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Abstract
Many large-margin classifiers such as the Support Vector Machine (SVM) sidestep estimating
conditional class probabilities and target the discovery of classification boundaries directly.
However, estimation of conditional class probabilities can be useful in many applications. Wang,
Shen, and Liu (2008) bridged the gap by providing an interval estimator of the conditional class
probability via bracketing. The interval estimator was achieved by applying different weights to
positive and negative classes and training the corresponding weighted large-margin classifiers.
They propose to estimate the weighted large-margin classifiers individually. However, empirically
the individually estimated classification boundaries may suffer from crossing each other even
though, theoretically, they should not.

In this work, we propose a technique to ensure non-crossing of the estimated classification
boundaries. Furthermore, we take advantage of the estimated conditional class probabilities to
precondition our training data. The standard SVM is then applied to the preconditioned training
data to achieve robustness. Simulations and real data are used to illustrate their finite sample
performance.
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1 Introduction
Binary classification or discrimination handles data with a binary response, where we are
interested in studying the relationship between a p-vector predictor x and a binary response y
∈ {−1, +1}. In particular we seek a classification rule to predict the binary response for an
arbitrary input predictor. A well-known traditional likelihood-based statistical approach is
the logistic regression, which tries to estimate the conditional probability p(x) = P(Y = 1∣X =
x) and make prediction ŷ = 1 if p̂(x) > 1/2 and −1 otherwise for any x. See McCullagh and
Nelder (1989) for a detailed introduction to logistic regression.

Recently many margin-based classifiers have been proposed in the literature. Examples
include the support vector machine (SVM) (Vapnik, 1998; Cortes and Vapnik, 1995),
Boosting (Freund and Schapire, 1997; Friedman, Hastie, and Tibshirani, 2000), ψ-learning
(Shen, Tseng, Zhang, and Wong, 2003), etc. By sidestepping the conditional class
probability estimation and targeting directly at classification, many margin-based
classification methods may yield good classification performance. However, one main
drawback of some margin-based classifiers such as the SVM is that they are not able to
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provide an estimator of the conditional class probability directly. As argued by Wang, Shen,
and Liu (2008), the conditional class probability itself is of significant scientific interest in
that it provides us the confidence level of our class prediction.

To provide class probability estimation for large-margin classifiers, Wang et al. (2008)
proposed an interval estimation method to estimate the conditional class probability. By
noting that {x : f̂(x) = 0} estimates the Bayes boundary {x : p(x) – 1/2 = 0} for a margin-
based classifier sign(f̂(x)), they propose to run different weighted margin-based
classification individually to estimate Bayes boundaries {x : p(x) – p = 0} for a prespecified
grid of p. Each weighted classifier can estimate whether p(x) > p or not without estimating
p(x) itself. In this way, an interval estimator is obtained by bracketing the conditional class
probability p(x). Their approach is nonparametric in the sense that it does not make any
parametric assumption on p(x).

Theoretically Bayes boundaries {x : p(x) – p = 0} for different p should not cross each other.
To bracket the conditional class probability, we estimate them using the classification
boundaries of the weighted margin-based classifiers based on a finite training data set. Thus
the individually estimated boundaries may unavoidably cross each other, especially when
the training sample size is small. This crossing phenomenon was also pointed out by Wang
et al. (2008). Their probability bracketing method cannot avoid crossing. In this work, we
address this crossing issue and provide a technique to enforce non-crossing of the estimated
classification boundaries. With this technique, we can ensure non-crossing of the estimated
boundaries, at least over the convex hull of the training data points, where the training data
convex hull represents the smallest convex hull in the input space which contains all the
training data points.

As mentioned earlier, the estimated conditional class probability can provide us with some
confidence of our prediction for any x. Our method yields an estimate of p(xi) for each
training dataset point (xi, yi). For a clean training data with a low noise level, we generally
expect a training observation with class probability estimate bigger (smaller) than 0.5 to
have class label yi = +1 (yi = −1, respectively), especially so for those with probabilities
close to 1 or 0. A training point with large (small) probability estimate and class label yi =
−1 (yi = +1, respectively) is typically an outlier. It is known that such outliers may pull the
classification boundaries towards themselves and as a result can reduce the classification
performance (Wu and Liu, 2007). In order to improve classification performance in such
cases, we propose to precondition the training data set based on the estimated conditional
class probabilities; i.e., we change the class labels of potential outliers to the corresponding
correct class labels. After preconditioning the training set, any standard margin-based
classifier may be applied to obtain a robust classification rule.

