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SUMMARY

For testing for treatment effects with time to event data, the logrank test is the most popular choice
and has some optimality properties under proportional hazards alternatives. It may also be
combined with other tests when a range of nonproportional alternatives is entertained. We
introduce some versatile tests that use adaptively weighted logrank statistics. The adaptive weights
utilize the hazard ratio obtained by fitting the model of Yang and Prentice (2005). Extensive
numerical studies have been performed under proportional and nonproportional alternatives, with
a wide range of hazard ratios patterns. These studies show that these new tests typically improve
the tests they are designed to modify. In particular, the adaptively weighted logrank test maintains
optimality at the proportional alternatives, while improving the power over a wide range of
nonproportional alternatives. The new tests are illustrated in several real data examples.
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1. Introduction

The logrank test has been the method of choice for testing for existence of a treatment effect
with survival data (Mantel, 1966; Peto and Peto, 1972). It is (asymptotically) optimal under
proportional hazards alternatives, with equal censoring patterns in the two groups. In this
work, we show that the logrank test and related tests can be improved by using weighted
logrank statistics with adaptive weights.

The key requirement for the optimality of the logrank test is the proportional hazards
assumption. This assumption provides a suitable approximation in many situations, and the
hazard ratio estimates from a proportional assumption can provide simple and useful
summary measures, even if the hazard ratio is moderately time-dependent (e. g. Prentice,
Pettinger, and Anderson, 2005). Correspondingly, in those situations the logrank test
typically has good power.

SUPPLEMENTARY MATERIALS
The Appendix referenced in Section 2.3 is available under the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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There are a variety of situations when the nonproportionality of the hazard functions is
severe. The treatment may bring a short-term benefit, and gradually lose its effect as time
goes on. This results in converging hazard functions that often can be fit well by the
proportional odds model, a well-known alternative to the proportional hazards model
(Bennett, 1983). Conversely, it may take a relatively long time for a “conservative”
treatment to fully realize its effect. Such a lag in the initiation of a treatment effect could
result in little or no difference in early survival experiences in the groups being compared,
but an increasingly noticeable difference or even divergence during the later part of the
follow-up period. An “aggressive” treatment, on the other hand, may result in higher
mortality early on due to toxicity or complications, but may provide a beneficial effect in the
long run. It may even be possible for a treatment to be beneficial initially and then turn
harmful in the long run. In general, the longer the follow-up period is, the more likely it is
for various nonproportional scenarios to develop.

If a nonproportional alternative can be pre-specified, then a weighted logrank test can be
used, with the weight chosen appropriately to maximize the power. For example, a priori
estimate of the weight can be used based on the clinician’s pretrial projections to improve
power over the logrank test (Lagakos, Lim, and Robins, 1990; Zucker, 1992). The Peto-
Prentice test (Peto and Peto, 1972; Prentice, 1978), and in general the GP*Y test (Fleming and
Harrington, 1991), can also be recast as weighted logrank tests. Under mild conditions,
weighted logrank tests are consistent under ordered hazards alternatives and, if the weight is
monotone, under stochastic ordering alternatives (Gill, 1980, Ch. 4).

In applications, it may often be desirable to design a test with good power over a range of
possible alternative hypotheses. For such a purpose, combinations of weighted logrank tests
may be considered. Examples include the linear combinations (Gastwirth, 1985; Zucker and
Lakatos, 1990), maximum of several standardized tests (Tarone, 1981; Fleming and
Harrington, 1984, 1991), maximum after orthogonalization (Breslow et al., 1984), or 2 test
of the simultaneous null hypothesis for the set of tests. For the maximum test approach, in
addition to taking the maximum over a finite number of tests, the maximum can be taken
over an infinite collection of tests (Self, 1991) or over time (Gill, 1980; Fleming and
Harrington, 1984; Fleming, Harrington, and O’Sullivan, 1987), or in general over a class of
function-indexed tests (Kosorok and Lin, 1999). In those more complex situations, often
Monte Carlo methods are used to obtain the theoretically intractable critical value and p-
value. Typically the combination approaches are more robust than the logrank test, in the
sense of maintaining good power under a range of nonproportional hazards alternatives.
Usually the combination tests fail to remain optimal under proportional hazards alternatives,
giving one more example of the trade-off between efficiency and robustness seen in many
statistical problems. For the transformed two sample location model, an asymptotically
efficient test can be obtained (Lai and Ying, 1990). It uses kernel estimates and requires
large sample sizes to perform well. Pecova and Fleming (2003) proposed a maximum test
using as the selector an estimator of the asymptotic relative efficiency for a finite collection
of baseline distributions in the location model. The test is asymptotically efficient among the
finite collection it is based on. But simulation studies show that, for small samples, there is
some loss of power for the proportional hazards alternatives compared with the logrank test.

