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For dichotomous outcomes, the authors discuss when the standard approaches to mediation analysis used in
epidemiology and the social sciences are valid, and they provide alternative mediation analysis techniques when the
standard approaches will not work. They extend definitions of controlled direct effects and natural direct and indirect
effects from the risk difference scale to the odds ratio scale. A simple technique to estimate direct and indirect
effect odds ratios by combining logistic and linear regressions is described that applies when the outcome is rare and
the mediator continuous. Further discussion is given as to how this mediation analysis technique can be extended
to settings in which data come from a case-control study design. For the standard mediation analysis techniques
used in the epidemiologic and social science literatures to be valid, an assumption of no interaction between the
effects of the exposure and the mediator on the outcome is needed. The approach presented here, however, will
apply even when there are interactions between the effect of the exposure and the mediator on the outcome.
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The causal inference literature has made a considerable
contribution to mediation analysis by providing definitions
for direct and indirect effects that allow for the effect de-
composition of a total effect into a direct and an indirect
effect even in settings involving nonlinearities and interac-
tions (1, 2), thereby circumventing an important limitation
to the concepts and methods for mediation that have been
used in the social sciences (2). The causal inference litera-
ture on mediation has focused on the risk difference scale.
Many analyses in epidemiology, however, use the odds ratio
scale because the outcome is dichotomous and the data arise
from a case-control study design.

In this paper, we consider the use of the odds ratio scale
for mediation analysis. The use of this scale has the advan-

tage that, when the outcome is rare and the mediator con-
tinuous, direct and indirect effects can be estimated through
very simple regressions, even with data arising from a case-
control study design. Under certain no-interaction assump-
tions, this technique reduces to the approach often used in
the epidemiologic literature of including an intermediate
variable in a logistic regression to assess mediation. How-
ever, when the no-interaction assumption does not hold, the
approach described in the present paper can still be used.

DIRECT AND INDIRECT EFFECTS ODDS RATIOS

We will let A denote an exposure of interest, Y a dichoto-
mous outcome, and M a potential mediator. We let C denote
a set of baseline covariates not affected by the exposure. The
relations among these variables are depicted in Figure 1. For
example, A may denote estrogen therapy, M serum lipid
concentrations, and Y cardiovascular disease. A question
of interest may then be the extent to which the effect of
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estrogen therapy A on cardiovascular disease Y is mediated
through serum lipid concentrations M and the extent to
which it is through other pathways (3, 4). For simplicity
in the example, we suppose treatment is binary and let
A ¼ 1 denote estrogen therapy and A ¼ 0 otherwise.

To address this and similar questions concerning media-
tion, we use the counterfactual framework (5, 6). We will let
Ya and Ma denote, respectively, the values of the outcome
and mediator that would have been observed had the expo-
sure A been set, possibly contrary to fact, to level a. We will
let Yam denote the value of the outcome that would have been
observed had the exposure, A, and the mediator, M, been set,
possibly contrary to fact, to levels a and m, respectively. We
also assume the technical assumptions called ‘‘consistency’’
and ‘‘composition’’ generally presupposed in the causal in-
ference literature and described elsewhere (7–9).

We extend the definitions of direct and indirect effects
(1, 2) in causal inference from the risk difference to the
odds ratio scale. On the risk difference scale, the total
effect, conditional on C ¼ c, comparing exposure level
a with a*, is defined by E½Ya � Ya* j c� and compares the
average outcome in stratum C ¼ c if A had been set to
a with the average outcome in stratum C ¼ c if A had been
set to a*. On the odds ratio (OR) scale, the total effect (TE),
conditional on C ¼ c, comparing exposure level a with a*,
is defined by

ORTE
a;a*jc ¼

PðYa ¼ 1j cÞ=f1� PðYa ¼ 1j cÞg
PðYa* ¼ 1j cÞ=f1� PðYa* ¼ 1j cÞg

and compares the odds of outcome Y ¼ 1 in stratum C ¼ c if
A had been a with the odds of outcome Y ¼ 1 in stratum C ¼
c if A had been a*. In the context of the cardiovascular
example, if we let a ¼ 1 denote the estrogen therapy and
a* ¼ 0 denote no therapy, then ORTE

1;0jc would be the odds
ratio for cardiovascular disease comparing estrogen therapy
with no therapy for individuals with covariate values c.

As with the total causal effect, we can also define direct
and indirect effects on either the risk difference or the odds
ratio scale. We will adopt the definitions and nomenclature
of Pearl (2) for the risk difference scale and extend these
concepts to the odds ratio scale. On the risk difference scale,
the controlled direct effect, conditional on C ¼ c, comparing
exposure level a with a* and fixing the mediator to level m,
is defined by E½Yam � Ya*mj c� and captures the effect of
exposure A on outcome Y, intervening to fix M to m. On

the odds ratio scale, one could define the conditional con-
trolled direct effect (CDE) as

ORCDE
a;a*jcðmÞ ¼ PðYam ¼ 1j cÞ=f1� PðYam ¼ 1j cÞg

PðYa*m ¼ 1j cÞ=f1� PðYa*m ¼ 1j cÞg:

If A is a binary, this is
PðY1m ¼ 1j cÞ=f1� PðY1m ¼ 1j cÞg
PðY0m ¼ 1j cÞ=f1� PðY0m ¼ 1j cÞg.