In the literature there are some other robust margin-based classifiers such as ψ-learning
(Shen et al., 2003 and Liu and Shen, 2006) and the robust truncated-hinge-loss SVM
(RSVM) (Wu and Liu, 2007). These robust methods typically involve non-convex
optimization, which is more expensive to solve than convex minimization. Our pre-
conditioning method serves as another technique to achieve robustness. Compared to ψ-
learning and the RSVM, our preconditioned SVM can avoid non-convex optimization.

The rest of the article is organized as follows. Some background on the SVM and weighted
SVM is given in Section 2. Section 3 presents our technique which provides non-crossing
probability estimation. In Section 4, we propose to robustify margin-based classifiers via
preconditioning. Simulation and real data analysis are reported in Sections 5 and 6.
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2 Standard and weighted SVMs
For binary classification, a training data set {(xi, yi) : i = 1, 2, ⋯ , n} is typically given where
n is the sample size, xi ∈ Rp is the p-dimensional input vector, and yi ∈ {−1, +1} is a binary
response. The goal is to construct a function f(·) whose sign will be used as the classification
rule, namely ŷ = sign(f(x)) for any new input x.

The SVM was first invented from the idea of searching for the optimal separating
hyperplane using an elegant margin interpretation (Vapnik, 1998; Cristianini and Shawe-
Taylor, 2000). The idea can be traced back to the method of portraits (Vapnik and Lerner,
1963). It is now known that the SVM is equivalent to solving the following optimization

(1)

where H(η) = max(0, 1 – η) is the hinge loss function and J(f) is the roughness penalty of f(·)
(Wahba, 1998). Here yif(xi) is the functional margin. A positive functional margin value
indicates correct classification and the corresponding 0 – 1 loss can be expressed as I(yif(xi))
> 0. Besides the SVM, many other classifiers can be fit into the regularization framework. In
fact the hinge loss can be replaced by a general large-margin loss V (u) satisfying the
condition that V (u) is non-increasing in u, thereby penalizing small margin values more than
large margin values. Some common loss functions include the exponential loss V (u) =
exp(−u) (Friedman et al., 2000), the logistic loss V (u) = log(1 + exp(−u)) (Lin et al., 2000;
Zhu and Hastie, 2005), the ψ-loss V (u) = 1 – sign(u) if u ≥ 1 or u < 0, 2(1 – u) otherwise
(Shen et al., 2003), etc. Figure 1 displays some common large margin loss functions.

Lin (2002) showed that the theoretical minimizer of the hinge loss is sign(p(x) – 0.5).
Consequently, the SVM only targets at the Bayes classification boundary asymptotically. As
a result, the SVM boundary {x : f̂(x) = 0} estimates the Bayes boundary {x : p(x) = 0.5},
where f̂(·) is the solution to (1). Lin et al. (2002) proposed a weighted hinge loss by giving
different weights for the positive and negative classes and solves a weighted version of (1),
namely,

(2)

for some π ∈ [0, 1]. It reduces to (1) when π = 1/2. The weighted SVM (2) was originally
proposed to handle the problem of unequal representation of categories in the training
sample or unequal costs for positive and negative misclassifications with π and 1 – π being
the known costs for negative and positive classes, respectively. Interestingly, it turns out that
the classification boundary of the optimizer f̂(·) of (2) estimates the Bayes boundary {x : p(x)
= π}.

Motivated by the properties of a weighted loss function, Wang et al. (2008) proposed to
solve (2) for many different π’s and, consequently, to estimate the conditional probability
p(x) via bracketing the probability. For simplicity, they proposed to solve (2) individually
over a grid 0 = π1 < π2 < ⋯ πK = 1. The corresponding algorithm for estimating the
conditional class probability can be summarized as follows.

Wang et al.’s Algorithm (2008):
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1. Initialize πk = (k – 1)/(K – 1) for k = 1, 2, … , K.

2. Train a weighted large-margin classifier for πk by solving (2) and denote the
solution as f̂πk(x) for k = 1, 2, … , K.

3. For each x, compute  and
. The estimated conditional class probability is given

by .