In this work, we propose to modify the logrank and related tests by using adaptive weights.
Under proportional hazards alternatives, the new adaptively weighted logrank test continues
to be optimal. When the hazards are nonproportional, the adaptive weights reflect deviations
from proportionality, and lead typically to improvement in power over the logrank test. To
control the potentially inflated test size, an adjustment is proposed which takes into
consideration the correlation between the relevant statistics. The adaptive weights are also
used to modify the closely related maximum test and the Breslow test. The adaptive weights
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are obtained by fitting the data to the model of Yang and Prentice (2005), which contains the
proportional hazards model and the proportional odds model as submodels, and
accommodates nonproportional hazards situations to the extreme of having crossing hazards
and crossing survivor functions. Extensive simulation studies show that, for a wide variety
of nonproportional hazards alternatives, the proposed modifications typically improve the
power. Overall, the adjusted adaptively weighted logrank test has the best performance,
maintaining optimality under the proportional alternatives, while improving the power under
a wide range of nonproportional alternatives. We illustrate the newly proposed tests in
diverse examples, ranging from mildly time-dependent hazard ratios, to more severe
nonproportionality of the hazard functions, and to the extreme case of crossing survival
functions. These motivating examples indicate that, in one degree or another, various robust
alternatives to the logrank test may be more sensitive to substantial deviations from the
proportional hazards condition, but may also be less sensitive when the nonproportionality is
mild. The adjusted adaptively weighted logrank test, on the other hand, has a more stable
behavior throughout all the examples.

We organize the paper as follows. In Section 2, after the notation and setup, we describe the
model of Yang and Prentice (2005), which is used for obtaining the adaptive weights. Then
the adaptively weighted logrank test is introduced. In Section 3, the adaptive weights are
used to modify a few related tests in the literature. In Section 4, the new tests are examined
in simulation studies for a wide range of hazard ratio patterns. In Section 5, the new tests are
illustrated in several examples with diverse nonproportional behavior. A discussion is given
in Section 6.

2. Adaptively Weighted Logrank Test

2.1 Preliminaries

Label the two groups control and treatment, with survivor functions Sc, St respectively. We
consider the hypothesis testing problem

Hy:S =S, vs. H,S, #S,. (1)

Let Ty, ..., Ty be the pooled lifetimes of the two groups, beginning with the control group, Z;
=1(i>nq), i =1, -+, n, where ny <n is the size of the control group and I() is the indicator
function. Also, let Cq, ..., Cp, be the censoring variables. The available data consist of the
triplets (X, di, Z;), i =1, ..., n, where X; = min(T;, C;) and §; = I(T; < C;j). We assume that Ty,
..y T, Cq, ..., Cp are independent, with Ty, ..., Ty, Ny < n, having the survivor function Sc
and Tpy+1, --., T, having the survivor function St. The censoring variables (Cj’s) need not
be identically distributed, and in particular the two treatment groups may have different
censoring patterns.

Let

Ni(H)=6;1(X; < 1), Yi()=I(X; > 1), )

and define

K()=) Y0, K, (=) ZY(1).
i=1 i=1 3)
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Then, the weighted logrank statistic for the testing problem (1) is

Up=) " [ ¥ {2 = Z(n)} dN:(1),
i=1 (4)

where Z(t) = Kz(t)/K(t), and P is a possibly data-dependent nonnegative weight function
satisfying certain regularity conditions. We will denote the corresponding standardized test

statistic by Wy. Hence Wy=Uy/ /Viy, Where

V‘*’:Z:;]f:‘yz(’)“mf) - K, (0} K, ())/K*(0]dNi(9), n particular, the standardized logrank
is denoted by W;.

