done to
drive the reaction. Therefore, change in free energy is the currency that keeps proteins
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functional. Protein function, on the other hand, often involves a conformational change,
perhaps, through a specific mechanism that mediates a change in state.

One possible motivation (and a good one) for generating an ensemble of conformations for a
protein is to look for a succession of structural changes that carve out a specific pathway in
order to identify “the mechanism” responsible for a particular function. More importantly, a
fundamental reason for generating an ensemble of conformations is because the free energy
depends upon this ensemble, and, hence, so does the driving forces behind a chemical
reaction. In this context, it is not necessary for “the mechanism” to be identified as a specific
pathway. The mechanism may be associated with multiple pathways, or no pathway where a
population shift in molecular states can be modulated by changes in entropy. Therefore, we
must not allow ourselves to focus solely on energy exchange, even though there can be
processes where entropy changes are negligible.

There is a possibility, of course, that entropy does not play a critical role in regulating
protein function. Perhaps proteins have evolved to perform function as if they are
miniaturized machines, driven only by energy exchange through specific conformations.
The structure/function paradigm has encapsulated this idea well. However, this would
require the products and reactants to always maintain negligible entropy differences
independent of environmental conditions. Although I find this reasoning counter intuitive
because disorder itself is an important driving force through the second law of
thermodynamics, this is indeed a fair question that deserves an answer. A quick counter
example comes by pointing to the functional role found in intrinsically disordered proteins
[1], where the structure/function paradigm breaks down. More generally, the structure/
function paradigm is only an idealization that proves to be very useful as a starting point in
the sense that all the methods I will describe utilize known three-dimensional protein
structures. However, we must generate conformational ensembles to represent equilibrium
fluctuations of these stable structures precisely because entropy generally plays a critical
role in governing cooperativity.

Many experimental [2–6] and computational [7,8] studies have been made on protein
dynamics to better understand functional mechanisms. From these studies it is found that
entropy plays a key mechanistic role for cooperative structural transitions in proteins
regarding allosteric events [9]. It has been experimentally shown that entropy can directly
modulate cooperativity in ligand binding by shifting the thermodynamic stability of a
complex [10]. With entropy and flexibility of a protein modulated by osmolytes and other
solvation effects [11], entropic considerations become important for drug therapeutics.
Unfortunately, despite a large body of work investigating thermodynamic stability, entropy,
molecular rigidity and cooperativity, the relationships between these concepts remain poorly
understood [12–14]. To resolve issues related to entropy, one must be able to accurately
characterize ensembles of conformations.

To predict observed thermodynamic and kinetic properties of proteins [15,16] requires
applying principles of statistical physics to an ensemble of conformations generated using a
computationally tractable model. There are many ways to do this. I now motivate my review
of ensemble-based methods by noting that Molecular Dynamics (MD) simulation is often
used to generate an ensemble of conformations by numerically solving equations of motion,
even when explicit time dependence is not of interest. A review of MD methods by Dr.
Freddie Salsbury is included in this issue. The connection to ensemble-based methods is that
MD simulation relies on the ergodic theorem, which asserts that a time average over an
infinitely long time is the same as the ensemble average over all accessible microstates. In
the MD approach, the accumulated ensemble of conformations from a given simulation will
generally lead to incomplete sampling [17]. It is also worth noting that while MD simulation
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is often based on energy functions at the atomic level, implicit solvent and/or coarse-grained
models are also routinely applied to speed up calculations [18]. More recently, the
application of multiscale modeling has shown promise in overcoming sampling problems
[19,20], and a review over coarse-grain methods is also included in this issue by Dr. Andrew
Rader.

As schematically shown in Fig. 1, tradeoffs must be made between accuracy and speed
within computational models. By using simplified models with empirical parameters,
ensemble-based methods generate a diverse ensemble of conformations without solving
dynamical equations of motion. Ensemble-based methods that rely on the native state
topology [18] of known three-dimensional structure tend to reproduce experimental
observations with good accuracy [21,22]. In this review, I present three classes of ensemble-
based methods including illustrations of specific models within each class, and I discuss
similarities and differences in their approximations. The main points of concern are 1) the
need for a native protein structure, 2) the importance of solvation effects, 3) identifying the
cause and effect of the cooperative nature of protein dynamics, 4) the assumption of
additivity in conformational entropy and 5) transferability of empirical parameters. Based on
my assessment of the strengths and weakness of the various methods, I outline future
directions for a next generation ensemble-based method that I am currently pursuing.