When the estimated classification boundaries {x : f̂πk(x) = 0} do not cross each other, k*(x)
and k*(x) should satisfy |k*(x) – k*(x)| ≤ 1 for any x. Unfortunately individually optimized
boundaries for different πk’s may cross each other, especially for small training samples. As
a result, one may have contradictory probability estimation using multiple individually
optimized classification functions. To solve the crossing problem, we propose a technique to
enforce non-crossing constraints in this paper. Furthermore, we propose to robustify the
SVM via preconditioning by taking advantage of the estimated probabilities.

3 Non-crossing class probability estimation
As discussed in Section 2, the weighted SVM with π and 1 – π being weights for negative
and positive classes targets at the Bayes boundary {x : p(x) = π}. Note that {x : p(x) ≥ πj} ⊂
{x : p(x) ≥ πl} for ∀πj > πl. As a result, classification boundaries with different π’s should
not cross each other theoretically. However, the estimated classification boundaries may
cross each other if each weighted SVM is calculated separately.

In this section, we present a new technique to ensure that the estimated classification
boundaries do not cross each other. We illustrate the non-crossing technique first in the
linear case in Section 3.1. Its extension to the nonlinear case via the kernel trick is then
discussed in Section 3.2. As mentioned in Section 2, we aim to solve (2) for many different
πk’s (0 = π1 < π2 < ⋯ < πK = 1) to obtain an estimator for the conditional class probability.
Denote by k0 the index such that πk0 is the closest to 1/2 among all different πk’s, namely,

.

3.1 Linear boundaries
By making the linearity assumption on the classification boundaries, we assume that fk(x) =
xTwk + bk corresponds to πk for k = 1, 2, ⋯ , K. For the linear function fk(x), we choose its
roughness penalty to be the 2-norm penalty, namely .

Our non-crossing algorithm begins with estimating the classification boundary
corresponding to πk0 by solving the following optimization problem

(3)

where the regularization parameter can be tuned either using a separate independent tuning
data set or cross-validation. Denote the corresponding estimator by ŵk0 and b̂k0.

For any k > k0, we require that the classification boundary corresponding to πk does not
cross that of πk–1 within the convex hull of the data points. In particular, the convex hull
Hconvex(x1, x2, ⋯ , xn) represents the smallest convex set in the input data space which
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contains all the training points x1, x2, ⋯ , xn. Since the region of the training data is a set
where the testing data points are likely to fall in, our technique aims to avoid crossing of
different boundaries in Hconvex(x1, x2, ⋯ , xn). To achieve this goal, we solve the following
constrained optimization problem

(4)

where ŵk–1 and b̂k–1 represent the solution corresponding to πk–1.

A a remark, we note that a direct way for calculation of the constraint set in (4) is to find the
set of intersections of all pairwise line segments between two training data points with the
surface. However, the computation can be greatly reduced by the fact that the restriction is
satisfied as long as xTw + b ≤ 0 holds for any x in the intersecion between the surface x ∈
{x : xTŵk–1 + b̂ = 0} and the edges of the convex hull Hconvex(x1, x2, ⋯ , xn). Furthermore,
only a small subset of all pairwise line segments are edges of the convex hull. Thus, we need
to find all edges of Hconvex(x1, x2, ⋯ , xn) and enumerate the intersection between these
edges and the surface x ∈ {x : xT ŵk–1+b̂ = 0}.

Notice that any edge of Hconvex(x1, x2, ⋯ , xn) can be represented as a segment between two
training data points. If p < n, we can first derive all facets of the convex hull and each edge
should fall in one or more of the facets. A facet of the convex hull with p vertice lies in a
hyperplane, such that all training data points fall either on the hyperplane or on the same
side of that hyperplane. If p ≥ n, all data points are vertices and any pairwise line segment
between two training points is an edge of Hconvex(x1, x2, ⋯ , xn).

Once the points in the intersection in (4) are enumerated, the constrained weighted SVM
given in (4) can be implemented using quadratic programming (QP).

Similarly we can estimate the classification boundary corresponding to πk for k < k0 by
solving

(5)

Note that we begin with the center πk0 and move to the two ends sequentially to estimate the
classification boundaries. By using constraints (4) and (5), it is guaranteed that our estimated
classification boundaries do not cross each other within the convex hull of our data. Then
Step 3 of Wang et al. (2008)’s algorithm can be applied to estimate the conditional class
probability. The main difference of our new algorithm is to enforce non-crossing constraints
on the corresponding classification boundaries.
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3.2 Nonlinear boundaries
Nonlinear classification can be achieved by using the kernel trick. Denote by K(·, ·) a
reproducing kernel function. Then by the Representer Theorem, the classification function

can be expressed as . In this case the roughness penalty is given by

 (Wahba, 1998). Letting F denote the reproducing kernel
Hilbert space (RKHS), the weighted SVM (2) becomes

(6)

Once we plug the expressions of f(x) and J(f) into (6), the optimization reduces to a QP
problem with respect to θ = (θ1, θ2, ⋯ , θn)T and β. To further simplify the problem, let x̃i =

(K(xi, x1), K(xi, x2), ⋯ , K(xi, xn))T. Then . Therefore the non-crossing
technique for the linear case can be applied to the kernel case as well.