Assume that the distributions of the failure times are absolutely continuous and Ac, At are
the hazard functions for the two groups respectively. Suppose Ac, At belong to a parametric
family {Ag, 6 € ®} and A¢ = Ag. For a sequence of local alternatives H;;:1, =21, it is well
known that (cf. Gill, 1980; Fleming and Harrington, 1991), under appropriate regularity
conditions, the weight that maximizes the power under H” has a limit that is proportional to

d
-_— log /lg|g=g(,.

o6 (5)

Furthermore, this weight results in full efficiency when n; = np, where 1, ©r, are the limits
of (K — Kz)/n1, Kz/n, respectively. Thus the logrank statistic, corresponding to ¥ = 1, is
optimal when {)4, 6 € ®} follows the proportional hazards model: Ay = 0.

2.2 The Model of Yang and Prentice (2005)

To improve the logrank test for a range of alternative hypotheses, it seems natural to
consider a model that extends the proportional hazards model and accommodates a variety
of nonproportional hazards situations. Let

To=sup {£:S .(1)>0}. (6)

Recently Yang and Prentice (2005) proposed a model in which

6,0
172 A.(1), <10,

A(H=— 2
O1+(02 — 61)S (1) W)

where 07 and 0, are positive. This model contains the proportional hazards model (61 = 65)
and the proportional odds model (0, = 1). Under this model, 01 = limgg A7(t)/Ac(t), 62 =
limgpqg Ar(t)/Ac(t). Thus 01 and 6, can be interpreted as the short-term and long-term hazard
ratios, respectively. Various combinations of 6, and 0, give different nonproportional
hazards patterns, such as disappearing treatment effect (6o = 1), or no initial effect (6; = 1).
When 01 # 6, and the interval formed by 61 and 6, contains one, the two hazard functions
cross. The survivor functions S¢ and Sy also cross if either 61 <1 and 6, > 1, or 8; > 1 and
02 < 1. In comparison, the survival functions will not cross under the proportional hazards
models, the proportional odds model and, in general, under linear transformation models
(Bickel et al. 1993). Neither will they cross under the accelerated failure time model. Thus
this model allows more flexible patterns for the treatment effect compared with some of the
traditional models.
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To test the hypothesis of no treatment effect, Yang and Prentice (2005) proposed a 2 test
using their two estimating functions. That test turns out to be the 2 test that combines the
logrank statistic and Peto-Prentice statistic. Alternatively, one can define B, = log 6; and B,
= log 85, and set B1 = y16 and B, = v,0 and consider (5) for 6 = 0. The resulting test is of the
form (4) with weight function

D=y;S +y2(1 - S ). (®)
For the proportional hazards submodel with y; =5, @ reduces to a constant, thus the

logrank test is optimal; while for the proportional odds model with y, = 0, ® becomes y;Sc,
thus the weight S¢ is optimal, confirming well known results in the literature.

2.3 Adaptively Weighted Logrank Test

Since @ = lim(1 — Ac/A1)/0 as 6 | 0, we can consider a test with the simple weight function
@4 = Ac/ht, where the estimated hazard functions are obtained by fitting the model of Yang
and Prentice (2005) to the data. This test reduces to the logrank test under the proportional
hazards model B; = . For symmetry in the two treatments, we can derive an adaptive test
that also uses @, = 1/@;. Note that, to use these weights, we need to restrict to the case
where the hazard ratio is not zero. Under nonproportional alternatives, it is plausible that
either @, or ®; would often be more sensitive to departure from the null hypothesis than a
constant weight, and consequently could result in improved power.

These weight functions depend on the estimated hazard ratio under model of Yang and
Prentice (2005). We refer the readers to that paper for the motivation of the estimated hazard
ratio there. Here we give the technical details necessary to obtain the weight functions. Let

n
Hj(b)=> "0y uD)(X; < 1), j=1,2,
i=1 (9

for t > 0, where vjj(b) = exp(—bjZj) and b = (b1, b,). Using these functions and K(t) in (2),

define A (1:b)= [ o1 Hy (ds:b), Aa(t:b)= [ ok Ha(ds:b), and

K(s)

R(tby=—— [ P-(sD)A1(ds:b),
P(1;b) (10)

where P (t; b) = TIs<{1-AA5(s; b)}, with P_ denoting the left continuous, in t, version of P,
and AA,(s; b) the jump of A ins.
Now define