Ising-like Models
Originally created to study ferromagnetism as a statistical mechanics problem, the Ising
Model is based on discrete spin variables that can be in one of two states (↑ or ↓)
representing magnetic moments. The spins are arranged on a lattice, and they interact
directly with an external magnetic field and neighboring spins through coupling interactions.
The concept of describing the local state of matter with discrete variables that interact with
neighbors (coupling) has made the Ising Model a hallmark paradigm to describe phase
transitions for all kinds of phenomena. Although details can be quite different, all Ising-like
models preserve the spirit of employing a simple representation of microscopic interactions
using discrete variables, such as done in the Zimm-Bragg and Lifson-Roig models for the
helix-coil transition. The first class of ensemble-based methods I describe is based on
decorating a known three-dimensional protein structure with discrete “spin” variables, where
for example, spins ↑ or ↓ represent a folded or unfolded part of the protein respectively.

COREX
Developed by Hilser, Freire and co-workers [23]; (i) a residue in the folded state is exposed
to solvent in proportion to its solvent accessible surface area (SASA) based on the input
structure, and (ii) a residue in the unfolded state is assumed to be fully exposed to solvent.
COREX, which is not an acronym, was originally motivated to predict hydrogen-exchange
EX2 protection factors that are directly measured. All key formulas can be found in source
references [23–25]. A brief description is that all residues are classified as either being polar
or non-polar. Two universal formulas are employed for δHslv(T)and ΔSslv(T) that describe
the transfer of a residue from a non-polar environment (within the core of the protein) to a
polar environment (aqueous solution). These functions are expansions about a reference
temperature, where the expansion coefficients depend on the SASA of a particular residue in
either the folded or unfolded state. These formulas were obtained empirically based on
numerous studies in the early nineties by Freire and coworkers as summarized in REF [23].
COREX also includes a conformational entropy change that takes place upon a residue
changing state (i.e. flipping its spin).

An ensemble that could be generated without enforcing a cooperative mechanism would
look like Fig. 2A, where each residue can be either in a folded or unfolded state independent
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of other residues. If a protein has 100 residues, its ensemble would consist of 2100 different
microstates, making the problem intractable. Therefore, a windowing procedure is used that
forces a number of consecutive residues along the backbone to fold or unfolded as a single
cooperative unit. Windowing dramatically reduces the ensemble size, as illustrated in Figs.
2B–C. For example, the ensemble for a 100-residue protein using a window size of 10
residues is reduced to 210 distinct microstates. COREX employs windowing in a more clever
way by adding shifting [23] to increase the size and diversity of the ensemble. It appears the
results of COREX are insensitive to a range of window sizes. In recent work, with
computers being much faster, COREX uses a window size of 5 residues. These ensembles
can be generated in matter of hours on 1 CPU. COREX has been used to characterize the
native state ensemble [26] and both heat [27] and cold denatured [28] state ensembles. From
these ensembles, the partition function is constructed, and the probability for each microstate
is determined.

An important result from COREX has been its ability to characterize allosteric effects in
proteins [29] where cooperativity can be described without having to identify a specific
pathway. Rather, the collective effect of the generated ensemble of microstates is used,
where the energy of a single residue is successively perturbed in turn to change the nature of
the ensemble. In this way, all pairwise residue-couplings can be calculated using conditional
partition functions, which allows the distal response to be quantified for each perturbed
residue location. This approach exemplifies the view of allosterism that perturbations do not
necessarily cause conformational distortions that propagate from one active site to another.
On the other hand, even if a conformational pathway does exist, it may be difficult to detect
(i.e. perhaps using clustering techniques) within an Ising-like type of model. The most
important point, however, is that the coupling can still be calculated, regardless of the
mechanism, because of the underlying thermodynamic nature of the spin model. COREX is
available on a Web server [30] to support these and many more applications.