Denote by K a n × n matrix with (i, j)-element being K(xi, xj). We solve

and denote the corresponding solutions as θ ̂k0 and β ̂k0. Then, for k > k0, we sequentially
solve

(7)

and denote the corresponding solutions as θ ̂k and β ̂k; for k < k0, we sequentially solve

(8)

Note that calculation of the set {x̂ : x̂Tθ ̂k+1+β ̂k+1 = 0}⋂Hconvex(x̂1, x̂2, ⋯ , x̂n) is similar to
that of the linear case. The difference here is that we consider the n-dimensional kernel
space instead of the p-dimensional linear space.

The estimated classification boundary for πk is given by , where
θki is the ith element of θk. The constraints (7) and (8) guarantee the desired non-crossing.
Once the classification boundaries with different weights are obtained, Step 3 of Wang et
al.’s algorithms can be applied to estimate the conditional class probability as in the linear
case.
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4 Robust learning via preconditioning
In Section 3, we present a technique to estimate classification functions with different
weights and without crossing to estimate class probabilities. In this section, we propose to
make use of the estimated class probabilities to precondition the training data. This
preconditioning operation may help to remove potential outliers and consequently yield
more robust classifiers.

In the literature, there is some existing work suggesting that the SVM may not be robust to
outliers or mislabeled data points (Shen et al. 2003). One main reason is that the hinge loss
used in the SVM is unbounded. Consequently, potential outliers or mislabeled data points
may pull the classification boundary towards themselves and thus reduce the classification
performance.

For a training data set with a low noise level, we expect that most data points fall in their
corresponding class sets. A training point is likely to be an outlier if it is far from its own
class. Specifically, for a non-outlier data point xi with yi = 1 (yi = −1), its estimated
conditional class probability p̂(xi) should be likely to be larger (smaller, respectively) than
0.5. This gives us a potential method to identify outliers. If there are some data points xi
with yi = 1 and p̂(xi) close to zero or some data points xi with yi = −1 and p̂(xi) close to one,
then these points (xi, yi)’s are likely to be outliers. The outliers can be mislabeled data due to
error or a result of sampling biases.

Once we have identified outliers, we can correct them by flipping their binary response from
yi to −yi and train the standard SVM with the modified training data set. In this way, we are
able to remove the effect of these outliers from deteriorating the performance of the SVM.
We call this technique preconditioning. In the literature, preconditioning has been applied in
the regression problems. In particular, Paul, Bair, Hastie and Tibshirani (2008) proposed to
first estimate the regression function to yield a preconditioned response variable. Then they
apply standard variable selection techniques to the preconditioned response variable. They
argued that the preconditioning step helps to get better variable selection performance. Our
preconditioning method is similar to that of Paul et al. (2008) in the sense that we generate a
more “clean” binary response variable first and then apply the standard large-margin
classifiers to achieve robustness.

We now give more details of our technique of preconditioning. We first choose a
prespecified preconditioning level π̃, which can be any number between 0 and 0.5. For our
training data {(xi, yi), i = 1, 2, ⋯ , n}, we estimate the conditional class probability p̂(xi) for
each data point using our non-crossing technique. For any xi, we precondition the binary
response by defining

Here π̃ ∈ [0, 0.5) controls the level of preconditioning. A large π̃ indicates an aggressive
preconditioning while a small π̃ means that preconditioning is used conservatively. When π̃
= 0, no preconditioning is applied and our preconditioned SVM reduces to the standard
SVM.

Once preconditioning has been applied, we train the standard SVM (1) over the
preconditioned training data set {(xi, ỹi), i = 1, 2, ⋯ , n} to get our final classification rule.
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Letting f̃π̃(·) be the solution of (1) using the preconditioned data with the optimal tuning
parameter λ, then our final classification rule is sign(f̃π̃(x)).