— R(d b
Mi(t:b)=8:1(X; < r)_fgl(x > 5) @s )A ,1<i<n.
71i(b)+y2i(b)R(s:b) (11)

The estimating function Q(b) proposed in Yang and Prentice (2005) is, for some t < 1,

Qb)=)" [ filt)My(dr:b),
i=1 (12)
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Y1i(b) y2i(b)R(t:b)

hi(tb)=2; . —, filt;b)=Z; : —.
Y1i(b)+y2:(b)R(z:b) Y1i(b)+y2:(b)R(z:b) (13)

Let B = (B1, P2) be the zero of Q(b). Then P is the pseudo maximum likelihood estimator of
(B1, B2)- Thus the adaptive weight @5, or the estimated hazard ratio under the model of Yang
and Prentice (2005), is

1+R(t:8)

Dy (1)= = == =
exp(—B1)+exp(-B2)R(t;8) (14)

From this, @4 follows easily.

Using the standardized statistics Wq,1, Wqy, corresponding to the weights @1, ®,, we can
define a test that rejects Hy when

max(|Wo, |, [Wa, )>z(a/2), (15)

where z(a/2) is the upper 100(1—a/2)th percentile of the standard normal distribution.

Note that, due to the dependence on f, the weights @, ®, do not satisfy the typical
requirement for the usual weighted logrank tests. In the Appendix, given in the
Supplementary Materials, we show that, under certain regularity conditions, Wy, i = 1, 2 are
asymptotically equivalent to each other and to the standardized logrank statistic, under both
Hg and the proportional hazards alternatives. Thus not only does the test (15) have
asymptotically correct size, but it is also asymptotically optimal for the proportional hazards
alternatives. For nonproportional alternatives, it is likely that either ®; or ®, would behave
more closely to @ than a constant weight, and hence is expected to result in better power
than the logrank test. To control the size, a multiple comparison adjustment to the test (15)
will be described in the next section.

For one sided alternative hypotheses, the adaptive test can be modified correspondingly.

Consider the alternative H,:S, > S ., where the strict inequality holds for an interval over
the real line. Then a test analogous to (15) is to reject Hy when

max(—Wo,, —Wa,)>z(a).

For the alternative H,:S, < S, where the strict inequality holds for an interval over the real
line, the test analogous to (15) is to reject Hy when

max(Wg,, Wo,)>z(@).
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3. Other Related Tests

3.1 The Maximum Tests

The adaptively weighted logrank statistics Ug, and Ug, can also be used in combination
with other statistics to obtain new tests. With the logrank test and an additional weighted
logrank statistic Wy, the usual maximum test rejects Hg when

max((Wi . [We)>c, (@), (16

where the critical value c, depends on the correlation coefficient p between W, and Wy and
can be computed using the asymptotic bivariate normal distribution of (Wq, Wy). Note that
for two weighted logrank statistics, the correlation coefficient p is nonnegative. For the level
o = 0.05, Table 1 in Yang, Hsu, and Zhao (2005) gives the value of ¢y (o) for a range of
correlation coefficient between two asymptotically normal tests, so that for a given p, the
value of ¢, can be obtained through interpolation. Alternatively, the exact values can be
obtained using bivariate normal calculations as given in (2) of Yang et al. (2005).

Let pj be the correlation coefficient between Wg,; and Wy, i = 1, 2. For the maximum test in
(16), one obvious modification is to reject Hy if

max(|Wg, |, [Wo, |, [Wg[)>c (@), an

where we choose p = min(py, p2), in order to correct for the potentially inflated size.
Alternatively, asymptotically exact critical values can be obtained from trivariate normal
calculations. Numerical results show that the simpler approach in (17) is adequate. For
combining more than two tests, the modification is analogous.

The critical value c,(o)) can also be used to provide an adjustment to (15) to improve the
asymptotic distributional approximation: Let p be the correlation coefficient between W,
and Wg,. Then an adjusted version of (15) is to reject Hy when

max(|Wo, |, [Wa, )>cs(a). (18)

For a given data set, the significance level P for the tests in (16) through (18) can be
obtained by

e[, {F( o gt —pu; )} oo,

(19)

where t is the observed test statistic value, p the estimated correlation coefficient, and f, F
the density and cumulative distribution functions of the standard normal distribution
respectively.