Note that these conditional controlled direct effects may
vary with m when there is interaction between the effects
of A and M on the odds ratio scale. In the cardiovascular
example, ORCDE

1;0jcðmÞ would denote the odds ratio for cardio-
vascular disease comparing therapy and no therapy with
serum lipid concentrations fixed at level m.

The so-called ‘‘natural direct effect’’ (2) or ‘‘pure direct
effect’’ (1) differs from the controlled direct effect in that
the intermediate M is set to the level Ma* , the level it
would have naturally been under some reference condi-
tion for the exposure, A ¼ a*; the natural direct effect,
conditional on C ¼ c, on the risk difference scale thus
takes the form E½YaMa*

� Ya*Ma*
j c�. The natural direct

effect thus captures the effect of the exposure, estrogen
therapy, on the outcome, cardiovascular disease, interven-
ing to set the mediator, serum lipid concentration, to the
level it would have been under the reference exposure
level (e.g., no estrogen therapy). The conditional natural
direct effect (NDE) odds ratio can be defined analogously
and takes the form

ORNDE
a;a*jc

�
a*
�
¼

PðYaMa*
¼ 1j cÞ=f1� PðYaMa*

¼ 1j cÞg
PðYa*Ma*

¼ 1j cÞ=f1� PðYa*Ma*
¼ 1j cÞg:

On the odds ratio scale, the conditional natural direct effect
can be interpreted as comparing the odds, conditional on
C ¼ c, of the outcome Y if exposure had been a, but if the
mediator had been fixed to Ma* (i.e., to what it would have
been if exposure had been a*) to the odds, conditional on
C ¼ c, of the outcome Y if exposure had been a* but if the
mediator had been fixed at the same level Ma* . This would
capture the odds ratio for cardiovascular disease comparing
therapy with no therapy intervening to set the serum lipid
concentration to the level it would have been for each sub-
ject had they not had estrogen therapy.

One can similarly define a natural indirect effect. On the
risk difference scale, the conditional natural indirect effect
can be defined as E½YaMa

� YaMa*
j c�, which compares, con-

ditional on C ¼ c, the effect of the mediator at levels Ma and
Ma* on the outcome when exposure A is set to a. The con-
ditional natural indirect effect (NIE) can be defined analo-
gously on the odds ratio scale as

ORNIE
a;a*jcðaÞ ¼

PðYaMa
¼ 1j cÞ=f1� PðYaMa

¼ 1j cÞg
PðYaMa*

¼ 1j cÞ=f1� PðYaMa*
¼ 1j cÞg:

On the odds ratio scale, the conditional natural indirect ef-
fect can be interpreted as comparing the odds, conditional
on C ¼ c, of the outcome Y if exposure had been a but if the
mediator had been fixed to Ma (i.e., to what it would have

A M YC

Figure 1. Example of mediation with exposure A, mediator M, out-
come Y, and covariates C.
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been if exposure had been a) to the odds, conditional on C ¼
c, of the outcome Y if exposure had been a but if the
mediator had been fixed to Ma* (i.e., to what it would have
been if exposure had been a*). The natural indirect effect
odds ratio thus captures the odds ratio for cardiovascular
disease comparing serum lipid concentration under therapy
and no therapy if the subject had in fact had estrogen ther-
apy. As discussed elsewhere, controlled direct effects are
often of greater interest in policy evaluation (2, 10), whereas
natural direct and indirect effects are often of greater interest
in evaluating the action of various mechanisms (10, 11).
Note that throughout this paper we will consider all effects
conditional on the covariates C, and we will thus use ex-
pressions such as ‘‘natural direct effect’’ and ‘‘conditional
natural direct effect’’ interchangeably.

On the risk difference scale, natural direct and indirect
effects have the property that the total effect E½Ya � Ya* j c�
decomposes into a natural direct and indirect effect:

E
h
Ya � Ya* j c

i
¼ E

h
YaMa

� Ya*Ma*
j c
i

¼ E
h
YaMa

� YaMa*
j c

i
þ E

h
YaMa*

� Ya*Ma*
jc
i
:

The decomposition holds even when there are nonlinearities
and interactions. On the odds ratio scale, the natural direct
and indirect effects also have a decomposition property. On
the odds ratio scale, the odds ratio for the total effect de-
composes into a product of odds ratios for the natural direct
and indirect effect:

ORTE
a;a*jc ¼

PðYa ¼ 1j cÞ=f1� PðYa ¼ 1j cÞg
PðYa* ¼ 1j cÞ=f1� PðYa* ¼ 1j cÞg

¼ PðYaMa
¼ 1j cÞ=f1� PðYaMa

¼ 1j cÞg
PðYa*Ma*

¼ 1j cÞ=f1� PðYa*Ma*
¼ 1j cÞg

¼ PðYaMa
¼ 1j cÞ=f1� PðYaMa

¼ 1j cÞg
PðYaMa*

¼ 1j cÞ=f1� PðYaMa*
¼ 1j cÞg

3
PðYaMa*

¼ 1j cÞ=f1� PðYaMa*
¼ 1j cÞg

PðYa*Ma*
¼ 1j cÞ=f1� PðYa*Ma*

¼ 1j cÞg;

where the first expression in the product is the natural in-
direct effect odds ratio, ORNIE

a;a*jcðaÞ, and the second expres-
sion is the natural direct effect odds ratio, ORNDE

a;a*jcða*Þ. On
the log scale, this is logðORTE

a;a*jcÞ ¼ logðORNIE
a;a*jcðaÞÞþ

logðORNDE
a;a*jcða*ÞÞ. The ratio, logðORNIE

a;a*jcðaÞÞ=
logðORTE

a;a*jcÞ, thus constitutes a measure of the proportion

of the effect of the exposure mediated by the intermediate
on the log odds scale. If the outcome is rare, one can

use ORNDE
a;a*jcða*Þ3

n
ORNIE

a;a*jcðaÞ � 1
o
=
n
ORNDE

a;a*jcða*Þ 3

ORNIE
a;a*jcðaÞ � 1

o
as a measure of the proportion mediated

on the risk difference scale. We have given formulas for the
‘‘pure natural direct effect’’ and the ‘‘total natural indirect
effect’’ (1); refer to the Web Appendix, which is posted on
the Journal’s Web site (http://aje.oxfordjournals.org/) for

further discussion of these measures and for analogous for-
mulas for the ‘‘total natural direct effect’’ and the ‘‘pure
natural indirect effect’’ (1).

Under certain assumptions that the set of covariates C
contains all relevant confounding variables, the direct and
indirect effects can be identified with observed data. We will
follow the exposition of VanderWeele (12) and VanderWeele
and Vansteelandt (9) on the identification assumptions pro-
posed by Pearl (2). These identification assumptions were
presented to identify direct and indirect effects on the risk
difference scale but they apply also to the odds ratio scale.

To identify total effects, it is generally assumed that, con-
ditional on some set of measured covariates C, the effect of
exposure A on outcome Y is unconfounded; in counterfactual
notation, this is Ya

‘
Aj C, where we use the independence

symbol
‘

to denote that Ya is independent of A conditional
on C. In practice, to make this assumption more plausible,
a researcher will attempt to collect data on a sufficiently rich
set of covariates C to try to control for confounding of the
exposure-outcome relation. If this assumption holds,
then the odds ratio for the total causal effect, ORTE

a;a*jc, is
identified and can be estimated from the data using

PðYa ¼ 1j cÞ=f1� PðYa ¼ 1j cÞg
PðYa* ¼ 1j cÞ=f1� PðYa* ¼ 1j cÞg

¼ PðY ¼ 1j a; cÞ=f1� PðY ¼ 1j a; cÞg
PðY ¼ 1j a*; cÞ=f1� PðY ¼ 1j a*; cÞg:

The left-hand side is the odds ratio for the total causal effect,
ORTE

a;a*jc; the right-hand side is an expression that can be
estimated from the data.

Controlled direct effects on the risk difference or
risk ratio scale are identified if conditioning on the set of
covariates C suffices to control for confounding of both the
exposure-outcome and the mediator-outcome relations. In
counterfactual notation, these 2 assumptions can, respec-
tively, be written as that for all a and m,

Yam

a
Aj C ð1Þ

Yam

a
Mj

n
A;C

o
: ð2Þ

Assumption 1 is similar to the assumption of no-unmeasured
confounding assumption for total effects. Assumption 2 re-
quires that, conditional on {A, C}, there is no unmeasured
confounding for the mediator-outcome relation. If assump-
tion 1 is satisfied but assumption 2 fails (i.e., if there is me-
diator-outcome confounding), then estimators for the direct
and indirect effect will in general be biased (1, 2, 13, 14).
Thus, in the cardiovascular example, if U denoted some as-
pect of diet that was associated with serum lipid levels and
was also associated with cardiovascular disease, then it would
be necessary to control for U in estimating the direct effect of
estrogen therapy on cardiovascular disease controlling for
serum lipid levels. If estrogen therapy were randomized, then
its effect on serum lipid concentrations only or on cardiovas-
cular disease only could be estimated without control for
U but, when the direct effect of estrogen therapy on
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cardiovascular disease controlling for serum lipid concentra-
tions is of interest, data on U would be needed.