There are several aspects of COREX worth highlighting. The generated ensemble
corresponds to an infinite time-span because all partial unfolding events are fully
characterized. By looking at conditional partition functions based on sub-ensembles defined
by a specific residue being folded or unfolded, the thermodynamic stability of each residue
can be defined, which helps locate regions of the protein more prone to unfold. Interestingly,
only 1-body “spin” terms define interactions, which depends on the local geometry for
determining the SASA of a residue in its folded state [26]. The approximations of this
approach are: No other geometric information beyond the input structure is involved in the
calculation (only spin flips are monitored). The solvation parameters depend on whether a
residue is a polar or non-polar type, but do not depend on the specific type of residue. In
recent versions of COREX, a free parameter is used to scale the conformational entropy
term. Because only 1-body terms are used, no interactions between residues (i..e. no “spin-
spin” coupling terms) are modeled. This means that without windowing, COREX is
equivalent to an inhomogeneous set of paramagnetic spins (in the language of the Ising
model analogy), and hence, cooperativity will be non-existent. This suggests that the
observed cooperativity derives from sliding windows, wherein each window, all the residues
are either folded or unfolded simultaneously causing the model to be cooperative.

In summary, COREX captures essential features of protein stability through solvation
effects using a fixed set of parameters across numerous applications. On the other hand, it
has not been used to deliver on an early promise of reproducing excess heat capacity curves
[24], indicating the cooperative mechanism needs refinement. Hilser argues cooperativity
emerges from the SASA differentials, irrespective of the window size. To quantify this, I
suggest the sharpness of the excess heat capacity curves be monitored as a function of
window size.
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WSME
The Wako-Saitô-Muñoz-Eaton model [31] is a sub-class of Ising-like models that differs
substantially from COREX in that no attention is given to solvation effects! Rather, focus is
placed on the conformational part of free energy. A general WSME model can be written as:

(1)

where G(m) is the free energy for a conformation uniquely labeled by the state vector m,
where m= {mj}, and mj are the “spins” that can be either 0 or 1 when the j-th residue is
unfolded or folded respectively. The model requires all energy couplings, {εij}, for native
contacts between the i-th and j-th residues to be specified, where Δ ij =1 when there is a
native contact present in the input structure, otherwise Δ ij =0. The {qj} define the gain in
conformational entropy that occurs when the j-th residue unfolds, and the term πmkrequires a
consecutive number of residues along the backbone to simultaneously fold as a single unit in
order for the energy term to contribute, which causes the model to be cooperative. Finally, T
is the absolute temperature and R is the ideal gas constant. Remarkably, Eq. (1) can be
solved analytically [32]. Nevertheless, it is more common to perform Monte Carlo (MC)
sampling. Moreover, Eq. (1) is usually solved within the double or triple sequence
approximation that only allows configurations with respectively at most two or three
stretches of consecutive folded residues. Both the double and triple sequence
approximations reproduce equilibrium and kinetics properties of a diverse set of proteins
markedly well [33] using just a few adjustable parameters. A single sequence approximation
is shown in Fig. 2D, which also has been used frequently, but is less accurate.

Kinetic properties are obtained using a master equation that takes on the generic for

(2)

wherePk(t)is the probability that the protein is in the k-th microstate at time, t, and Tkj is the
rate for the protein to transition from the j-th microstate to the k-th microstate. The master
equation can be applied at a very high level of resolution where the indices represent
microstates that carefully define the positions of all atoms for each conformation in the
ensemble. However, for an Ising-like model, the “microstate” specified by the state vector
m, is actually a coarse-grained description of the protein conformation. As such, the generic
form given in Eq. (2) is also valid at different scales (both spatial and time scales) such that
the indexing can be viewed as “macrostates” of a protein. A macrostate specifies a global
property of a protein, regardless of the number of microscopic states that are consistent with
its global property. Macrostates are characterized by “order parameters” because they track
the folding progress of a protein, for which the total number of native contacts is often used.
For example, if there are 1000 native contacts in a protein based on the input structure, and
there are 750 native contacts in a macrostate due to partial unfolding events, then the sub-
ensemble of all possible state vectors consistent with the macrostate will have the
combinatorial number given by (1000!)/(750!×250!) of microstates, as derived from the
binomial distribution.

The transition rates are of the form Tkj =Γkje−(Gk−Gj)/RT where (Gk−Gj) is the difference in
free energy between the macrostates, and the exponential prefactor, Γkj, is a fundamental
rate related to the microscopic details of how the conformation of a protein dynamically
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changes. Usually, Γkjis assumed to be a global constant, mainly because it is extremely
difficult to determine the complete set of {Γkj} without a full fledge microscopic theory.
Protein kinetics can be described well [33] assuming transitions only take place between
nearest neighbor macrostates (i.e. in one dimension, the number of native contacts can
increase or decrease by 1) and that there is only a single global prefactor, Γ. Thus, protein
kinetics is described by a random walk on the free energy landscape. It has been suggested
that a constant prefactor is a good approximation when the master equation is applied to
macrostates described by order parameters that slowly change in time, but the rates are too
diverse for this approximation to be justified [34] when applied to microstates at high
resolution. The success of the WSME approach is in its ability to describe thermodynamics
and kinetics for a wide variety of proteins, including the fast folding villin subdomain [35],
which has no folding barrier. This body of work suggests the folding process is largely
determined by the distribution and strength of native contacts, which is consistent with a
funneled energy landscape.