3.2 The Modified Breslow Test

As a complement to the logrank test, Brelsow et al. (1984) introduced a score test for the
null hypothesis of proportional hazards against rank-regression alternatives. The test was
motivated by situations where the hazard functions cross over, giving a treatment effect that
Brelsow et al. (1984) described as an acceleration of the events of interest. Their test is
related to the two sample model
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A, =expla+z(H)) A, 0

where z(t) is a time-dependent covariate. This model was proposed by Cox (1972) to cope
with more complicated relationships than proportional hazards, and to check the two sample
proportional hazards assumption. The test of Brelsow et al. (1984) is the score test of the
composite null hypothesis B = 0 versus alternatives B # 0 for model (20). Let A, Ag be the
scores for model (20), and define a to be the partial likelihood estimator of a when p = 0.
Then the test statistic for acceleration is Aﬁ(&, 0). Let X; be the standardized test statistic. For
testing Ho, the test statistic of Breslow et al. (1984) is max(|W4], |X,|). Since Wy and X; are
asymptotically independent under Hy, the critical value of this test can be easily obtained.

Breslow et al. (1984) investigated in detail the two special cases with the rank scores z(T;) =
#{j : Tj < T, 8j = 1} and the cumulative-hazard scores z(T;) = A(T;), where A is the Nelson-
Aalen cumulative hazard estimator under Hp. Simulations and real data examples show that
their test provides improved power against acceleration alternatives (i.e. with crossing
hazards), compared with the logrank test and the Peto-Prentice test.

Recall N;j, Yj, i=1, ---, n from (2) and define

n n
K, (y):ZeXp(aZi)Yi(t), K, (1, a)=Zz,- exp(aZ)Yi(t).
i=1 i=1 (21)

. n 00 =
Let U\v(cr)zzizl Jo YOHZi = Z(t, )}dNi(®), where Zit, o) = Kz(t, a)/K(t, o). The test statistic
for acceleration can then be written as Uy(a). Let Wi(a) be the standardized version of
Uy(a). The test of Breslow et al. (1984) rejects Hg if

1—\/—1——0],

max{|W|, [Wy(@)|}>z ( 3

(22)

where the critical value follows from the asymptotic independence of W; and Wy(a).
Similar to (15), a modification of this test is to reject Hy if

max(|Wa, |, [Wo,|, IWw(a1))>z {(1 - V1- af)/2}, where oy is the zero of Ug, (o). However, as
the maximum is taken over three individual tests, simulation results show that this test often
has inflated size for moderate samples. An adjustment is to reject Hq unless

(23)

For o = .05, the critical value c5(1 — V1 — @) is given in Table 1 for select values of p. For
other values of p, one can either interpolate from this table, or use the exact method as in (2)
of Yang et al. (2005) as mentioned before.

In the Appendix, we show that, under certain regularity conditions, asymptotically all of the
newly proposed tests have the correct size. It is possible to have other pairs of weight
functions that converge to constant functions under Hp. For example, instead of @4, ®,, one
could consider the ratios of Nelson-Aalen cumulative hazard functions, Kaplan-Meier
cumulative distribution functions, or Kaplan-Meier survivor functions. The major attraction
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of these alternative weight functions is the ease of computation. They converge to the
constant one under Hp, and the corresponding tests also have the correct size asymptotically.
Under non-proportional hazards alternatives, these weights likely would result in better
power compared with the logrank test. However, since they are ratios of estimators from
each single sample, for moderate sample sizes they may be unstable, as will be shown in the
numerical studies described below.