Unfortunately, in many studies using mediation analysis,
little attention is given to data collection for variables con-
founding the mediator-outcome relation. Effort is often
made to collect data on some set of covariates C that suffice
to control for confounding of the exposure-outcome relation
so that assumption 1 is satisfied, but this will not ensure that
assumption 2 is satisfied. As noted above, when there are
mediator-outcome confounding variables that are unmea-
sured or for which control has not been made, estimates
of direct and indirect effects will generally be biased. In
epidemiologic research for which questions of mediation
are of interest, greater effort should be made to collect data
on potential mediator-outcome confounders. When these
assumptions 1 and 2 do not hold, then sensitivity analysis
for mediation for violations of the no-unmeasured con-
founding assumptions should be used (15, 16). If assump-
tions 1 and 2 hold, then the controlled direct effect on the
risk difference scale and on the odds ratio scale is identified,
and ORCDE

a;a*jcðmÞ is then given by

PðYam ¼ 1j cÞ=f1� PðYam ¼ 1j cÞg
PðYa*m ¼ 1j cÞ=f1� PðYa*m ¼ 1j cÞg

¼ PðY ¼ 1j a;m; cÞ=f1� PðY ¼ 1j a;m; cÞg
PðY ¼ 1j a*;m; cÞ=f1� PðY ¼ 1j a*;m; cÞg:

For the identification of natural direct and indirect effects,
additional assumptions are needed. Natural direct and indirect
effects will be identified if, in addition to assumptions 1 and 2,
the following 2 assumptions hold, that for all a, a*, and m,

Ma

a
Aj C ð3Þ

Yam

a
Ma* j C ð4Þ

Assumption 3 can be interpreted as that, conditional on C,
there is no unmeasured confounding for the exposure-
mediator relation. Assumption 4 will hold if confounding
for the mediator-outcome relation can be controlled for by
some set of baseline covariates C, so that there is no effect of
exposure A that confounds the mediator-outcome relation
(i.e., no effect L of exposure A that itself affects both

M and Y). Thus, assumption 4 would be violated in the case
of Figure 2. In some settings, assumption 4 may be plausible
if the mediator M occurs shortly after the exposure A (9). If,
however, there is a variable L that is an effect of A and affects
both M and Y, then assumption 4 is violated and natural direct
and indirect effects will not in general be identified (17),
irrespective of whether data are available on L. In such set-
tings, it may still be possible to identify controlled direct
effect odds ratios, but alternative statistical approaches such
as marginal structural models (12, 18, 19) or structural nested
models (20–24) will generally be needed. Note that none of
assumptions 1–4 can be tested by using data; a researcher will
have to rely on subject matter knowledge in evaluating them.
In the next section, we will show how natural direct and in-
direct effects can be estimated in a relatively straightforward
manner using regression.

REGRESSION ANALYSIS FOR DIRECT AND INDIRECT
EFFECT ODDS RATIOS

In this section, we describe a simple regression technique
that can be used to estimate controlled direct effect and nat-
ural direct and indirect effect odds ratios when the assump-
tions above hold. The estimation technique for controlled
direct effect odds ratios will require only assumptions 1 and
2 and will make use of a single logistic regression. The esti-
mation technique for natural direct and indirect effect odds
ratios will require assumptions 1–4 above and will combine
the results of a linear and logistic regression to obtain the
effects of interest; the estimation technique for natural direct
and indirect effects will also require that the outcome Y is rare
so that odds ratios approximate risk ratios, which allows one
to obtain particularly simple formulae. We consider a setting
in which the mediator M is continuous and the outcome Y is
dichotomous. We have described a similar approach for con-
tinuous outcomes elsewhere (9). Derivations for the results
below are given in the Web Appendix.

Consider the use of the following 2 models, a logistic
regression for the outcome Y (with no A 3 M product term)
and a linear regression for the mediator M:

logitðPðY ¼ 1j a;m; cÞÞ ¼ h0 þ h1a þ h2m þ h4#c ð5Þ

and

E½Mj a; c� ¼ b0 þ b1a þ b2#c; ð6Þ

where the error term for the linear regression for M is nor-
mally distributed with constant variance. If assumptions 1–4
hold and if regression models 5 and 6 are correctly specified,
then the controlled and natural direct effect and natural in-
direct effect odds ratios are given by

ORNDE
a;a*jcða*Þ � ORCDE

a;a*jcðmÞ ¼ exp
�
h1ða � a*Þ

�
ORNIE

a;a*jcðaÞ � exp
�
h2b1ða � a*Þ

�
;

where the approximation holds to the extent the rare out-
come assumption holds. These expressions essentially use
h1 for the direct effect and h2b1 for the indirect effect, and
these expressions are also often used in the social science

A M YC

L

Figure 2. Example of mediation with exposure A, mediator M, out-
come Y, covariates C, and a mediator-outcome confounder L that is
itself affected by the exposure.
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literature for mediation analysis with a dichotomous out-
come (25, 26). The use of models 5 and 6 along with the
expressions above is often referred to as the ‘‘Baron-
Kenny’’ approach to mediation (26). A related approach,
common in both the epidemiologic literature and the social
science literature, consists of regressing Y on A, M, C as in
model 5 and then examining whether the coefficient for A is
different from that obtained when Y is regressed on A and C
alone, such as the folllowing:

logitðPðY ¼ 1j a; cÞÞ ¼ /0 þ /1a þ /2#c:

The difference between coefficients for A, /1 � h1, is some-
times interpreted as an indirect effect. The traditional ‘‘pro-
portion explained’’ methods (27–30) are closely related and
use (/1� h1)//1 as the measure of interest, again effectively
relying on the difference between the 2 coefficients. In the
included Appendix, we in fact show that, under assumptions
1–4, correct specification of models 5 and 6, and a rare out-
come, these 2 approaches to mediation analysis with a di-
chotomous outcome are essentially equivalent with /1 � h1
� h2b1. The results above provide a formal counterfactual
interpretation of these various effect measures. An alterna-
tive measure of the ‘‘proportion explained’’ proposed by
Wang et al. (31) is, under certain exchangeability assump-
tions, similar to a natural indirect effect (32).