Compared to other robust large-margin classifiers such as ψ-learning (Shen et al, 2003) and
the RSVM (Wu and Liu, 2007), our preconditioning method is another technique to
robustify the SVM without nonconvex optimization. In Section 5, we perform a simulation
study to compare the performance of our preconditioned SVM with that of the RSVM.

5 Simulation
In this section we use several simulated examples to illustrate the performance of our
proposed methods. Examples 1, 2, 3 and 4 are linear while examples 5 and 6 are nonlinear.
For the linear case, we use the 2-norm penalty. Example 1 compares the estimated
conditional class probability using Wang et al. (2008) with that of our proposed non-
crossing version. Examples 2-6 are used to show improvement of the preconditioned SVM
over the standard SVM. In all simulated examples, we use an independent tuning set
{(xi,tune, yi,tune), i = 1, 2, ⋯ , ntune} to select the regularization parameter λ in (2) by
minimizing

over a grid of λ, where f̂λ (·) denotes the solution of the weighted SVM with the tuning
parameter λ.

5.1 Linear learning
Example 1 (Class probability estimation comparison)—In this example, the two
dimensional predictor x = (x1, x2)T is uniformly distributed over the square {(x1, x2)T : |x1| +
|x2| ≤ 2}. Conditional on X = x, Y takes +1 with probability p(x) = exp(4(x1 + x2))/
(1+exp(4(x1+x2))) and −1 with probability 1–exp(4(x1+x2))/(1+exp(4(x1+x2))), namely, (X,
Y) comes from a logistic regression model. We set the sample size n = 100, and πk = 0:01(k
– 1) for k = 1, 2, ⋯ , 101. Independent tuning and test data sets are generated to tune the
regularization parameter λ and evaluate performance, respectively. Both Wang et al.’s
method and our non-crossing version for conditional class probability estimation are
applied. As the true conditional class probability is known in this simulation, we report the
empirical generalized Kullback-Leibler (eGLK) loss over both the training and test data sets.
The eGLK loss of a probability estimator p̂(x) for a set {(xi, yi), i = 1, 2, ⋯ , n} with true
conditional class probability p(x), is defined as

Average eGLK of the training set and test set over 100 repetitions are reported in Table 1
with standard errors in parentheses. We can see slight improvement of our non-crossing
version, however the improvement is not statistically significant. Nevertheless, the
noncrossing version leads to better statistical interpretation.

For a typical sample, we compare Wang et al.’s method with our new non-crossing version
by plotting the estimated classification boundaries for different πk’s in Figure 2. The left
panel corresponds to Wang et al.’s method while the right panel is for our new non-crossing
version. It is clear from the plot that the estimated classification boundaries do cross each
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other for some πk’s if they are estimated individually. However, by enforcing the non-
crossing constraints, our new version leads to non-crossing classification boundaries which
give better interpretation. This figure demonstrates the usefulness of the non-crossing
constraints.

Example 2—In this example, the data {(xi, yi), i = 1, 2, ⋯ , n} are generated as i.i.d. copies
of (X, Y) with X being uniformly distributed over the square {(x1, x2) : |x1| + |x2| ≤ 2} and Y
= sign(x1 + x2) with probability 0:9 and Y = −sign(x1 + x2) with probability 0.1. We set the
sample size n = 100. An independent tuning set of size n is used to select the tuning
parameter. In this probability estimation step, we set πk = 0:05(k – 1) for k = 1, 2, ⋯ , 21.
Over 100 repetitions, average testing errors over an independent test set of size 100n and
corresponding standard errors are reported in Table 2 for the standard SVM, our
preconditioned SVMs with different preconditioning levels π̃, and the RSVM. Using the
standard SVM as the baseline, the difference, ratio and relative improvement are reported as
well. For example, when π̃ = 0.1, the difference and ratio improvements are given by 0.1289
– 0.1294 = −0.0005, 0.1289/0.1294 = 0.9961 and (0.1294 – 0.1289)/(0.1294 – 0.1000) =
0.0172 (up to rounding error), respectively. From Table 2, we can see that our
preconditioned SVM improves over the standard SVM at all different levels of
preconditioning and the improvement is maximized at π̃ = 0.3. The RSVM leads to a slightly
larger improvement using nonconvex optimization.