4. Simulation Studies

We have performed extensive numerical studies to systematically examine the behavior of
the new tests under a wide range of alternatives. Denote the tests in (15) through (18), (22)
and (23) by LRAD, MX, MXAD, LRAD2, MXB, MXBAD respectively, with ¥ in (16),
(17), (22) and (23) defined below. For the purpose of comparison, additional tests were also
included in the numerical studies. Among them are the logrank test and the 2 test that
combines the logrank test and the weighted logrank test with weight . The tests similar to
(15) and (17), but with the ratios of estimated cumulative hazard functions instead of @, @5,
are denoted by CH, CH2 respectively. The ratios are defined to be zero where the
denominator vanishes. The performance of the tests was examined for various combinations
of short-term and long-term effects of the treatment, as follows:

(N). No treatment effect;

(PR+). Constant beneficial effect;

(PR-). Constant adverse effect;

(SOL+). No initial effect but a gradually increasing beneficial effect;
(SOL-). No initial effect but a gradually increasing adverse effect;
(S+L0). An initial beneficial effect that diminishes long-term;
(S—L0). An initial adverse effect that diminishes long-term;
(S—L+). Initial adverse effect but a long-term beneficial effect;
(S+L-). Initial beneficial effect but a long-term adverse effect;

(U). U- shaped treatment effect.

While it is impossible to exhaust all possible treatment effect scenarios, the above situations
do include a reasonably wide range of possibilities considered in the literature. All except
the last case correspond to various scenarios where the hazard ratio stays constant, gradually
deviates from one, converges to one, or gradually increase or decrease to cross the line of
constant one. Note that, under the first six alternatives (PR+) through (S—LO0), the two
distributions are stochastically ordered. Under the last three alternatives, without a stochastic
ordering of the underlying distributions, it is not clear how to judge overall whether the
treatment is better. These situations may be less common, but it is still important to have
good power for testing the difference between the two distributions.

Now we report the results from a representative study. For cases (N) through (S+L-), the
data were generated from the model of Yang and Prentice (2005), with Sc(t) being the
standard log-logistic, and with  being the zero vector, a multiple of (1, 1), (1, 0) or (0, 1), or
having opposite signs in the two components respectively. For the case (U), the control
group had the standard exponential distribution, and
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A l+a

TH T e t€(0,.5) U (1.5,0)
t€[0.5, 1.5],

1+a’

for some constant a > 0. The parameters in all the configurations were chosen so that the
logrank test had approximately 70% power when nq = n, = 80 with 10% censoring. For all
cases the censoring variables had a log- normal distribution, where the normal distribution
had mean c and standard deviation 0.5, with ¢ chosen to achieve various censoring rates.
The weight ¥ in (16), (17), (22) and (23) was chosen, after examining several candidates, to
be the Nelson-Aalen cumulative hazard estimator under Hy. For more stable tail behavior, ¥
was stopped at the order statistic near the 95th percentile. For various sample sizes and
censoring levels, the simulation results based on 1000 repetitions are summarized in Table 2.
The numbers given are the empirical size for case (N), and the power ratio over the log rank
test for cases (PR+) through (U).

From these results, first we see that the CH test and the CH2 test had severely inflated size,

as we expect the empirical size of the tests to be mostly within 1.96 v0.05 - 0.95/1000=.0135
of the nominal level a = .05. Additional simulation results not reported here show that the
ratios of Kaplan-Meier cumulative distribution functions also resulted in substantial size
inflation. For the ratios of Kaplan-Meier survivor functions, the size inflation was still a
problem, though not as severe. All indications are that the tests based on ratios of single
sample estimators need to be further refined before they can be recommended.

To compare the tests LRAD, LRAD? targeting at improving the log rank test, we see that
the LRAD test was more powerful than the logrank test across all configurations, as
indicated by the power ratio staying greater than one. However, for small samples, the size
of the LRAD test was inflated, although not as severely as for the CH and CH2 tests. The
adjusted LRAD? test brought the size under control. Most of the time it improved the power
of the log rank test. For the few cases when it did not, the loss of power was virtually
ignorable.

For comparing the MX test and the MXAD test, we see that the MXAD test improved the
power over the MX test most of the time. Also, the magnitude of the relative power loss of
the MXAD test for the few times where the MX test won out is mild. Thus the MXAD test
can be recommended as an improvement of the MX test. Similar remarks also apply to the
comparison between the MXB test and the MXBAD test, where the advantage of the
MXBAD test can be seen for an even wider range of alternative hypotheses. Also, we note
that when the treatment effect is initially adverse but becomes beneficial in the long run
(case (S—L+)), most tests had much better performance than the logrank test, especially
under heavy censoring, where the logrank test had substantial power loss. This is in
agreement with Breslow et al. (1984) and with Yang and Prentice (2005), where the crossing
hazards situations motivate the test and modeling respectively. To compare the MXAD,
MXBAD, and the 2 tests, we note that the MXAD test often performed the best. The ¥ test
was often the least performing among the three robust tests. Under substantial censoring, it
even had lower power than the logrank test most of the time. Also, the loss of power at the
proportional alternatives can be quite sizable sometimes. This behavior indicates that the 2
test is in general not a good omnibus test when a range of alternatives is likely.