There are several aspects of the WSME model worth highlighting. Interestingly, there are
only 2-body energy terms and 1-body conformational entropy terms. In regards to its
capabilities in generating ensembles, it has the same conformational advantage over MD
simulations that COREX has. The approximations of this approach are: No geometric
information beyond the input structure defining contacts is involved in the calculation (only
spin flips), which only requires knowing the topology of the native structure. Interactions are
considered between residues to allow cooperativity to arise, but the form of the free energy
function enforces cooperative units. Non-transferable parameters must be determined for
each protein studied in order to fit to experimental data, but this allows for the possibility to
study proteins in different types of solvent conditions. Finally, the WSME model does not
adequately account for specific residue dependency, solvation effects, and conformational
entropies are treated as additive, which is generally not true.

In summary, WSME is a minimal model that captures thermodynamic and kinetic properties
of proteins very well, as demonstrated in numerous applications in understanding protein
folding. An unfortunate drawback is that there does not seem to be a consensus with respect
to model details, and there does not appear to be a convenient public resource for a program
to do the calculations.

Explicit pathway generation
The Ising-like models discussed above are extremely fast because they ignore the
geometrical aspects of a protein through simplified representations of interactions.
Consequently, the ensembles generated by COREX or WSME lack atomic coordinate
information. Nevertheless, due to their overall success in describing thermodynamic and
kinetic properties, it is clear that native contacts are largely responsible for protein stability
and the folding process. This suggests a Go-like strategy of ignoring non-native interactions
within a MD simulation (see Fig. 1) will serve as an efficient way to generate ensembles.
Although this is the case, this review is limited to ensemble-based methods that are much
more efficient in generating ensembles by avoiding propagating equations of motion
altogether. The methods discussed here provide explicit pathway generation by taking into
account the rigidity and flexibility of native protein structure. By using mechanical
information from a graph-rigidity analysis [36], three types of ensemble-based methods have
emerged.

FRODA
Developed by Thorpe and co-workers, the strategy of the Framework Rigidity Optimized
Dynamic Algorithm [37], referred to as FRODA, is to create a network of distance
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constraints that is defined by native interactions from an input structure, and explore allowed
motions at the atomic level that maintain all imposed distance constraints. The native
interactions include covalent bonds, hydrogen bonds (H-bonds) and hydrophobic tethers.
Rather then solving complicated equations of motion that enforce distance constraints, the
rigid cluster decomposition is determined first [36], and subsequently, each rigid cluster is
held together by stiff springs with natural lengths set equal to the distance between pairs of
atoms within the input structure. Between atoms from different rigid clusters: Hydrophobic
tethers are enforced using distance inequalities, and, a short-range repulsive force prevents
atoms (and rigid clusters) from passing through one another. Rigid clusters defined by the
input structure are jiggled about without disrupting any distance constraint using MC.

A single MC move consists of two steps. First, all rigid clusters are “jiggled” through a
random rotation, translation and deformation. Second, the energy of the system is relaxed so
that without clashing, all rigid clusters are maintained within tight distance constraint
tolerances throughout the simulation. In this way, only the relative positions of atoms in
different rigid clusters change (i.e. in flexible regions), and a trajectory is created after many
MC moves. An important feature is that a “momentum” bias is added to the random jiggling
by tending to move rigid clusters along the same direction that was previously successful.
Computational efficiency is increased by about two orders of magnitude compared to no
applied biasing. Samples from this trajectory form an ensemble of conformations that
represents the native state ensemble from which principle component analysis (PCA) can be
performed to find the collective motions with greatest variance. The FRODA module is
included within the FIRST software, which can be freely downloaded from FlexWeb [38].