However, a limitation of all of the standard approaches is
that they presuppose that there is no statistical interaction on
the odds ratio scale between A and M in the logistic model
for Y. When such A 3 M interactions are present and are
ignored, the logistic regression model 5 will not be correctly
specified, and the difference /1 � h1 does not carry
a straightforward interpretation as an indirect causal effect;
the definition of an indirect effect essentially breaks down
within the standard Baron-Kenny approach when such in-
teractions are present (33). Hafeman (34) has also recently
documented the biases that can arise with the traditional
‘‘proportion explained’’ methods when used in multiplica-
tive models for a dichotomous outcome in which interaction
terms are omitted. Here, we show how the regression ap-
proach can be extended to allow for interaction. Specifically,
suppose that, instead of model 5, the following model,
which includes an A 3 M product term, is used:

logitðPðY ¼ 1j a;m; cÞÞ ¼ h0 þ h1a þ h2m þ h3am þ h4#c:

ð7Þ

If assumptions 1–4 hold and if the regression models 6 and 7
are correctly specified and the outcome is rare, then the
controlled direct effect and natural indirect effect odds ratios
are given, respectively, by

ORCDE
a;a*jcðmÞ¼ exp

�
ðh1 þ h3mÞ

�
a � a*

��
ð8Þ

ORNIE
a;a*jcðaÞ � exp

�
ðh2b1 þ h3b1aÞ

�
a � a*

��
: ð9Þ

The formula for the controlled direct effect odds ratio
requires that assumptions 1 and 2 hold and that model 7 is
correctly specified; no rare outcome assumption is required.

The formula for the natural indirect effect odds ratio re-
quires that assumptions 1–4 hold, that models 6 and 7 are
correctly specified, and that the outcome Y is rare. An esti-
mator can also be given for the natural direct effect odds
ratio (refer to the Web Appendix material) but is more com-
plicated because, when there is interaction between A and M
in the logistic model for Y, the natural direct effect will be
different for subjects with different covariate values C.
Model 7 and expressions 8 and 9 essentially generalize
the Baron-Kenny approach to allow for exposure-mediator
interactions.

Ninety-five percent confidence intervals for the controlled
direct effect odds ratio in expression 8 and the natural indirect
effect odds ratio in expression 9 can be computed by using
standard regression output and are given, respectively, by

exp

�
logORCDE

a;a*jcðmÞ6 1:96
�
a � a*

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh
11þ2rh

13m þrh
33m2

q �

and

exp

�
logORNIE

a;a*jcðaÞ6 1:96
�
a � a*

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2 þ h3aÞ2rb

11 þ b21
�
rh
22 þ 2rh

23a þ rh
33a2

�q o
;

where rb
ij is the covariance between b̂i and b̂j in model 6, and

rh
ij is the covariance between ĥi and ĥj in model 7; these

covariances are given in the regression output of standard
statistical software. Alternatively, standard errors for ex-
pressions 8 and 9 could be obtained by bootstrapping.

Expressions 8 and 9 generalize mediation analysis with
a dichotomous outcome to settings in which there may be
interactions on the odds ratio scale between the exposure
and mediator of interest. The standard approach of omit-
ting the h3am product term in assessing mediation is
highly problematic when correct specification of a logistic
regression model for Y requires the product term. When
there is in fact such interaction between A and M, ignoring
this (as is often done) can result in highly misleading in-
ferences concerning mediation. If, for example, the direc-
tion of the association between A and Y differs for
different levels of m and if the h3am term in model 7 is
omitted, the resulting estimate of the exposure coefficient
h1 may be close to 0 because of averaging. This might
result in a researcher’s concluding that the effect of A
on Y is largely mediated by M, when in fact all that is
the case is that there is an interaction between the effects
of A and M on Y. At the very least, epidemiologists, before
applying the standard approach, should test whether h3 ¼
0 in the regression model 7 and should consider whether
the no-unmeasured-confounding assumptions described
above are satisfied. If there is evidence that h3 6¼ 0, then
this standard approach of merely including the mediator
in a regression for the outcome Y to obtain direct and
indirect effects should not be used. The approach de-
scribed above, however, of using both models 6 and 7
could still be used when there is an interaction between
A and M in model 7.
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ODDS RATIOS FOR MEDIATION ANALYSIS IN CASE-
CONTROL STUDIES