For comparing LRAD?2 with the other tests, we see that, more often than not, the LAD?2 test
has higher power. It is the clear winner for the proportional hazards alternatives. For other
scenarios, in situations where the LRAD?2 test has less power compared with one of the
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other robust tests, the LRAD?2 test already has a sizable improvement over the logrank test.
Due to its optimality at the proportional hazards alternatives, the improvement over the
logrank test and consistent behavior across a range of nonproportional alternatives, we
recommend the LRAD?2 test as a good omnibus test. On the other hand, the MXBAD test
would be a good choice for crossing hazards situations, and the MXAD test would generally
be a good choice for other nonproportional hazards situations.

To study test robustness when the model of Yang and Prentice (2005) does not hold, we
have conducted additional numerical simulations. Note that if (Ac, A7) follow the model of
Yang and Prentice (2005), then (A1, Ac) does not. However, if the model of Yang and
Prentice (2005) is fitted to (A1, Ac), in general the resulting parameter estimate B is close to
the negative of the true B for the (Ac, At) model. A few additional numerical simulations
show that the tests behaved similarly to the results in Table 2, when the two groups were
switched, and when data were generated for scenarios considered here but not under the
model of Yang and Prentice (2005). The results are omitted here.

In the results reported here, we have focused on the robust combination tests. Single
weighted logrank tests have also been examined. In general they behave as expected. Similar
to the logrank test, they do well in a specific case (the weight Sc being optimal for (S+L0)
and (S—LO0), the proportional odds model), but are not as robust across several scenarios as
those combination tests considered here.

5. Examples

We now illustrate these tests in several real data examples, ranging from moderate to severe
deviations from the proportional hazards.

Example 1: Diverging survival functions

Nahman et al. (1992) studied the time to first exit-site infection (in months) in patients with
renal insufficiency. In that study, 43 patients utilized a surgically placed catheter (Group 1)
and 76 patients utilized a percutaneous placement of their catheter (Group 2). For testing Hg
with this data set, the logrank statistic is 1.599, resulting in the p-value of 0.110. Klein and
Moeschberger (1997, Ch.7, Table 7.3) showed that a few other commonly used weighted
logrank tests, with Gehan, Tarone-Ware, and Peto-Prentice weights, resulted in even larger
p-values, while some weights, from the Fleming-Harrington GP:Y family that put more
weight on the late comparisons, resulted in p-values less than .01. The plot of the estimated
survival functions (Figure 7.1, Klein and Moeschberger, 1997) indicates that the two
survival functions diverge at the right tail. This explains that weights that emphasize on late
comparisons would likely yield small p-values. Table 3 gives the p-values of various tests.
The LRAD test and the LRAD?2 test use adaptive weights, so we do not need to decide
which weight to use. The weight used in the MX, MXAD, MXB, and MXBAD tests is the
Nelson-Aalen cumulative hazard estimator under Hg. Thus it is not surprising to see that
they have p-values similar to those of weighted logrank tests with weights that emphasize on
late comparisons. In this example, all six tests considered have more extreme p-values than
the logrank test. The nonproportionality of hazard functions in this example is severe, and
the MX and MXAD tests are better able to detect this nonproportionality, partly because of
the particular weight used.

Example 2: Crossing survival functions

The Gastrointestinal Tumor Study Group (1982) compared chemotherapy with combined
chemotherapy and radiation therapy, in the treatment of locally unresectable gastric cancer.
Each treatment arm had 45 patients, with two observations of the chemotherapy group and
six of the combination group censored. Kaplan-Meier plots of the two estimated survival

Biometrics. Author manuscript; available in PMC 2010 December 7.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Yang and Prentice

Page 12

curves cross at around 1000 days. The logrank statistic for Hg has the value 0.47, giving the
p-value of 0.64. From Table 3, all tests except the MX test have p-values less that .05. This
example indicates that the logrank test and even the MX test may not be sensitive enough to
the crossing survival curves situation. With the use of adaptive weights, the MXAD test is
able to correct the deficiency, resulting in a significant p-value. The MXB and the MXBAD
tests are designed for this kind of situations and perform well here. The adaptive weights
also lead to LRAD and LRAD? tests with significant p-values.