Example 3 (moderate dimension: d = 8)—In this example, we increase the
dimensionality of the feature space to 8. The eight-dimensional predictor x = (x1, x2, ⋯ ,

x8)T is generated from the uniform distribution over . Conditional on X = x,

 with probability 0.9 and  with probability 0.1. The
sample size is chosen to be n = 200. Simulation results based on 100 replications are
reported in Table 3. The message is the similar to the previous example. In particular, our
preconditioned SVM does better than the standard SVM but worse than the RSVM.

Example 4 (high dimension: d = 50)—In this example, we increase the dimensionality
of the feature space to 50. Predictors are independent of each other and are marginally

distributed as the standard normal distribution. Conditional on X = x,  with

probability 0.9 and  with probability 0.1. The sample size is chosen to be
n = 200. Simulation results are reported in Table 4. The message is very similar to the
previous examples. However, the advantages of the robust methods are much smaller than
before, possibly due to the difficulty of high dimension.

5.2 Kernel learning
Example 5—In this example we consider a nonlinear Bayes boundary. The two
dimensional predictor x = (x1, x2)T is uniformly distributed over the square {(x1, x2)T : max(|
x1|, |x2|) ≤ 2}. Conditional on X = x, the binary response Y takes sign  with
probability 0:9 and  with probability 0.1. Sample size n is set to be 100.
We implement the nonlinear SVM using the kernel trick with the Gaussian kernel

, where . Results over 100 repetitions are
reported in Table 5. Interestingly, the RSVM performs slightly worse than the SVM for this
example, while our preconditioned SVM improves over the standard SVM.
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Example 6—In this example, two-dimensional predictors are generated uniformly from the
unit disc . Conditional on X = x, Y = sign(x1) with probability 0.9 and Y =
−sign(x1) with probability 0.1. The sample size is chosen to be n = 100. A similar example
was previously used by Shen et al. (2003).

Simulation results are reported in Table 6. In this example, both the RSVM and our
preconditioned SVM give improvement over the standard SVM. Compared to the RSVM,
our preconditioned SVM delivers more accurate classification accuracy.

It is worthwhile to point out that although both the RSVM and preconditioned SVM can
yield more robust classifiers, it is interesting to see from our simulated examples that they
perform differently for linear versus nonlinear examples. In particular, the RSVM generally
works slightly better than the preconditioned SVM in linear examples, and the
preconditioned SVM works better than the RSVM in kernel examples. Further investigation
is needed to examine whether this pattern holds in general.

As a remark, we note that the value of π̃ greatly affects of the performance of our
preconditioned SVM. The larger π̃ is, the more change we perform on the training data. In
practice, one may use a data adaptive procedure to select π̃ to optimize the performance for
the preconditioned SVM. For example, one may treat π̃ as a tuning parameter and select the
value which gives the most accurate classification performance.

6 Liver disorder data
In this section we apply our preconditioned SVM to the dataset Liver-disorder. This dataset
is available at the UCI Machine Learning Repository. More information can be found at the
UCI webpage http://archive.ics.uci.edu/ml/index.html. It has a total of 345 observations with
six predictor variables and a binary response.

To analyze the data, we first standardize each predictor variable to have mean zero and
standard deviation one. Then we randomly split the dataset into training, tuning, and testing
sets, each of size 115. As in Wu and Liu (2007), in order to study robustness of our
preconditioned SVM for both the training and tuning sets, we contaminate the binary output
by randomly choosing a fixed percent of their observations and changing the class output to
the other class. Contamination with different percentages, perc = 0%, 5%, and 10%, are
considered and applied to both the training and tuning sets, but not to the testing set.

To examine the performance of our proposed method, we apply both the standard linear
SVM and our preconditioned linear SVM with different preconditioning levels π̃’s. Average
testing errors over 10 random splitting are reported in Table 7 for different methods with
corresponding standard errors in parentheses. For each different perc, the entry with
boldface corresponds to the best performance and each entry with an underline indicates that
it improves over the standard SVM. Table 7 shows that a relatively high level of
preconditioning improves over the standard SVM either for the case without contamination
(perc = 0%) or with contamination (perc = 5% or 10%). This clearly demonstrates that our
preconditioned SVM is more robust than the standard SVM.

7 Discussion
The SVM only estimates the classification boundary without producing the class probability
estimation. To get class probability estimation for the SVM, Wang et al. (2008) makes use
of multiple weighted SVM boundaries to yield nonparametric class probability estimation.
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However, since each weighted SVM is calculated separately, different weighted
classification boundaries may cross each other.