There are few aspects of FRODA worth highlighting. There are rules that determine if a H-
bond or hydrophobic tether exists within the input structure, and how many distance
constraints should model an interaction. I find the default settings of FRODA to generally
work well. However, many users have expressed concern about the sensitivity of the results
to arbitrary settings. Through a recent quantitative assessment (to be published) that
compares the PCA modes from FRODA with normal modes from an elastic network, and
PCA modes from long MD simulations, we found that FRODA provides robust results that
are both consistent with the other methods, and not sensitive to the precise settings. The
advantage of FRODA is that it is order of magnitude times faster than MD simulation in
probing the native state ensemble (see Fig. 1), and it tracks flexible motions better than
elastic network models. However, the approximation of this approach is that once a
constraint is defined, it is fixed forever. Although this restriction can be lifted, the current
version of FRODA maintains a fixed constraint topology. This method is completely
athermal (based solely on mechanics) and does not take into consideration any type of
solvation effects. The method is limited to studying only native state ensembles.

I would also like to mention that a different method than FRODA, although similar in spirit,
has recently appeared by the same group [39] called Geometric Targeting. Ensembles are
generated based on tracing pathways between two known structures. In this new method, H-
bond distance constraints are imposed in the form of inequalities, rather than equalities, and
there is a mechanism implemented for H-bonds to break and form. This software can be run
on a server [40]. Although my familiarity with this method's capabilities is limited, it
appears to be a promising approach. For example, the conformations along a pathway can be
used as seed positions for umbrella sampling using MD simulation [41] to obtain free
energies, allowing one to study kinetics in terms of plausible reaction coordinates.

PRM
Probabilistic roadmap (PRM) is a method commonly used in robotics for motion planning.
A roadmap represents a set of conformations and transitions between them as a graph [42].
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Similar to the other methods described above, PRM starts with a known input structure, and
generates new conformations. Unfortunately, PRM does not solve how to generate
ensembles. Different methods must be devised to efficiently explore conformational space,
where the dimensionally of this space increases exponentially as more degrees of freedom
(DOF) are involved in the protein motion as it unfolds. For WSME models [21], the PRM
method was shown to perform much more efficiently than standard MC methods [43]. For
geometry based PRM models, Amato and coworkers generate conformations by a MC
procedure using internal coordinate methods taken from robotics [44]. In more recent work,
their method has been improved by incorporating rigidity concepts, where the probability to
rotate dihedral angles within rigid regions is reduced [45], and this method is available on a
server [46].

A few aspects of the geometrical PRM are worth highlighting. The employed robotics-based
method does not rely on enforcing certain rigid clusters to remain intact. In other words,
distance constraints (other than from covalent bonding) are not fixed. Identifying rigid
clusters based on a current conformation is used for the purpose to bias which dihedral
angles to vary. As such, rigid regions tend to stay rigid, and the effective number of DOF is
reduced in a stochastic way. Therefore, this approach allows constraints to break and form in
a natural way, and the method is computationally efficient. Effectively, the entire energy
landscape can be created, which implies all thermodynamic and kinetic properties of
proteins can be predicted. This method is not restricted to native contacts, but requires
starting with known protein structure for the exploration to be tractable. The only
approximation is the use of a simple energy function, which does not include solvation
effects. Also, the exponential prefactors found in a master equation will not be expected to
be uniform over the edges within the graph of assessable microstates [34]. Although
simplifications are made in the energy function and in constructing the master equation,
there does not seem to be any intrinsic disadvantage of the method.

In summary, FRODA, geometric targeting and geometrical PRM are similar to MD
simulation in that atomic coordinates are explicitly manipulated. They differ from MD
because they employ simplified energy functions, do not solve dynamical equations of
motion and invoke network rigidity to reduce the number of DOF involved in larger-scale
motions. Taken together, these methods have marked improvements in speed and coverage
of the accessible conformational space. Of particular importance, the effective number of
DOF depends on the number of crosslinking interactions across the backbone chain(s) as
well as the mechanical strength of these crosslinks.