In this section, we describe how the above approach can
be adapted when using case-control data. The case-control
setting is of particular importance in mediation analysis
with a dichotomous outcome because often, if the outcome
is rare, it will be infeasible to conduct a cohort study with
a sufficient number of individuals with the outcome. When
data are used from a case-control study design, the estima-
tors of (h1, h2, h3, h4) obtained from logistic regression 7
using case-control data will consistently estimate the same
parameters of a logistic regression using cohort data. This
well-known result is what justifies the use of logistic re-
gression when analyzing odds ratios in case-control studies
for total effects; when logistic regression is used, the case-
control study design can effectively be ignored. Note that
a logistic, not a log-linear model, is being used. In a case-
control study, estimation of model 7 is thus straight-
forward. However, when fitting the linear regression model
6 for the mediator M using case-control data, the case-
control study design cannot be ignored. It is nevertheless
possible to adapt the approach to the estimation of direct
and indirect effects described above in a relatively straight-
forward manner if the prevalence of the outcome Y is
known. We will denote this prevalence by p. We assume
it is known by design so that sampling variability for p is
neglible. Also, let p denote the proportion of cases in the
case-control study (i.e., the ratio of the number of cases in
the study to the sum of the numbers of cases and controls in
the study). If we fit a linear regression of M on A and C
using the case-control data but weighting each case by p / p
and each control by ð1�pÞ

ð1�pÞ, then the coefficients obtained in
this weighted regression will give consistent estimators of
(b0, b1, b2) obtained in a linear regression of M on A and C
using data from a cohort study of the same population (35).
Once (h1, h2, h3, h4) are obtained from the logistic regres-
sion and (b0, b1, b2) are obtained from a weighted linear
regression, the estimation of direct and indirect effects can
then proceed using the formulas given in expressions 8 and
9 above.

ILLUSTRATION AND SIMULATIONS

As another example of mediation and to illustrate the
approach we have described, we reanalyzed a previously
reported study (36) with residence in a damp and moldy
dwelling as the exposure, depression as the outcome, and
perception of control over one’s home as the mediator. A
logistic regression model was fit for depression as a function
of perception of control, dampness or mold exposure, and
other individual and housing variables, as reported in
Shenassa et al. (36), and a linear regression model was fit
for perception of control as a function of the exposure and
the same individual and housing variables, each time using
generalized estimating equations to adjust for possible cor-
relation between measurements from residents sharing the
same dwelling. Allowing for the possibility of an interac-
tion, the natural indirect effect of an increase in dampness or

mold exposure from none to minimal, minimal to moderate,
and moderate to extensive on the risk of depression corre-
sponds to odds ratios of 1.03 (95% confidence interval (CI):
0.94, 1.14), 1.04 (95% CI: 0.95, 1.13), and 1.06 (95% CI:
0.93, 1.35). Standard analyses, ignoring such interactions,
gave corresponding natural indirect effect odds ratios of
1.04 (95% CI: 0.99, 1.10), 1.04 (95% CI: 0.99, 1.09), and
1.04 (95% CI: 0.99, 1.19), respectively. Considering that no
significant evidence of an interaction between dampness or
mold exposure and perception of control was found (P ¼
0.91, 0.89, and 0.22 for minimal, moderate, and extensive
dampness or mold exposure, respectively, relative to no ex-
posure), the fact that these results are very similar is not
surprising.

We also use data from this study as the basis for simu-
lation experiments exploring bias and coverage probabili-
ties when outcome prevalence is not rare or when
exposure-mediator interactions are ignored. Table 1 shows
(on the log odds scale) the bias, empirical standard error
(ESE), average of the estimated standard errors (SSEs),
and coverage of 95% confidence intervals for the natural
indirect effects log odds ratios with a ¼ 1 and a* ¼ 0, as
based on 1,000 simulated data sets. Outcome and mediator
data conditional on the observed exposure and covariates
in the study by Shenassa et al. (36) were generated by using
the data-generating models obtained in the previous anal-
ysis. In Table 1, the first 5 simulation experiments corre-
spond to varying outcome prevalence. They demonstrate
that the proposed estimates of the natural indirect effect
odds ratio, while theoretically valid only at low outcome
means, give good approximations even at larger preva-
lences for the data-generating mechanism underlying the
data of Shenassa et al. The next 4 experiments evaluate the
impact of exposure-mediator interactions. Here, the mag-
nitude h3 ¼ �0.22 was chosen to equal �2h2/3 and thus to
generate a potentially substantial bias in the natural indi-
rect effect odds ratio at a ¼ 3, which was the largest ob-
served exposure value. As theoretically expected, ignoring
exposure-mediator interactions when they are present can
generate a substantial bias in the indirect effect estimates.
In the final 4 experiments b1 and r were increased 5 times
(W ¼ 5 in Table 1) to give indirect effects of a larger
magnitude; here, violations of the rare-outcome assump-
tion do lead to bias.