In both of the examples above, there seems to be an apparent violation of proportional
hazards. Not surprisingly, the logrank test behaved poorly and most other tests had much
smaller p-values. For large clinical trials, often the deviation from the proportional hazards
is less extreme. Next we look at such an example.

Example 3: Moderately time dependent hazard ratio

The Digoxin Intervention trial (The Digitalis investigation group, 1997) is a randomized,
double-blind clinical trial on the effect of digoxin on mortality and hospitalization. In the
main trial, patients with left ventricular ejection fraction of 0.45 or less were randomized to
digoxin (3397 patients) or placebo (3403 patients) in addition to diuretics and angiotensin-
converting-enzyme inhibitors. For testing the validity of the proportional hazards model, the
acceleration test statistic of Breslow et al. (1984) has the value 1.6540, giving the p-value
0.098. Thus there is some indication of proportionality violation, but the evidence is not
strong. The hazard ratio, obtained from fitting the model of Yang and Prentice (2005), varies
mildly from .85 to .95. For the risk of mortality due to worsening heart failure, the logrank
statistic has the value 1.88, resulting in the p-value of 0.061. From Table 3, none of the p-
values are less than 0.05, but they are mostly less than 0.10. Thus there is some indication of
lower risk of death attributed to worsening heart failure in the digoxin group, consistent with
the trial’s finding. This example shows that, for the case of moderately time-dependent
hazard ratio, most of the robust modifications of the logrank test may reduce rather than
boost the power. By contrast, the adaptively weighted logrank tests still provide more
extreme p-values than the logrank test, although not as different as in the previous examples.

The above examples and simulation results, as well as additional simulation studies not
reported here, show that typically the newly proposed tests improve respectively the tests
that they are designed to modify. Overall, the LRAD?2 test, the adjusted adaptively weighted
logrank test, has the best performance. It improves the logrank test for almost all of the cases
we have studied, and when it does not, has virtually ignorable power loss compared with the
logrank test. On the other hand, if more information is available on the behavior of the two
comparison groups, such as crossing survival curves, divergence or convergence survival
curves, then weighted logrank test or appropriate robust tests such as the MX, MXAD,
MXB, MXBAD tests, can be used to exploit the particular type of nonproportionality and
improve the power.

6. Discussion

The statistics Ug,, Ug, are asymptotically equivalent to the logrank test statistic under Ho
and under the proportional hazards alternatives. This property gives the optimality for the
adaptively weighted logrank test under proportional hazards, as well as the asymptotically
correct size. Such property is likely to be useful in more situations than illustrated here. For
example, they can also be used in the Renyi type test (Gill, 1980) where the maximum is
taken over time. All the newly proposed tests can be modified appropriately to obtain the
one-sided versions.
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We have focused on the case of two homogeneous groups in this work. If this is not the case
and covariates are available, then the covariates can be incorporated, just as for the weighted
logrank statistics. The model of Yang and Prentice (2005) can be extended to accommodate
covariates as indicated in their Discussion Section, and such an extension can be used for
obtaining the adaptive weights.

Without proper adjustment, use of asymptotic approximations with adaptive weights often
results in inflated size. We have studied a few cases of adjustment here that have worked
well. Other options can be developed. Also, Monte Carlo methods, such as the Bootstrap or
other resampling methods like that of Lin, Wei, and Ying (1993), can be used to obtain the
p-values. The disadvantage is the increasing computing cost.

It is possible to consider other adaptive weights, and other models such as (20), particularly
if additional hazard ratio patterns warrant them. For example, richer models that allow
quadratic or U- shaped hazard ratios, or even more complicated patterns, can be considered.
The drawback is the increasing complexity with more parameters to be estimated.

For design and analysis of clinical trials, sample size calculations and obtaining stopping
boundaries for a sequential design are two important issues that need to be addressed.
Incorporating the adaptive weights in extending the current clinical trial literature presents a
very challenging but promising topic. All the issues arising from these various
considerations remain to be explored in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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