Distance constraint models
The methods described in the previous section that locate flexible and rigid regions within a
protein point to a link between conformational entropy and properties of network rigidity.
Other compelling evidence was found by showing that the non-additivity measured in
double mutant free energy cycles is related to the propagation of rigidity throughout the
protein [47]. A Distance Constraint Model (DCM) is an approach that describes protein
thermodynamics through an ensemble of accessible constraint topologies determined by
covalent bonding and crosslinking interactions that fluctuate, such as H-bonds [48]. Based
on a free energy decomposition in terms of specific interactions, energy and entropy
contributions are assigned to fluctuating constraints, and a free energy function is defined.
Constraints are allowed to break or form by identifying native crosslinks and assigning an
Ising “spin” variable to denote whether the constraint is present or not. Under a fixed set of
distance constraints, a protein can explore a certain amount of conformational space (i.e. this
is what FRODA simulates), which is related to conformational entropy.
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The DCM estimates conformational entropy by accounting for a reduction of entropy when
a constraint is placed within a flexible region, which indicates that it is an independent
constraint. If a constraint is placed within a rigid region, the constraint is redundant, and no
entropy cost occurs. In a two-step process, a rigorous lowest upper bound estimate for
conformational entropy is made without simulating protein motion (explicit manipulation of
atoms). First, a list of all the constraints present within a given network is sorted based on
those that can potentially (assuming they are independent) reduce the entropy the most to the
least. Second, graph-rigidity algorithms are applied recursively using this preferential
sorting to determine if a constraint is independent or redundant. Then a least upper bound
estimate for conformational entropy is given as a sum over entropy contributions from
independent constraints. In addition, correlated motions and rigid clusters are identified, and
total energy is given by the sum over all energy components within the protein. Although
loop corrections can be incorporated to improve accuracy, their effect is captured largely
through effective parameters, and the remaining error is found to be negligible compared to
the dominant effect from the rigid cluster decomposition [49].

mDCM
A minimal DCM (mDCM) was devised by Jacobs and coworkers as a simplified all-atom
model to describe protein thermodynamics [50] using the free energy function:

(3)

Free energy is expressed in terms of two order parameters given by the number of native H-
bonds, Nhb, and number of native backbone and sidechain torsion angles, Nnt. The total
energy for the intramolecular H-bonds is given by Uhb, which is a sum over all H-bonds
present in the protein. Meanwhile, there is competition between intramolecular H-bonds and
H-bonds that from between the protein and solvent. For example, some intramolecular H-
bonds will break so that other H-bonds can form between the protein and solvent, where, u,
is the average energy (a negative value) of a solvent H-bond. This term accounts for
solvation effects in an effective way. The term Nntν (ν is negative) accounts for packing,
where the more native-like constraints that form in the structure the lower the energy. The
Sm term is the mixing entropy associated with the multiplicity of ways Nhb H-bonds and Nnt
torsion angles can be arranged in the protein. The Sc term is conformational entropy,
estimated as described above, using entropy parameters for various interactions.
Respectively, δn, δd, γ are the entropies assigned to a native torsion, disordered torsion and a
entropy scale for H-bonds. H-bond energies and entropies are assigned based on local
geometry, where γ is a linear scale factor to facilitate the assumption that greater entropy
loss is associated with H-bonds having lower energy. Subsequently, δd, γ were fixed as
transferable, and {u, ν, δn} are free parameters to fit to experimental thermodynamic data,
such as excess heat capacity.

There are a few aspects of the mDCM worth highlighting. The Ising-like model employed is
at the all-atom level where “spin” variables represent microscopic interactions. Excess heat
capacity data is reproduced well with three adjustable parameters and a generic baseline
function [51]. The ensemble it produces allows the partition function, thermodynamic
quantities and average mechanical properties to be calculated with excellent tradeoff
between accuracy and speed (see Fig. 1). The free energy of a protein is directly related to
global flexibility (i.e. DOF), and, in general, free energy is expressed in terms of
crosslinking constraints. Cooperativity comes about as a consequence (an effect) of
explicitly regarding network rigidity as a mechanical interaction that governs enthalpy-
entropy mechanisms at a microscopic level. There is no need for a term to enforce
cooperative folding units (see Fig. 2). The degree of cooperativity is predicted without using
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any a priori assumptions. From the ensembles of constraint topologies generated, free
energy landscapes, thermodynamic properties, and quantitative stability/flexibility
relationships (QSFR) are calculated rapidly, which include mechanical properties. The
QSFR predictions have reproduced many disparate biophysical and functional properties of
proteins [52–55].

The mDCM was recently applied to study allostery in CheY [56], where the ensemble of
conformations that make up the native basin provides quantitative insight into functional
mechanisms that include mechanical response (correlated motions) and thermodynamic
response (population shifts). The setup of this work is similar to what was done using
COREX [29]. Here, a mechanical perturbation was applied at each residue in turn that
mimics a localized binding event.