In this work, we first propose a technique to estimate different classification boundaries
without crossing using weighted SVMs with constraints. Once the estimated conditional
class probabilities are obtained, we make use of that to precondition our training data set.
The operation of preconditioning may help to remove potential outliers. To get robust
classifiers, we propose to apply the standard SVM on the preconditioned training data set.
Our simulated and real examples clearly demonstrate that our preconditioned SVM
improves over the standard SVM.

To estimate multiple classification boundaries, we only make use of the 2-norm penalty.
However, when the dimensionality is large with many noise variables in the predictor, it is
necessary to consider other penalties that are able to achieve variable selection, such as the
LASSO penalty (Tibshirani, 1996; Zhu et al, 2004) and SCAD penalty (Fan and Li, 2001). It
will be interesting to consider simultaneous classification and variable selection for the
SVM as in Zhang, Liu, Wu, and Zhu (2008).

Acknowledgments
The authors would like to thank Professor David Banks and two reviewers for their constructive comments and
suggestions. This research was supported in part by NSF grants DMS-0606577 and DMS-0747575.

References
Cortes C, Vapnik V. Support-vector networks. Machine Learning 1995;20:273–279.
Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and other Kernel-Based

Learning Methods. Cambridge University Press; 2000.
Fan J, Li R. Variable selection via nonconcave penalized likelihood and it oracle properties. Journal of

American Statistical Association 2001;96:1348–1360.
Freund Y, Schapire R. A decision theoretic generalization of on-line learning and an application to

boosting. Journal of Computer and System Sciences 1997;55:119–139.
Friedman JH, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting.

Annals of Statistics 2000;28:337–407.
Lin X, Wahba G, Xiang D, Gao F, Klein R, Klein B. Smoothing Spline ANOVA Models for Large

Data Sets With Bernoulli Observations and the Randomized GACV. The Annals of Statistics
2000;28:1570–1600.

Lin Y. Support vector machines and the Bayes rule in classification. Data Mining Know Disc
2002;6:259–275.

Lin Y, Lee Y, Wahba G. Support Vector Machines for classification in nonstandard situations.
Machine Learning 2002;46:191–202.

Liu Y, Shen X. Multicategory ψ-learning. Journal of the American Statistical Association
2006;101:500–509.

McCullagh, P.; Nelder, JA. Generalized linear models. 2. Chapman & Hall; London: 1989.
Paul D, Bair E, Hastie T, Tibshirani R. Pre-conditioning for feature selection and regression in high-

dimensional problems. Annals of Statistics 2008;36(4):1595–1618.
Shen X, Tseng GC, Zhang X, Wong WH. On ψ-learning. J Amer Statist Assoc 2003;98:724–734.
Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society,

Series B 1996;58:267–288.
Vapnik, V. Statistical learning theory. Wiley; 1998.
Vapnik V, Lerner A. Pattern recognition using generalized portrait method. Automation and Remote

Control 1963:24.

Wu and Liu Page 11

Stat Methodol. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Wahba, G. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV. In:
Scholkopf, B.; Burges, CJC.; Smola, AJ., editors. Advances in Kernel Methods: Support Vector
Learning. MIT Press; 1998. p. 125-143.

Wang J, Shen X, Liu Y. Probability estimation for large margin classifiers. Biometrika 2008;95:149–
167.

Wu Y, Liu Y. Robust truncated-hinge-loss support vector machines. Journal of the American
Statistical Association 2007;102:974–983.

Zhang HH, Liu Y, Wu Y, Zhu J. Variable selection for the multicategory SVM via sup-norm
regularization. Electronic Journal of Statistics 2008;2:149–167.

Zhu J, Hastie T. Kernel Logistic Regression and the Import Vector Machine. Journal of Computational
and Graphical Statistics 2005;14:185–205.

Zhu J, Rosset S, Hastie T, Tibshirani R. 1-norm support vector machines. Neural Information
Processing Systems 2004:16.

Wu and Liu Page 12

Stat Methodol. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Plot of several common binary large margin loss functions.
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Figure 2.
Estimated classification boundaries for different πk in a typical sample of Example 1 with π
= 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.96, 0.97,
0.98, 0.99: Wang et al.’s method is in the left panel and our new non-crossing version is in
the right panel.
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Table 1

Simulation results for Example 1

Non-crossing Wang et al.

training test training test

GKL 2.0639 (.0896) 2.1501 (.0924) 2.0907 (.0894) 2.1591 (.0908)
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