Table 2 shows related results for the natural direct effects
log odds ratios. Results are similar as for natural indirect
effects: Coverage is poor when an exposure-mediator inter-
action is present and ignored but reasonable when the ap-
proach with the interaction is used. With natural direct
effects, in the final 4 experiments, we see that the bias of
the proposed estimator due to failure of the rare-outcome
assumption can be more sizeable than that of the standard
approach in settings in which the exposure-mediator inter-
action is in fact negligible.

Results from simulations of case-control data with
prevalence-weighted regressions for the mediator followed
a similar pattern as for the estimator of the natural indirect
effect: bias if one ignores a substantial exposure-mediator
interaction when present and bias when the rare-outcome
assumption is violated.
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DISCUSSION

The 2 most common pitfalls with mediation analysis in
the epidemiologic literature are 1) ignoring possible
mediator-outcome confounding and 2) ignoring possible in-
teractions between the effects of exposure and mediator on
the outcome. Either pitfall can lead to severely biased esti-
mates and incorrect conclusions concerning mediation.
With regard to pitfall 1, we would recommend that, when

questions of mediation are of interest, greater attention be
paid to the collection of data on variables that may confound
the mediator-outcome relation and that sensitivity analysis
be used when it is not possible to make control for such
confounders (15, 16). As noted above, the no-unmeasured-
confounding assumptions used for the identification of di-
rect and indirect effects cannot be verified with data, so
researchers need to carefully evaluate these using subject
matter knowledge and sensitivity analysis techniques. With

Table 2. Simulation Results for Natural Direct Effects for Bias, Empirical and Estimated Standard Errors, and

Coverage Probabilities of 95% Confidence Intervals, With Varying Outcome Prevalence and Exposure-Mediator

Interactions

E(Y) u3 W
Without Interaction With Interaction

Bias ESE SSE Cov Bias ESE SSE Cov

0.01 0.0035 1 0.020 0.15 0.13 94.7 �0.0053 0.16 0.15 95.1

0.25 0.016 0.033 0.032 93.9 0.00029 0.036 0.036 96.6

0.5 0.015 0.033 0.030 92.1 0.0030 0.035 0.032 94.2

0.75 0.020 0.035 0.040 90.2 0.010 0.041 0.037 93.7

0.089 �0.0026 0.053 0.047 95.0 �0.019 0.057 0.052 93.3

�0.22 �0.071 0.043 0.060 78.6 �0.0085 0.049 0.065 95.9

0.22 0.078 0.042 0.059 53.8 0.0051 0.050 0.066 93.9

�0.44 �0.11 0.042 0.074 72.1 �0.0060 0.050 0.081 95.0

0.44 0.039 0.078 0.039 7.8 0.014 0.095 0.054 94.1

0.01 0.0035 5 0.039 0.18 0.14 94.6 0.0048 0.18 0.14 96.4

0.25 �0.0093 0.040 0.035 93.8 0.072 0.055 0.044 64.7

0.5 �0.0052 0.035 0.032 94.7 0.13 0.062 0.049 23.2

0.75 �0.00094 0.039 0.038 95.3 0.18 0.087 0.068 21.9

Abbreviations: Cov, coverage probability; ESE, empirical standard error; E(Y), outcome prevalence; SSE, esti-

mated standard error; h3, exposure-mediator interaction; W, variance factor.

Table 1. Simulation Results for Natural Indirect Effects for Bias, Empirical and Estimated Standard Errors, and

Coverage Probabilities of 95% Confidence Intervals, With Varying Outcome Prevalence and Exposure-Mediator

Interactions

E(Y ) u3 W
Without Interaction With Interaction

Bias ESE SSE Cov Bias ESE SSE Cov

0.01 0.0035 1 0.0011 0.014 0.015 95.6 0.00027 0.015 0.015 95.0

0.25 0.00024 0.0046 0.0048 94.0 0.00039 0.0047 0.0048 94.3

0.5 �0.00021 0.0043 0.0043 94.7 0.00046 0.0044 0.0044 94.8

0.75 �0.00057 0.0045 0.0047 92.5 0.00039 0.0047 0.0049 94.4

0.089 0.0055 0.0059 0.0059 95.3 0.00018 0.0059 0.0059 94.7

�0.22 0.0032 0.0058 0.0058 93.6 0.000036 0.0058 0.0058 96.4

0.22 0.0045 0.0069 0.0069 93.7 0.00047 0.0066 0.0067 95.7

�0.44 0.013 0.0061 0.0062 42.7 �0.00010 0.0069 0.0069 95.0

0.44 0.0095 0.0088 0.0088 84.2 0.0010 0.0080 0.0083 95.1

0.01 0.0035 5 0.014 0.028 0.024 93.8 0.0059 0.028 0.024 95.9

0.25 0.013 0.019 0.016 87.7 0.015 0.019 0.016 85.6

0.5 0.019 0.017 0.016 79.1 0.023 0.018 0.016 72.9

0.75 0.021 0.017 0.015 73.7 0.026 0.018 0.017 64.5

Abbreviations: Cov, coverage probability; ESE, empirical standard error; E(Y), outcome prevalence; SSE, esti-

mated standard error; h3, exposure-mediator interaction; W, variance factor.
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regard to pitfall 2, we would recommend that, before pro-
ceeding with what has become a routine approach of simply
including an intermediate variable in a regression to assess
mediation, investigators first examine whether there is in-
teraction between the effects of the exposure and the medi-
ator on the outcome. If there is interaction, then the routine
approach of omitting the product term from the regression
model should be avoided; instead, the product term can be
included and, provided that the outcome is rare, the ap-
proach we have described in this paper can be used.