The mDCM is subject to many approximations. It is solved within a mean field
approximation combined with MC sampling. Torsion angle interactions are all treated
uniformly and no distinction is given to the location of H-bonds as being in the core or on
the surface of a protein. Attention to detail is placed only on the intramolecular H-bond
network. Free parameters account for solvation effects in an effective way, rendering them
as non-transferable. An input structure is required to define native interactions. The mDCM
was created to demonstrate proof-of-concept, and many simplifications were made that limit
its utility. Consequently, the mDCM has not been made available on a server and is not user
friendly.

In summary, despite many approximations that limit the capabilities of the mDCM, overall
its QSFR predictions have correlated well with experiments. The most important aspect of
the DCM is that the utility of free energy decompositions [57,58] is restored by explicitly
accounting for non-additivity in conformational entropy. This key point has been the main
focus in a couple of recent papers [59,60] that give an in depth conceptual view of the
approach with minimal mathematics.

Future directions
A key element to efficient computational models is to maximize simplicity by taking
advantage of the essential physics of a problem. It is safe to say that solvation effects, native
contacts and rigidity are essential aspects needed to rapidly generate conformational
ensembles that accurately describe protein thermodynamics and kinetics. The mDCM has
established proof of concept that total free energies can be calculated rapidly by
reconstituting component energy and entropy parts based on a free energy decomposition
scheme. Non-additivity effects are taken into account using network rigidity. The general
form of a DCM is sufficiently versatile, in that it can incorporate all the essential aspects that
ensemble-based methods offer. Moreover, kinetics can be studied with a DCM by
employing a master equation approach like done in the WSME models, or following the
geometrical PRM approach by interfacing free energy calculations with methods that
generate new conformations. The strength of ensemble-based methods is that solvent effects
can be modeled using effective fitting parameters, which dramatically increases applicability
to studying protein stability in different types of solvent conditions. These issues are being
incorporated in a new DCM that I am currently working on. In collaboration with Dennis
Livesay, a much more sophisticated DCM that accounts for solvation effects is nearing
completion, and is planned to be released as FAST software that will provide a Flexibility
And Stability Test on aqueous soluble proteins. It is expected to be located at the question
mark on the speed versus accuracy graph shown in Fig. 1.
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Conclusions
Ensemble-based methods are under-utilized compared to MD simulations. One reason for
this is because MD simulation packages are readily available across the spectrum of finding
resources that span from free to commercial software. Another reason is that ensemble-
based methods always use specific approximations foreign to most scientists that are not
experts in computational biology. Although the generated ensembles are subject to model
limitations, ensemble-based methods are important because they provide sound insight into
the essential driving forces controlling protein thermodynamics and kinetics, and they
outperform MD simulations. These methods are needed because the structure/function
paradigm is only an idealization. All the methods described in this review, including MD
methods, utilize known three-dimensional protein structures. Taking into account that MD
packages come with errors and approximations as well, it can be expected that ensemble-
based methods will mature, and acquire a large regular user base.
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Figure 1.
A schematic speed-accuracy curve where the axes are on a logarithmic scale. The fastest
computational methods are based on free energy decomposition where the total free energy
of a system is taken as the sum over free energy components. These methods are generally
not very accurate because free energies are nonadditive due to conformational entropy. A
traditional method to determine conformational entropy requires simulation of the molecular
structure. There are many methods to do this that rely on native contacts (Go-like models).
Coarse-grained models are also employed to speed calculations, but accuracy is lost in
representing interactions. MD simulations are very accurate at the all-atom level using
explicit solvent, but they are computationally intensive. Generating ensembles involving
quantum mechanical calculations is not feasible. Multi-scale approaches place best on the
speed-accuracy curve shown as filled squares. The mDCM (minimal Distance Constraint
Model explained below) is an all atom approach based on free energy decomposition, and is
a multiscale approach. FAST is based on a new DCM currently being developed, and is
expected to perform where the question mark is placed.
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Figure 2.
A schematic representation of spin variables mapped to a 20-residue protein to highlight
cooperative units in Ising-like models. Up and down arrow spins represent residues that are
folded and unfolded respectively. (A) An example spin-state without windowing. Since each
residue can be folded or unfolded independently, there are 220 possible spin-states. (B and
C) Two example spin-states with a 5-residue windowing scheme. The number of accessible
spin-states is reduced to 24. (D) For a single sequence approximation, only one consecutive
region can be in a folded state, although its length is not restricted. Higher sequence
approximations can also be made.
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