Several further comments merit attention. First, we have
seen that, although mediation analysis is more difficult when
there is interaction between the exposure and the mediator
(1, 33, 37), this interaction can in fact be accommodated.
Our simple formulae did, however, assume no interaction
between the confounders and the treatment or mediator;
other estimation techniques (16) could be used if there are
confounder-exposure interactions; other identification ap-
proaches are also possible when such interactions are pres-
ent in their effects on the mediator (21, 38). Second, the
methods described above require a rare outcome; this was
necessary in the derivations and also circumvents collaps-
ibility issues with odds ratios (39); some existing work con-
siders or could be adapted for non-rare outcomes (16, 40);
future work will consider settings in which the outcome is
not rare and compare power, bias, and efficiency properties
of the estimators. Third, we have considered the setting of
a dichotomous outcome and a continuous mediator. When
the mediator M is dichotomous, rather than continuous,
a somewhat similar approach to the one described here
could potentially be used, but the analytic formulas for me-
diated effects no longer take quite as simple a form. Fourth,
in genetic epidemiology, the extent to which genetic variants
affect an outcome (e.g., lung cancer) through intermediate
phenotypes (e.g., nicotine addiction) has recently been
a topic of interest (41–43); the approach we have described
here for case-control studies can be applied to address such
questions in genetics research.
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APPENDIX

Comparison With Dichotomous Outcome Mediation
Analysis in the Social Science Literature

As noted in the text, the approach often used in the social
sciences (25) involves using regressions such as models 5
and 6, along with a regression of Y on just A (and C ):

logitðPðY ¼ 1j a;m; cÞÞ ¼ h0 þ h1a þ h2m þ h4#c
E½Mj a; c� ¼ b0 þ b1a þ b2#c

logitðPðY ¼ 1j a; cÞÞ ¼ /0 þ /1a þ /2#c:

Potential confounding variables are often ignored in many
of the analyses in the social sciences in which the exposure
is randomized (even though the mediator is not random-
ized), and thus the set C is sometimes assumed to be empty.
With these regression models, there are then 2 approaches to
estimation typically used for the mediated effect (i.e., in-
direct effect). The first uses b1h2 as a measure of the medi-
ated effect, and the second uses /1 � h1 as a measure of the
mediated effect. The 2 measures will often not coincide. In
the text, we showed that, under the assumptions of 1) a rare
outcome, 2) normally distributed error in regression 6,
3) identification conditions 1–4 holding, and 4) no interac-
tion between a and m in the regression model 5, the quantity
b1h2 is approximately equal to the log of the natural indirect

effect odds ratio, log
n
ORNIE

a;a*jcðaÞ
o
. In fact, if the outcome is

rare and the error term for regression model 6 is normally
distributed (with constant variance r2), then it will be
the case that b1h2 � /1�h1 since, under the rare-outcome
assumption, we must have /0 þ /1a þ /2#c ¼ logitðPðY ¼
1j a; cÞÞ � logfPðY ¼ 1j a; cÞg, and thus we have that

expf/0 þ /1a þ /2#cg � PðY ¼ 1j a; cÞ
¼ E½PðY ¼ 1j a; c;MÞj a; c�
� E½expfh0 þ h1a þ h2M þ h4#cgj a; c�
¼ expðh0 þ h1a þ h4#cÞE½expðh2MÞj a; c�
¼ expðh0 þ h1a þ h4#cÞ

exp
�
h2ðb0 þ b1a þ b2#cÞ þ 1

2h2
2r2

�
¼ exp

��
h0 þ 1

2h2
2r2 þ b0h2

�
þðh1 þ h2b1Þa þ ðh4 þ h2b2Þ#c

�
:

Because this holds for all a, we must have that /1 � (h1 þ
h2b1) and thus /1 � h1 � h2b1.

If, however, the outcome is not rare or if the error term in
regression model 6 is heteroscedastic or not normally dis-
tributed, then the 2 quantities b1h2 and /1 �h1 need not
be approximately equal. Furthermore, in that case, neither
b1h2 nor /1 �h1 may warrant an interpretation as an
indirect effect. Moreover, if the set C does not satisfy the
no-unmeasured-confounding assumptions described in
the text, then b1h2 and /1 �h1 may both be biased for
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the true log natural indirect effect odds ratio even if the
outcome is rare and the error term in model 6 is normally
distributed with constant variance. Finally, this standard
approach in the social science literature applies only

if there are no interactions between A and M in
regression model 5; the approach described in the text,
however, can still be employed when such interactions
are present.
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